Lecture 08 ZigBee & Interoperability

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2023

Materials in collaboration with Pat Pannuto (UCSD)

Northwestern

Updates

- Lab: BLE
 - Due today
 - You do have slip days though (3 total)
- Lab: Thread
 - Available now
 - Due Friday, February 10th
- Hw: Mesh
 - Out later this week (somewhere in the Wednesday-Saturday timeline)

Today's Goals

• Introduce ZigBee as another 802.15.4 implementation

• Explore ZigBee application layer

• Discuss interoperability designs and the Matter standard

Outline

ZigBee overview

• ZigBee PHY and MAC

• ZigBee application layer

• Interoperability

ZigBee goals

- Enable automatic communication between devices
 - Low complexity
 - Low power
 - Focus on home automation and industrial control/monitoring
- From our perspective
 - 802.15.4 PHY and MAC
 - Plus well-defined Server/Client interactions
 - Similar to BLE (actually, BLE is similar to ZigBee)
 - Designed for higher-power devices than Thread or BLE
 - Although still relatively low power

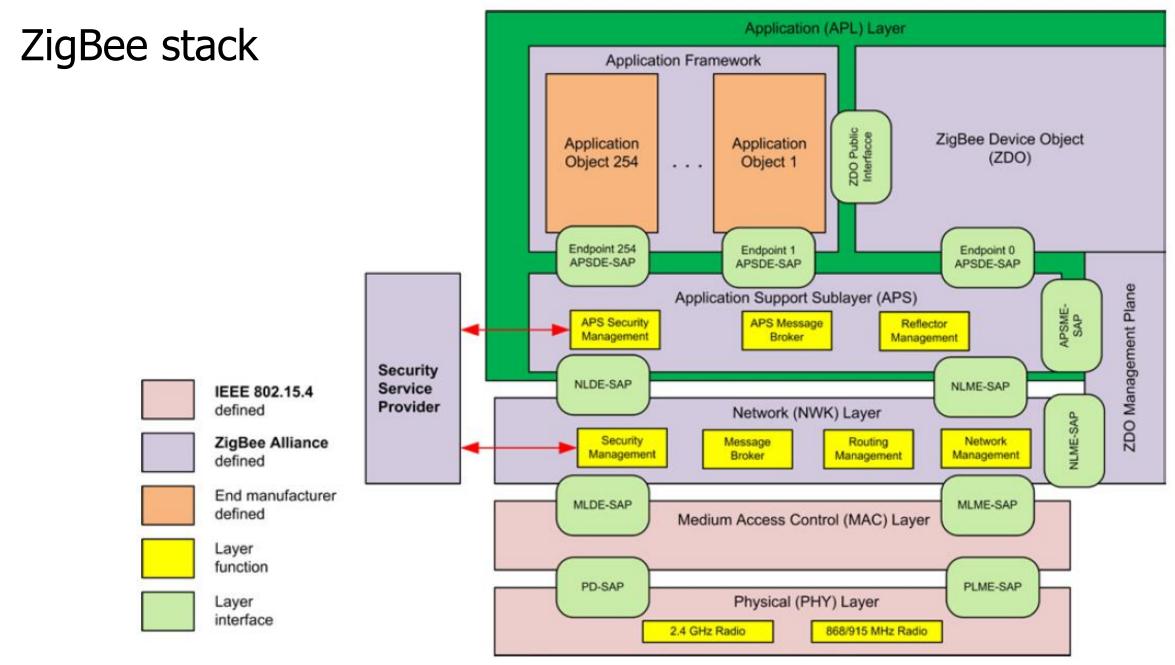
ZigBee history

- Intertwined with the creation of 802.15.4
 - Both are founded around the same time
 - ZigBee Alliance involved in the original 802.15.4 specification
 - Recently renamed: Connectivity Standards Alliance (CSA)
 - Original plan: 802.11/WiFi <-> 802.15.4/ZigBee
- Original specification 2004 (following 802.15.4 in 2003)
 - Updated 2006, 2007, 2015, (2017?)
 - 2015 version is also known as ZigBee Pro
 - We'll focus on 2015, but look at previous stuff too
 - Application layer stuff hasn't changed considerably

ZigBee resources

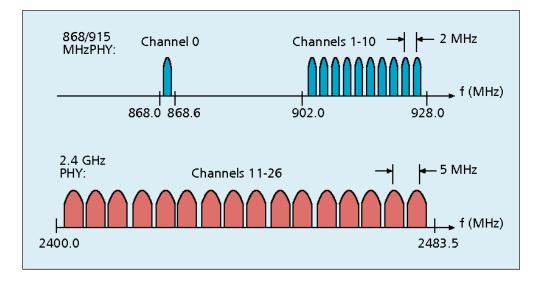
- ZigBee Specification (2015)
- ZigBee Cluster Library Specification (2016)

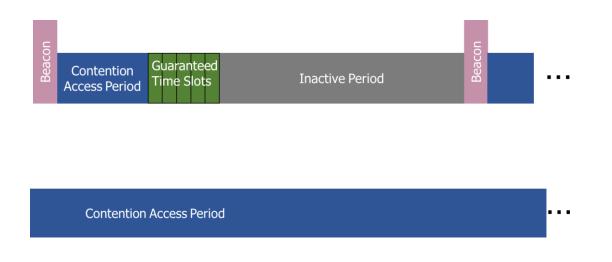
- Useful resources
 - ZigBee overview: <u>https://www.cse.wustl.edu/~jain/cse574-14/ftp/j_13zgb.pdf</u>
 - NXP library guides (include overview on ZigBee)
 - ZigBee Protocol: <u>https://www.nxp.com/docs/en/user-guide/JN-UG-3113.pdf</u>
 - ZigBee Cluster Library: https://www.nxp.com/docs/en/user-guide/JN-UG-3115.pdf
 - ZigBee Home Automation: <u>https://www.nxp.com/docs/en/user-guide/JN-UG-3076.pdf</u>


Outline

ZigBee overview

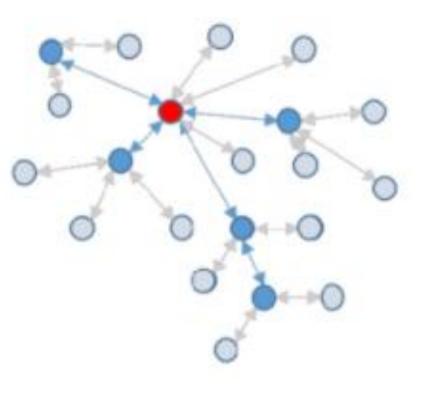
• ZigBee PHY and MAC


• ZigBee application layer


• Interoperability

Use of 802.15.4

- Basic answer: everything
 - Reuse all of PHY (including non-2.4 GHz channels)
 - Reuse all of MAC (including beacon-enabled network and GTS)
 - Same CSMA/CA mechanism

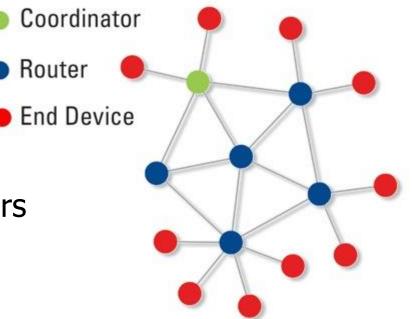


ZigBee devices (same roles as 802.15.4 defines)

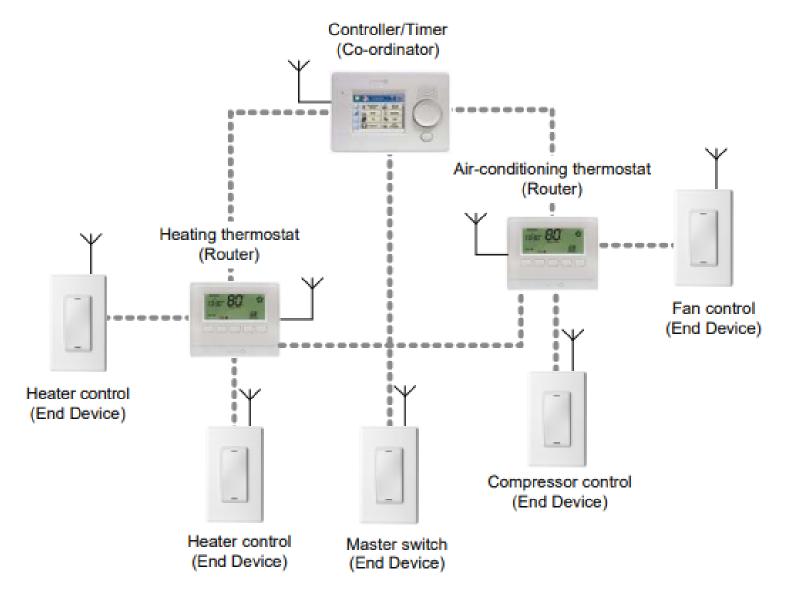
- ZigBee Coordinator (ZC)
 - Starts the network and decides on key parameters
 - Is also a Router
- ZigBee Router (ZR)
 - Higher-power, more-capable devices
 - Radios always on (except during inactive superframe)
 - Connect to one or more children
 - Connect to one or more routers
- ZigBee End Device (ZED)
 - Lower-power, less-capable devices
 - Always a child of one router

Older ZigBee - tree networks

- Original preferred topology
- Uses beacon-enabled network
 - Synchronization via beacon superframes
 - Can reduce power requirements for routers
- Some things get simpler
 - Address assignment is simple
 - If you restrict network size
 - Routing is straightforward
 - But likely more hops for router-to-router communication



ZigBee tree network complications


- Distributed routing scheme limits topologies
 - There is a limit on number of routers
 - Each router has a maximum number of children
 - There is a maximum limit for router depth
 - Note: many protocols have limits. Thread has device count limits too!
- Needs a beacon scheduling mechanism
 - Each parent must both participate in a superframe
 - And also send their own superframe beacons
 - Need to keep inactive period large if there is significant router depth
 - Each beacon includes a TX offset field specifying parent beacon time
 - Helps prevent hidden terminal problem

Modern ZigBee – mesh networks

- Presently preferred topology
- Uses non-beacon-enabled network
 - All routers are always-on devices
 - Allows arbitrary communication between routers
- Some tradeoffs
 - Higher power routers
 - Routing more complicated (potentially better algorithms though)
 - Addressing more complicated
 - Assign random addresses to each node
 - Include a method for address conflict resolution

Example ZigBee network

Break + Design Question

- How frequently should End Devices communicate?
 - Constantly or periodically, and at what period?
- Each group:
 - Pick an Industrial or Commercial smart device (not a home bulb/switch)
 - Consider its energy, latency, and reliability requirements
 - Determine communication pattern
 - We'll share around the room

ZigBee End Device polling

- Packets are held in ZigBee Routers for up to 7.68 seconds
 - Compare to undefined duration for Thread (at least minutes)
 - Reduction in "low energy" capability for end devices
 - Limiting timeouts makes Router design simpler
- ZigBee codifies polling behavior for End Devices
 - Long Polling steady state polling period, example: 7.5 seconds
 - Short Polling polling period while waiting on data, example: 1 second

Outline

ZigBee overview

• ZigBee PHY and MAC

ZigBee application layer

• Interoperability

Analogies between BLE and ZigBee

- BLE Profile
 CigBee Profile + Device Type
- BLE Service
 Cluster
 · ZigBee Cluster
- BLE Characteristic
 SIgBee Attribute
 - Also ~ZigBee Commands

ZigBee application-layer terms

- Devices act as servers and clients
- Profiles detail application-level features
 - Includes network configurations
 - For example: security or reliability
 - Includes definitions of various Device Types
 - Specify a collection mandatory and optional Clusters
 - Clusters collection of Attributes and Commands
 - Attributes information, readable and/or writable
 - Commands control, writable, may elicit a response

ZigBee profiles

• Broad classes of device purposes

• Contains multiple Device Type definitions

Profile ID	Profile Name
0101	Industrial Plant Monitoring (IPM)
0104	Home Automation (HA)
0105	Commercial Building Automation (CBA)
0107	Telecom Applications (TA)
0108	Personal Home & Hospital Care (PHHC)
0109	Advanced Metering Initiative (AMI)

- Define more features of device than the profiles from BLE
 - Pick various optional network/MAC features, like security or commissioning

Example ZigBee profile: Home Automation Device Types

Generic Devices

- On/Off Switch
- On/Off Output
- Remote Control
- Door Lock
- Door Lock Controller
- Simple Sensor
- Smart Plug

Intruder Alarm System Devices

- IAS Control and Indicating
- IAS Ancillary Control
- IAS Zone
- IAS Warning Device

- Lighting
- On/Off Light
- Dimmable Light
- Colour Dimmable Light
- On/Off Light Switch
- Dimmer Switch
- Colour Dimmer Switch
- Light Sensor
- Occupancy Sensor

HVAC Devices

• Thermostat

Each bullet point is a **Device Type**

Which is a list of mandatory and optional Clusters

ZigBee Device Types

- A collection of Clusters
 - Some mandatory and some optional
- Lists Clusters as Server side or Client Side
 - Server side Cluster is an *input*
 - Client side Cluster is an *output*
- Example: light bulbs implement server, switches implement client

Example Device Types: door lock and door lock controller

Server (Input) Side	Client (Output) Side				
Mandatory					
Basic					
Identify					
Door Lock					
Scenes					
Groups					
Optional					
See Table 1 on page 26	See Table 1 on page 26				
Alarms	Time				
Power Configuration	OTA Bootload				
Poll Control					

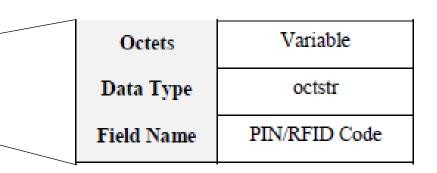
Table 6: Clusters for Door Lock

Server (Input) Side	Client (Output) Side				
Mandatory					
Basic	Door Lock				
Identify	Scenes				
	Group				
	Identify				
Optional					
See Table 1 on page 26	See Table 1 on page 26				

Table 7: Clusters for Door Lock Controller

ZigBee Clusters


- A collection of Attributes and Commands
 - Analogous to BLE Services
 - Can be optional or mandatory
- ZigBee Cluster Library defines standard Clusters
 - Lists Attributes and Commands for each
 - Attributes
 - Type uint8, enum, bitmap, string, etc.
 - Permissions Read/Write/Report (receive automatic updates)
 - How to interpret meaning of value
 - Commands
 - Field(s), Type of each, Interpretation of each


Example Cluster: door lock attributes

Identifier	Name	Туре	Access			Def	M/O
0x0000	LockState	enum8	Read Only Reportable			-	М
0x0001	LockType	enum8	R	ead Only		-	М
0x0002	ActuatorEnabled	bool	R	ead Only		-	M
0x0003	DoorState	enum8	1	ead Only eportable		-	0
0x0004	DoorOpenEvents	uint32	Re	ead/Write		-	0
0x0005	DoorClosedEvents	uint32	Re	ead/Write		-	0
0x006 OpenPeriod		uint16	Read/Write		-	0	
0x0010 NumberOfLogRecordsSupported			uint16	Read Only	y	0	0
0x0011 λ	NumberOfTotalUsersSupported			Read Only	y	0	0
0x0012 λ	2 NumberOfPINUsersSupported		uint16	Read Only	y	0	0
0x0013 λ	NumberOfRFIDUsersSupported		uint16	Read Only	y	0	0
0x0014 λ	humberOfWeekDaySchedulesSupportedPerUser		uint8	Read Only	y	0	0
0x0020	EnableLogging	bool	Read*Write Reportable 0			0	
0x0021	Language	string (3bytes)	Read*Write Reportable		0		0
0x0022	LEDSettings	uint8	Read*Write Reportable		0		0

Table 7-10. LockType Attribute Values Definition Value 0x00 Dead bolt Magnetic 0x01 Other 0x02 0x03 Mortise Rim 0x04 Latch Bolt 0x05 Cylindrical Lock 0x06 Tubular Lock 0x07 Interconnected Lock 0x08 Dead Latch 0x09 Door Furniture 0x0A

Example Cluster: door lock commands (client side)

- Server-side
 - Performs actions when it receives these commands
- Client-side
 - Capable of sending these commands

Example ZigBee profile: Smart Energy

• Price

• Key establishment (e.g. security)

• Interactions with energy providers for efficiency and cost savings

	Server Side	Client Side		
 Devices 		Mandatory		
		Demand Response and Load Control		
 Energy service interface 		Time		
 Metering device 		Optional		
Load control device		Price		
		Calendar		
		Device Management		
		MDU Pairing		
Clusters	Energy Management			
	Alarms			
Demand response	Tunneling	Tunneling		
Metering				

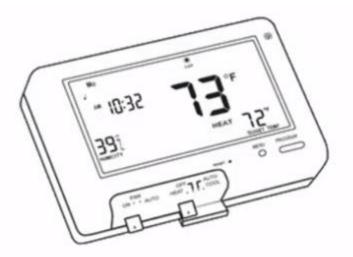
28

Example: demand response cluster

• No attributes, only commands

Command Identifier	Description	M/O
0x00	Load Control Event	М
0x01	Cancel Load Control Event	М
0x02	Cancel All Load Control Events	М

Load Control Command Payload


Octets	4	2	1	4	2	1	1
Data Type	uint32	map16	uint8	UTC	uint16	uint8	uint8
Field Name	Issuer Event ID (M)	Device Class (M)	Utility Enrollment Group (M)	Start Time (M)	Duration in Minutes (M)	Criticality Level (M)	Cooling Temperature Offset (O)

Octets	1	2	2	1	1	1
Data Type	uint8	int16	int16	int8	uint8	map8
Field Name	Heating Temperature Offset (O)	Cooling Temperature Set Point (O)	Heating Temperature Set Point (O)	Average Load Ad- justment Percentage (O)	Duty Cycle (O)	Event Control (M)

Endpoints

- Each ZigBee device has a number of Endpoints (up to 240)
 - Number by which remote applications can contact it
 - Analogous to a Port in TCP/UDP
- Each Endpoint has one Device Type attached to it
 - Communication refers to the Endpoint number,
 - Then the Cluster ID within it,
 - Then the Attribute/Command ID within that
 - Endpoints can be queried to determine what they provide
- Special case: Endpoint 0 ZigBee Device Object
 - All devices must implement the ZigBee Device Object
 - Attributes and Commands for controlling a network device
 - Network parameters are configured just like a light or door lock

Example Endpoints for a device

An example endpoint implementation:

Endpoint # - Profile Name: Device Type

- 0 ZigBee Device Profile (ZDP): ZDO
- 1 HA: Thermostat
- 2 HA: On/Off Output
- 3 SE: In-Home Display
- 4 MSP: Proprietary vendor extensions

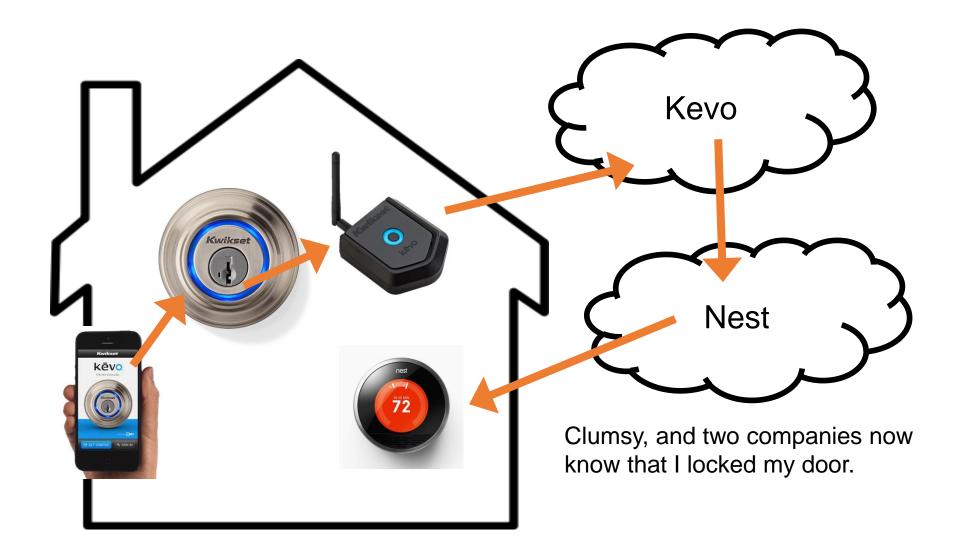
- Even simple devices hopefully have three endpoints:
 - 1. ZigBee Device Object
 - 2. <Their functionality>
 - 3. Over The Air Bootloader (code updates)

Break + Comparison

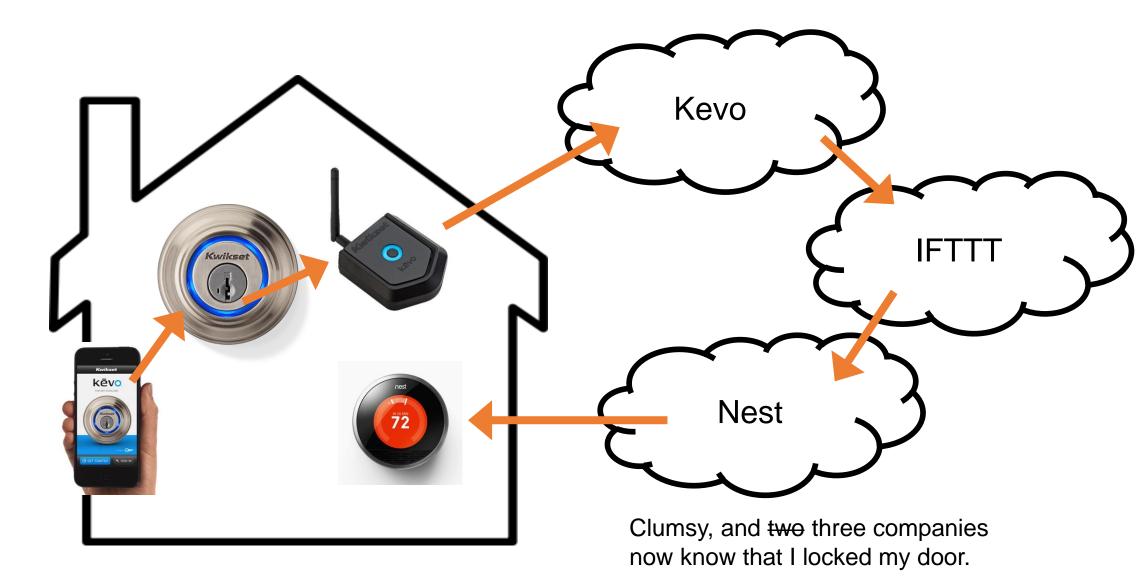
- ZigBee
 - Standardized services
 - Low-power end devices
 - Higher power routers
 - Mesh for extended range and connectivity
 - No interface on most consumer hardware

- BLE
 - Standardized services
 - Low-power end devices
 - Higher power scanner/centrals
 - Star topology for simplicity and focus on single "Central" device
 - Compatible with smartphones

Outline


ZigBee overview

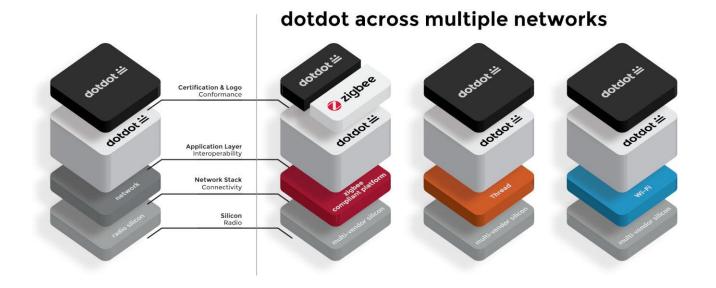
• ZigBee PHY and MAC


• ZigBee application layer

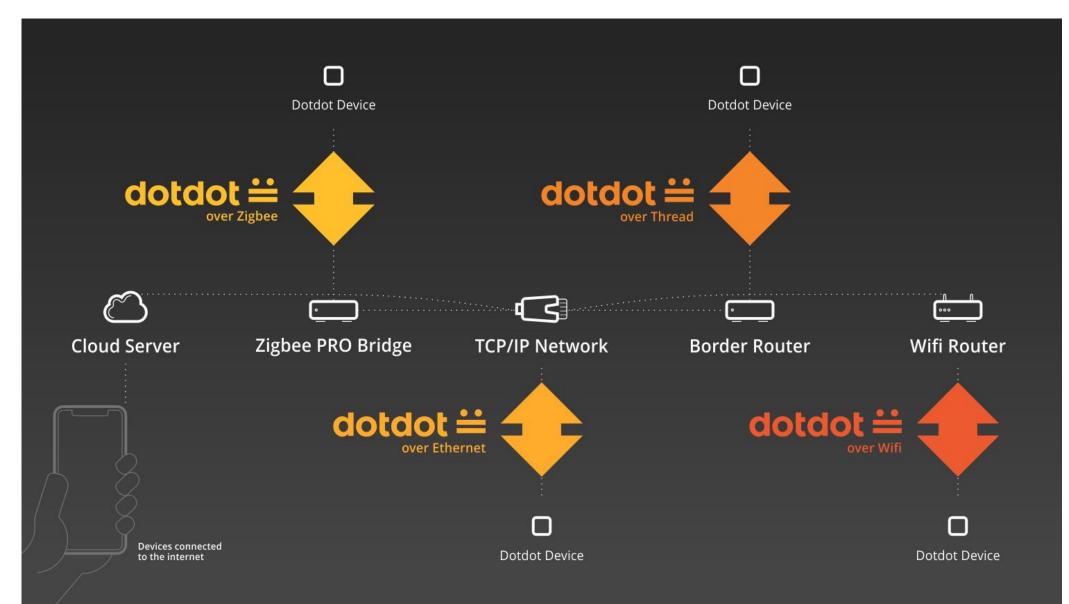
Interoperability

"When I leave, turn down the AC"

"When I leave, turn down the AC"


What does it look like without three different clouds?

• "Standardization" is the answer? Custom adaptations?



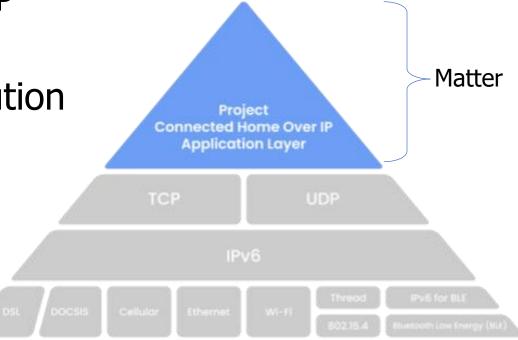
Reusing ZCL across other networks

- Can we use ZigBee Cluster Library to enable device interoperability
 - Even if we don't want to use the ZigBee protocol?
- dotdot is a recent effort to spread ZigBee Clusters more widely
 - Runs same application-layer on top of various lower layers
 - ZigBee, BLE, Thread, WiFi, Ethernet

dotdot provides ZigBee-style control over various networks

Example dotdot over Thread

G[↑] [↑] [†] [†] [†] [†] [†] [†] [†]

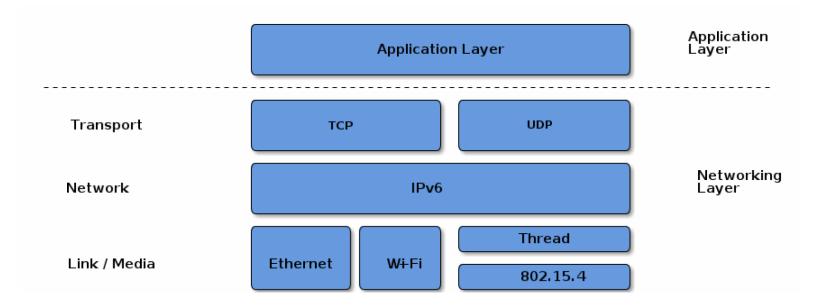

Attributes and Commands	Zigbee Cluster Library (ZCL)		CoAP Resources (accessed via GET, PUT, POST, DELETE)
Pindingo Dovico	Zigbee Device Profile (ZDP)	\rightarrow	CoRE Link Format (RESTful interface)
Bindings, Device Discovery	Application Support Layer (APS)	\rightarrow	CoAP
	Zigbee Network Layer	\rightarrow	UDP + DTLS IPv6 + 6LoWPAN
	IEEE 802.15.4 MAC/PHY		IEEE 802.15.4 MAC/PHY

ZCL to CoAP mappings

Resource	Methods	URI
Resource discovery	GET	/zcl
Endpoints	GET	/e
Attributes	GET, PUT, POST	/a
Commands	GET, POST	/c
Bindings	GET, PUT, POST, DELETE	/b
Report Configuration	GET, PUT, POST, DELETE	/r
Report Notification	POST	/n
Group Notification	POST	/g
EZ-Mode Commissioning	GET, POST	/m

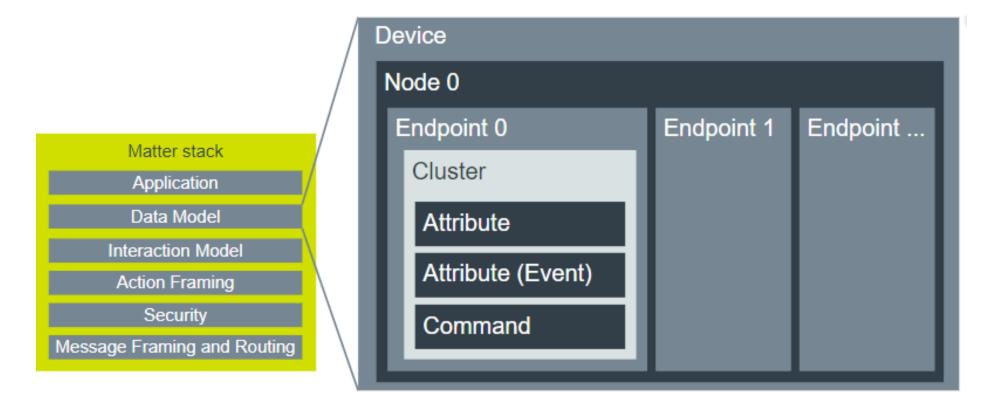
Zigbee Connectivity Standards Alliance today

- 2021 rebrand
 - Zigbee fading in relevance, utility
 - Zigbee group created/creating new standard: Matter
 - Announced Dec 2019; first products shipped Fall 2022
 - Previously known as "Project CHIP"
- Setting up as a cross-platform solution focused on nailing Smart Home
 - Commissioning devices
 - Security
 - Device interactions


Matter documentation

- Specifications
 - It's that stupid "enter your email and company" wall again
 - <u>https://csa-iot.org/developer-resource/specifications-download-request/</u>

 Nordic has a decent Matter overview with actual technical details: <u>https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf</u> /ug_matter_intro_overview.html


Matter communication architecture

- Multiple Phy/Link layers: Ethernet, WiFi, or Thread
- IPv6 networking
- Multiple transport layers
 - TCP, UDP, custom BLE layer for device setup only

Matter uses ZigBee Cluster Library idea for interactions

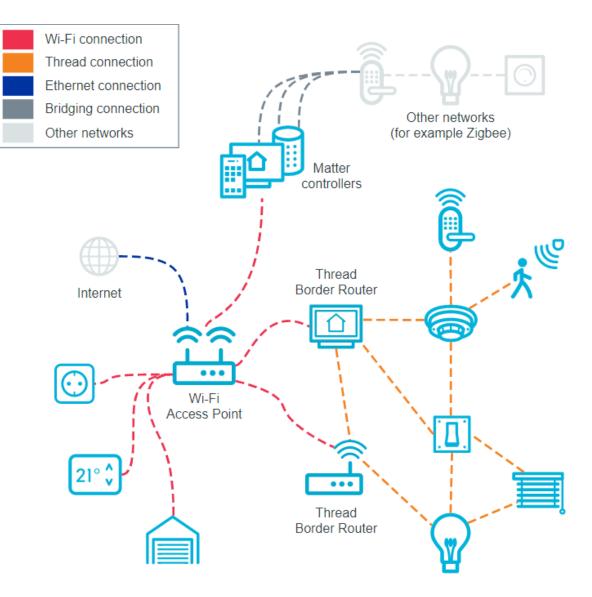
"Action Framing" layer converts from raw packet data into device interactions

Matter reuses ZCL device attributes

Id	Name	Туре	Constraint	Quality	Default	Access	Confor- mance
0x0000	LockState	enum8	desc	X P S		RV	М
0x0001	LockType	enum8	desc			RV	М
0x0002	Actua- torEn- abled	bool	all			R V	М
0x0003	DoorState	enum8	desc	X P		RV	DPS

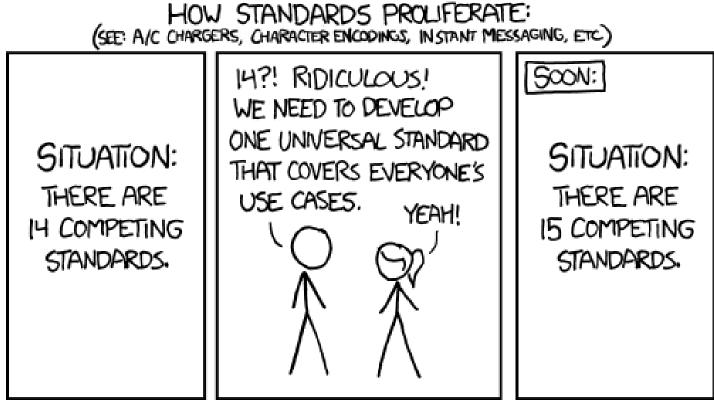
Matter

ZigBee


Identifier	Name	Туре	Access	Def	M/O
0x0000	LockState	enum8	Read Only Reportable	-	М
0x0001	LockType	enum8	Read Only	-	М
0x0002	ActuatorEnabled	bool	Read Only	-	М
0x0003	Door.State	enum8	Read Only Reportable	-	0
0x0004	DoorOpenEvents	uint32	Read/Write	-	0
0x0005	Door ClosedEvents	uint32	Read/Write	-	0
0x006	OpenPeriod	uint16	Read/Write	-	0

Currently supported Matter device types

- Lighting
- Smart Plugs/Outlets
- Switches and Controls
- Sensors (contact, light, occupancy, temperature, pressure, etc.)
- Closure (door/window/shades)
- HVAC


Connecting many devices

- Ambitious goals of interoperability
- "Fabric": logical set of devices that share a security domain and can communicate
- Devices in Matter can support "multi-fabric"
 - This would enable connecting device ecosystems together
 - Does have to be implemented though...

Is ZCL the right standard for device interactions?

• Seems better than making something new from scratch

Outline

ZigBee overview

• ZigBee PHY and MAC

• ZigBee application layer

• Interoperability