Lecture 02 Network Fundamentals

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2023

Some slides borrowed from: Peter Steenkiste (CMU), Christian Poellabauer (Notre Dame) Materials in collaboration with Pat Pannuto (UCSD)

Northwestern

Administrivia

- Piazza
 - Everyone should have access to it
 - If you don't, try going to the Piazza tab on the sidebar in Canvas
 - If that still doesn't work, this is the exception when you should email me

- Canvas
 - Most important information is on the Canvas homepage
 - I'm posting slides there too

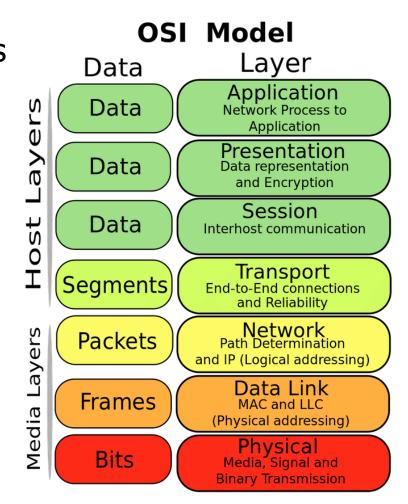
Today's Goals

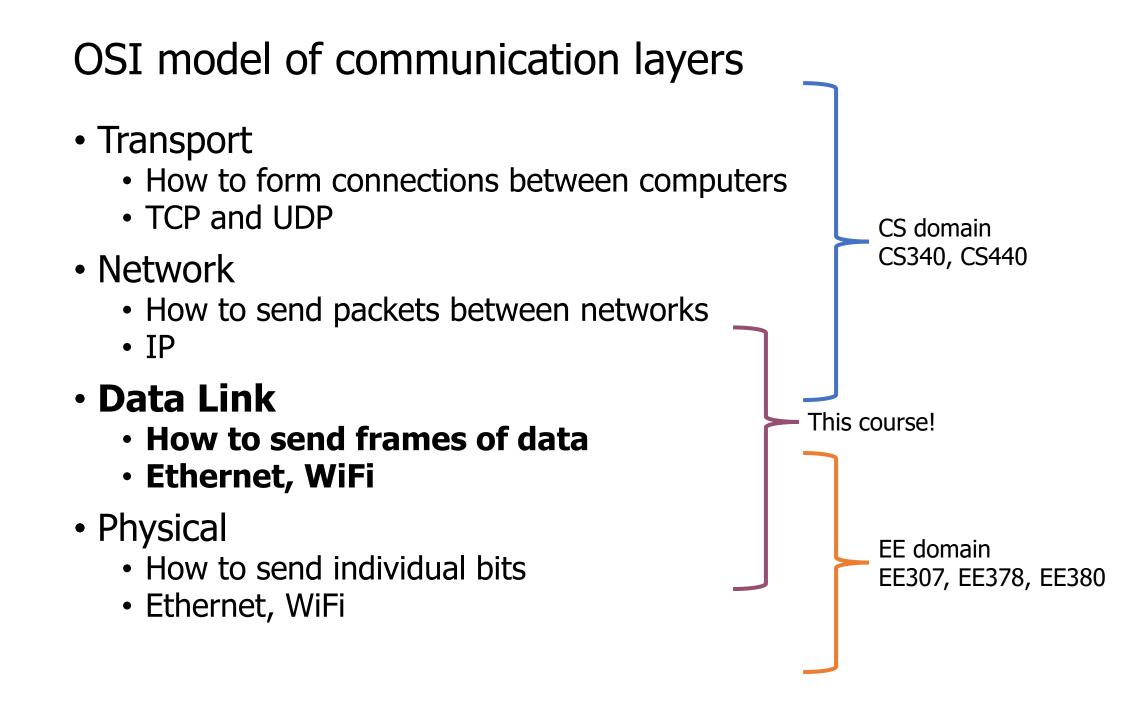
- Introduce OSI layer model of communication
- Provide background on Internet layering
- Overview of concerns for the Physical and Data link layers
 - Speak the "lingo" of wireless communication
 - Present technology aspects that we will return to in specific protocols
- Describe Medium Access Control mechanisms

Outline

OSI Layers

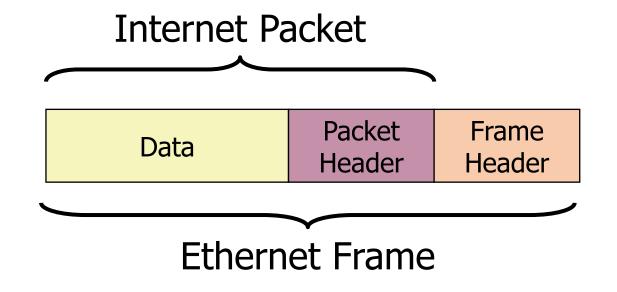
- Internet Architecture (Upper Layers)
- Physical Layer
- Data Link Layer

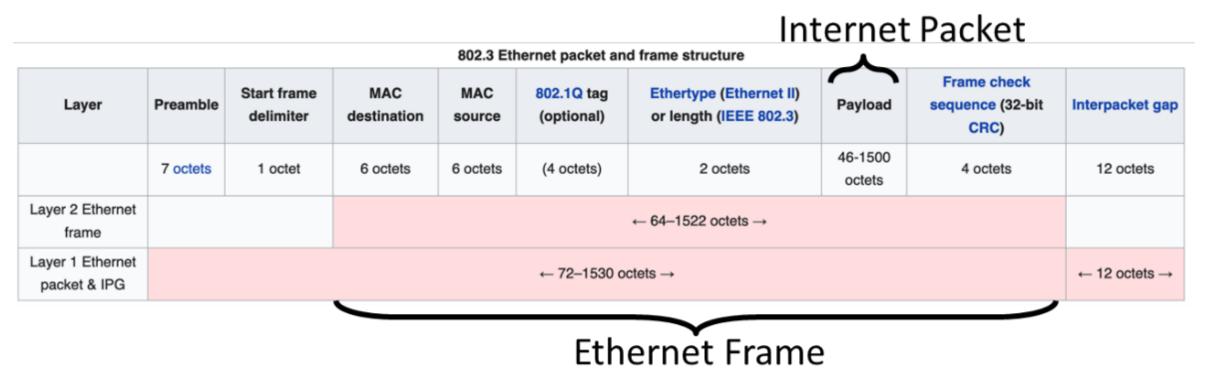

Communication layers


- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

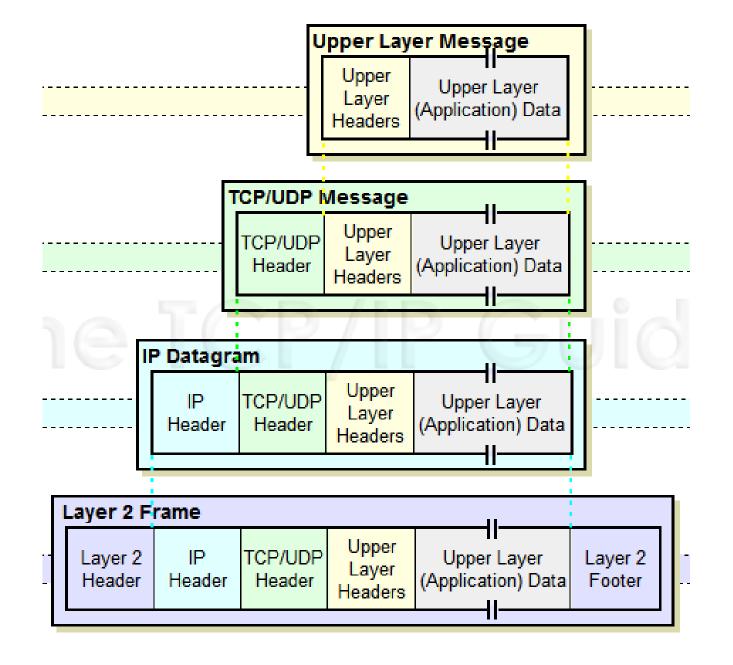
What goes on at each of these?

OSI model of communication layers

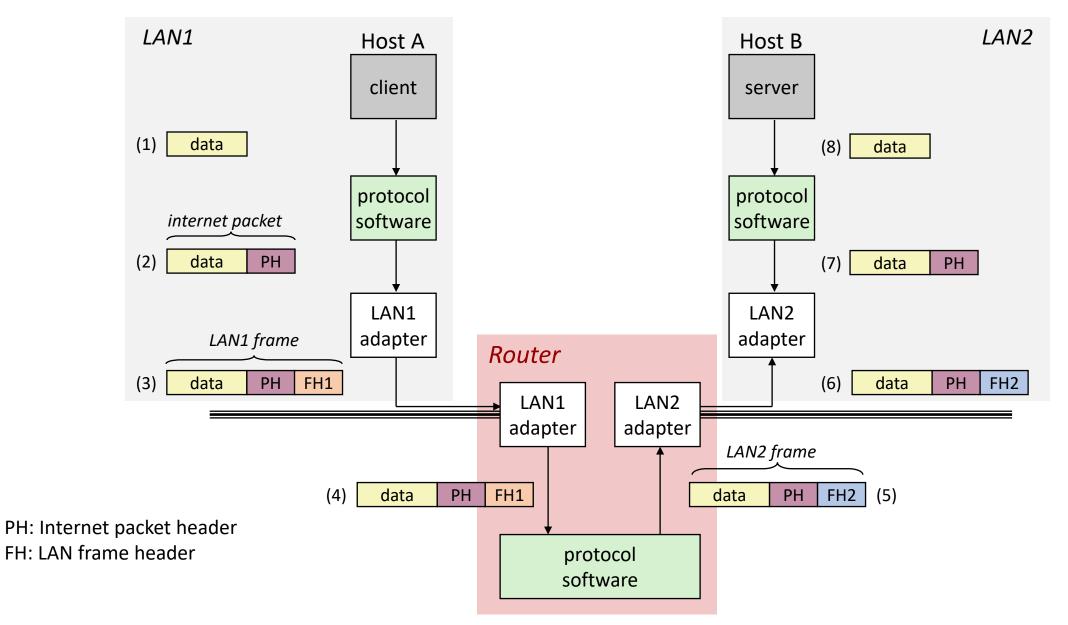

- Transport
 - How to form connections between computers
 - TCP and UDP
- Network
 - How to send packets between networks
 - IP
- Data Link
 - How to send frames of data
 - Ethernet, WiFi
- Physical
 - How to send individual bits
 - Ethernet, WiFi


Protocols are "layered"

- Headers for each layer of communication wrap data
 - Data is wrapped with header for the network to make a packet
 - Packet is wrapped with header for the link to make a frame

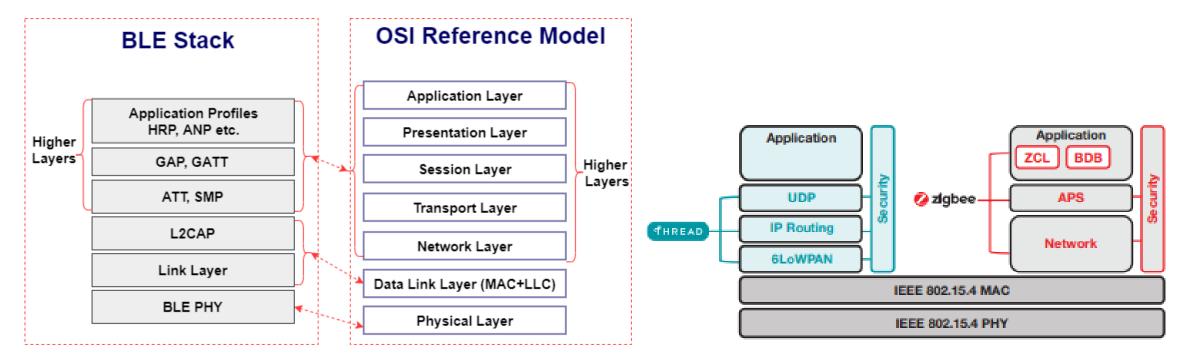

Protocols are "layered"

- Headers for each layer of communication wrap data
 - Data is wrapped with header for network to make a packet
 - Packet is wrapped with a header for the link to make a frame

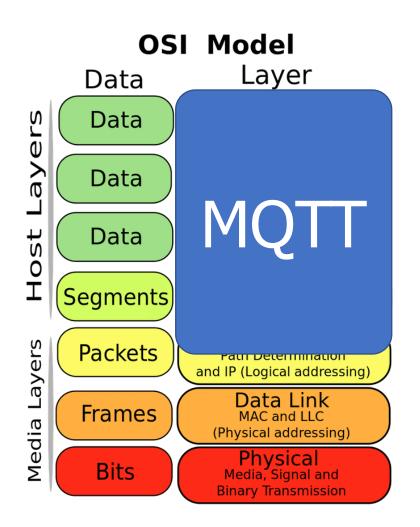


Packet encapsulation

• Upper-layer packet is the payload for the lower-layer packet



Transmitting data between networks



Model does not equal reality

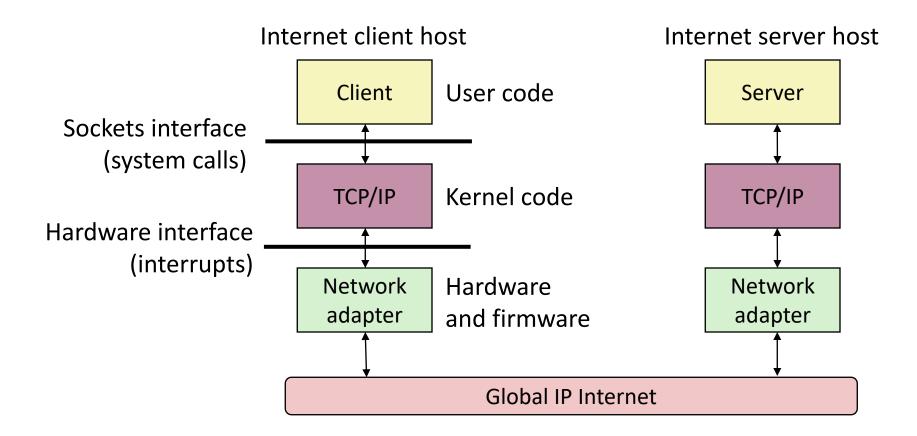
- Wireless protocols don't always split between layers cleanly
 - Usually explain parts of physical, data link, and possibly upper layers
- Model still helps conceptualize stack-up though
 - Layering of some type still occurs

Layering for IoT (joke) (kind of)

MQTT is a publish/subscribe message broker

Outline

• OSI Layers


• Internet Architecture (Upper Layers)

- Physical Layer
- Data Link Layer

The global Internet

- Most famous example of an internet (uppercase to distinguish)
- Based on the TCP/IP protocol family
 - **IP** (Internet Protocol)
 - Provides a *naming scheme* and unreliable *delivery of packets* from **host-to-host**
 - **UDP** (Unreliable Datagram Protocol)
 - Uses IP to provide *unreliable data delivery* from **process-to-process**
 - **TCP** (Transmission Control Protocol)
 - Uses IP to provide *reliable data delivery* from **process-to-process**
- Accessed via a mix of Unix file I/O and the **sockets** interface

Hardware and software organization of an Internet application

A programmer's view of the internet

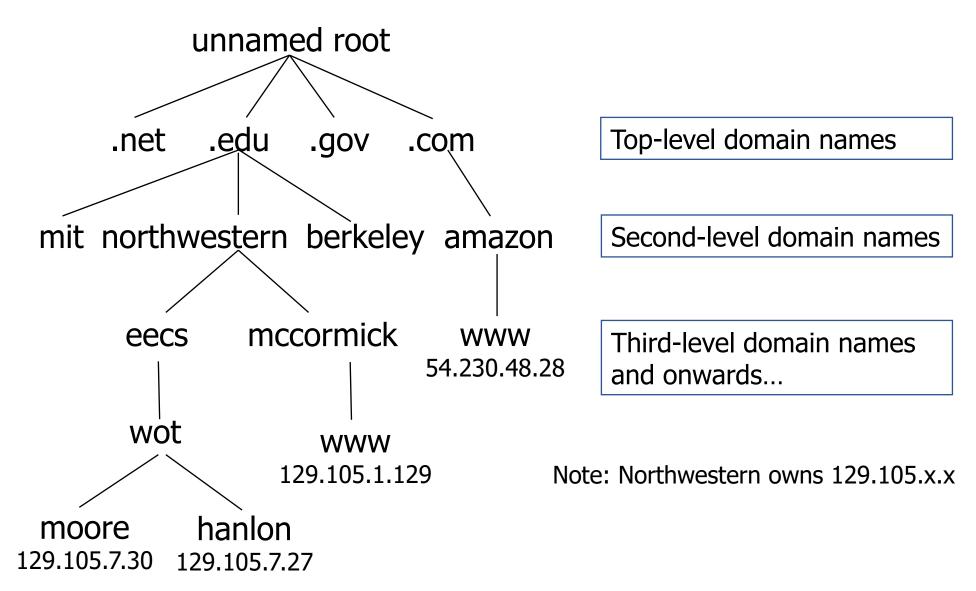
1. Hosts are mapped to a set of 32-bit **IP addresses**

• 129.105.7.30

2. The set of IP addresses is mapped to a set of identifiers called Internet **domain names**

• 129.105.7.30 is mapped to moore.wot.eecs.northwestern.edu

3. A process on one Internet host can communicate with a process on another Internet host over a **connection**

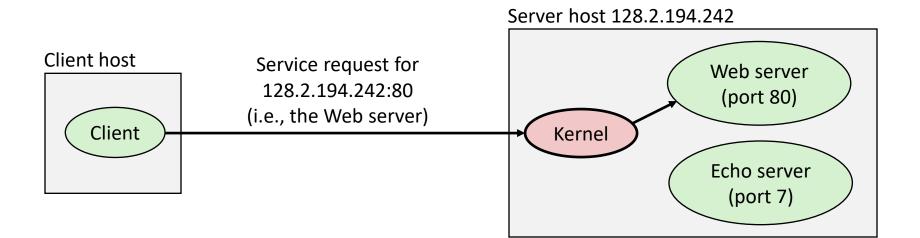

1. IP addresses

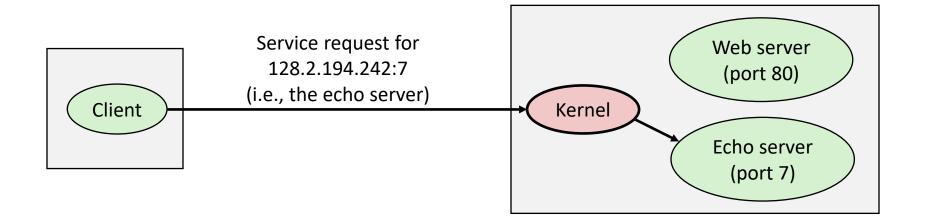
- 32-bit IP addresses are stored in an IP address struct
 - IP addresses are always stored in memory in *network byte order* (big-endian)
 - Remember: most computers use little-endian
 - True in general for any integer transferred in a packet header from one machine to another
 - E.g., the port number used to identify an Internet connection

```
/* Internet address structure */
struct in_addr {
    uint32_t s_addr; /* network byte order (big-endian) */
};
```

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8169071E = 129.105.7.30

2. Internet domain names


Domain Naming System (DNS)


- The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called **DNS**
- Conceptually, programmers can view the DNS database as a collection of millions of **host entries**
 - Each host entry defines the mapping between a set of domain names and IP addresses
- A special name: **localhost**
 - Refers back to the computer being used (IP address 127.0.0.1)

3. Internet connections

- A socket is an endpoint of a connection
 - Socket address is an **IPaddress:port** pair
 - IP address identifies the computer
 - Port identifies the process on the computer
- Clients and servers communicate by sending streams of bytes over connections. Most connections are:
 - Point-to-point: connects a pair of processes.
 - Full-duplex: data can flow in both directions at the same time,
 - [TCP adds] Reliable: stream of bytes sent by the source is eventually received by the destination in the same order it was sent.

Ports are used to identify services to the kernel

How does the Internet handle routing packets?

- IP layer
 - Describes the overall goal
 - Packets from my computer <---> Google
- Link layer (Ethernet)
 - Describes individual links
 - Packets from my computer <---> my router

• Routing

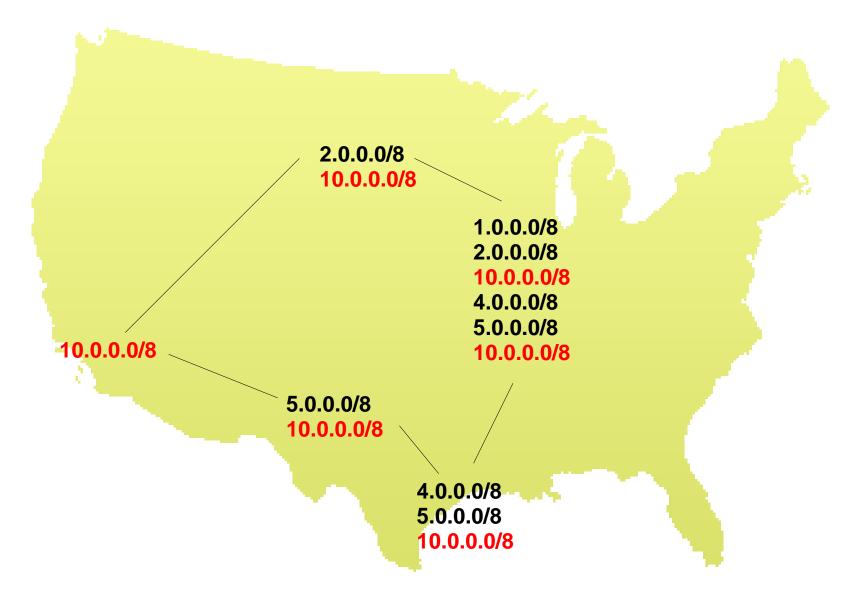
• Using link-layer building blocks to get packets from one IP to another

Addressing

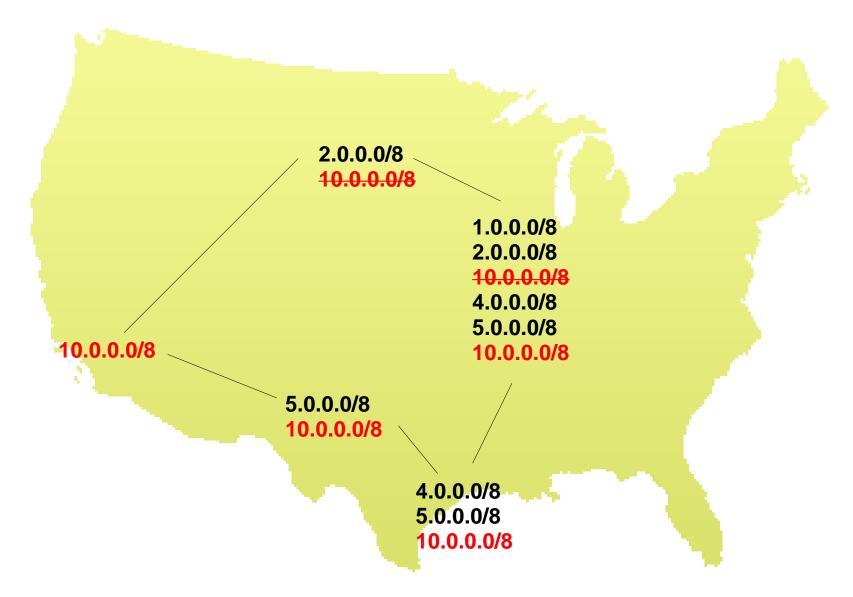
- How to solve the routing problem?
 - I need to know how to get data from me to you
- How does the post office work?
 - I know where you live (your address)
 - Zip Code
 - City
 - Street
 - House Number
 - Name

The problem with addressing

- Your computer moves all the time
 - Home, school, Starbucks...


Assigning and finding IP address ranges

- In general, network operators don't change that often
- Solution:
 - Tie IP addresses to network operators
 - Assign computers IPs as they join networks
- Key Point:
 - Networks "own" a block of IP address space
 - "The Internet" is a network of networks


Routing

Routing

Routing – "Adaptive"

Identifying your computer?

- Every network card has its own MAC address
 - IPs are (somewhat) dynamic, "owned" by local networks
 - MACs are hardware and static, "owned" by specific computers
 - Manufacturers own blocks of MACs, "spend" them each time they make a device
- "Connecting" to a network
 - Your computer leases an IP from the local network
 - Only the local router knows your MAC, everyone else sees your IP
 - Note: this overview ignores NATs, which are commonplace today

So how does the Internet of Things fit into the Internet?

- "IP is the Narrow Waist of the Internet"
 - <u>IP is Dead, Long Live IP for Wireless Sensor</u> <u>Networks</u>
- A recurring theme in this class:
 - How does this actually attach to the Internet
 - Physically [hello Hue Hub, Wyze Hub, August Hub, ...]
 - Logically [are BLE devices *really* part of the IoT?]

Jonathan W. Hui University of California at Bahalay Arch Rock Corporation Jwhui@cs.bankalay.adu	Devid E. Culler University of California at Barkalay Arch Rock Corporation culler@cs.berkelay.edu
ABSTRACT A deade ago as windraw senser network research tests of mary researchers in the deid decanced lies as of 17 as indequate and is consult of its the evolution without sense and evolution. Since the the did has manyed, such at the lies was averaged, and the networks in the appent, we prove it is decays of a vectore lies the did has manyed, such at the vector sense at an of the networks in the appent, we prove it is decays of a vectore that integrates many technique prime with effective that integrates many technique prime with effective that integrates many technique prime with effective ing Performance in the integration of the lies and the appendix decay prime with the sense manyed at the senser appen- tion, here has been prime with the main and the senser data, here has been prime with the main and the senser data, here has been prime with the senser appen- tion, point the senser and the senser appen- tion, point the senser and the senser appendix of the decay prime of 10 MeV, we can sense of 44 weaks in a mil-world here main senser. For work as other the sensers, in high of the demonstrates of the Performance of the prime sensers in the networks was principated was the sensers. In the of the demonstrates of the life below the sensers of the prime sensers in the first data in the prime work was whet the technices as the prime of the methance of the prime work was the technices of the prime of the demonstrates of the life below the technices and the prime work was the senser than the technices are applied by the technices and the prime sensers. In the sensers is an extra the prime work was the technice and the prime work was the senser technices in the first data was the senser and the sensers. In the prime of the methances of the prime sensers is the prime work as the prime prime was principated as the technice in the prime was the senser technices and the first data was the senser that the sensers and the se	 Instein kannel form information of methal network doings will be a public to imaging watches secure an evolving doing the overall interface of implicities and an encount of methal interface of implicities and methal encount (10, 17). The secure interface of methal overall interface of implicities and methal encount (10, 17). The secure interface or events interface on a descent of the interface of the other interface other
Categories and Subject Descriptors CAL Computer-Communication Networks: Network American and Design-Winker conservations. CAL (Computer-Communication Networks): Interactive CAL (Computer-Communication Networks): Interactive trad-database General Terms Dolgs, Macamerum, Performance, Reliability, Society, Sze- tandarize Keywords Interest achievement, InteractiveNity, Moloce; sonce encoded: II; Drive RollWIN: inclusion angeneri II. INTRODUCTION As workers used index (WM) increased last ange, trag- messeria in the field argued function by the work in- production in the field argued function by the work in- production in the field argued function by the work in- production in the field argued function by the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued function in part of the work in- production in the field argued argued argued argued argued in the optical argued	To addition, it was regard that monthly from the large proof WSN for mathema it transitions and larges of system intermediates was not be assumed [24]. By providing a framework for defauing of structures and of lowle give constraints to program, non-metric distructures are consistent or means [14]. Indicat, by internations for Astor Assong Proposited in terms (Fig. 16), and the sensing reflection for a conversional header bound. To (26) [18] lead way (not) The constraints of protocols divergely for the constraints of the large structures of protocols divergely for the constraints of the large structures of protocols divergely for the constraints of a base structure and for four divergely for the constraints of the intervention of the MSN, we wave constraints of the intervent of the MSN, we wave structure in the intervent divergely in intervention of protocols divergely in the constraint of the intervention of protocols divergely in the constraint of the SNee frame bayering (in the Walter and or divergely intervention) with the structure of the intervention of the constraint, the structure of operators in the Walter and on a protocols. Discretion of protocols there been intermed and existence of protocols are specified in the weather of a structure of protocol larger structure. The weather divergely in the structure base in RFC 4444 (2014WMS) that contact for meaning in We delevanes in a compact, structure in distribution of a sub- protocol base in RFC 4444 (2014WMS) that contact for income the addresses [26]. The Up of protocol protocol is meaning in the addresses in a compact structure in the structure in the Walter and and address in a charging structures. The structures in the framework and west denset by the income of the contact of a structure is on incommant used with UPM weak constables for an and and darkass in a charging antiverses. The discretion is the contact of a contact is structure in the discretion in the discretion is structured.

Break + Thinking

• What are the steps for viewing a website?

Break + Thinking

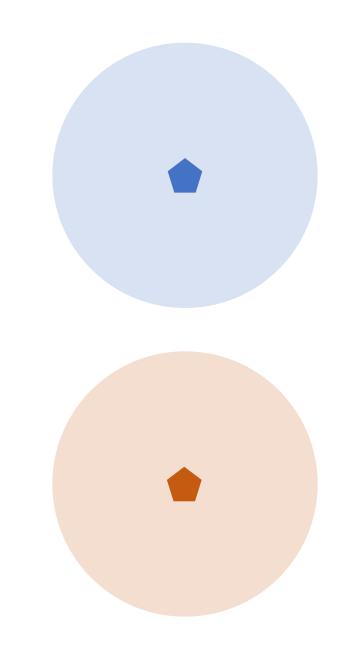
- What are the steps for viewing a website?
- 1. You enter a domain name for the website
- 2. Computer looks up domain name to get IP Address
- 3. Computer sends request to IP_address:80
- 4. Computer gets back data, which it renders into a website

ALL the layers

- A 'famous' interview question
 - "What happens when you type google.com into your browser's address bar and press enter?"
 - https://github.com/alex/what-happens-when (11 pages!)
 - Keyboard events
 - Parsing URL
 - DNS lookup
 - Opening socket
 - HTTP protocol
 - HTML parsing
 - GPU rendering

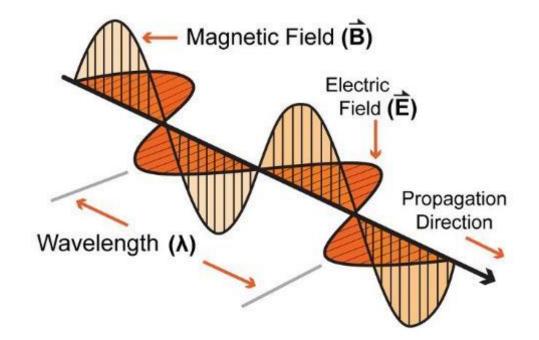
Outline

- OSI Layers
- Internet Architecture (Upper Layers)
- Physical Layer
- Data Link Layer


Physical Layer

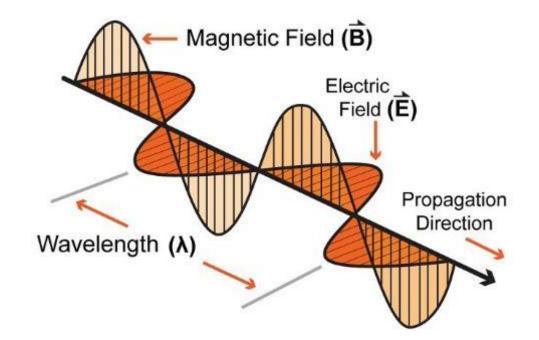
- How bits are transmitted
 - Wireless makes this entirely different from wired cases
- Important considerations
 - Signal strength
 - Modulation
 - Frequency

Model of RF communication


 Energy that radiates spherically from an antenna

- Attenuation with distance
 - Density of energy reduces over time, distance
 - Signal strength is reduced, errors go up
- Two key features
 - Error rates depend on distance
 - Spatial reuse of frequencies

Signal qualities


- 1. Signal strength
 - The amount of energy transmitted/received
- 2. Signal frequency and bandwidth
 - Which "channel" the signal is sent on
- 3. Signal modulation
 - How data is encoded in the signal

Signal qualities

1. Signal strength

- The amount of energy transmitted/received
- 2. Signal frequency and bandwidth
 - Which "channel" the signal is sent on
- 3. Signal modulation
 - How data is encoded in the signal

Signal strength is measured in decibels

- Power is measured in Watts or dBw or dBm
 - $Power_{dBw} = 10 * \log_{10}(Power_{Watts})$
 - $Power_{dBm} = 10 * \log_{10}(Power_{milliwatts})$
- dBm is most relevant to the IoT domain
 - 0 dBm equals 1 mW transmit power
 - Example
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

• Rule of thumb: +3 dB is double the power

Signal strength varies significantly across technologies

- Bluetooth Low Energy (local area)
 - nRF52840 transmit power:
 - nRF52840 receive sensitivity:

8 dBm (6.31 mW) -95 dBm (316.2 fW)

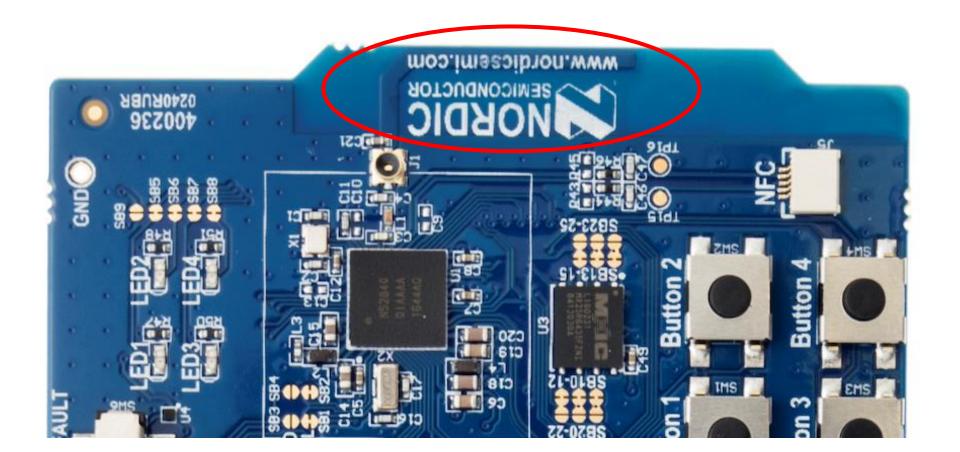
- LoRa (wide area)
 - SX127X LoRa transmit power:
 - SX127X LoRa receive sensitivity:

20 dBm (100 mW) -148 dBm (1.6 attoWatt)

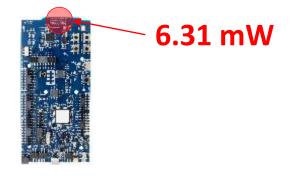
Propagation degrades RF signals

- Attenuation in free space
 - Signals get weaker as they travel over long distances
 - Signal spreads out \rightarrow Free Space Path Loss (FSPL)

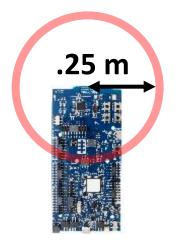
$$FSPL = 20\log_{10}(d) + 20\log_{10}(f) + 20\log_{10}\left(\frac{4\pi}{c}\right) - G_t - G_r$$

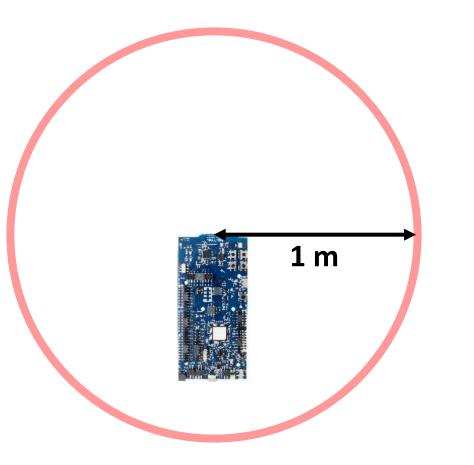

$$Antenna Gain \qquad Path Loss \qquad Antenna Gain \qquad Transmitter Tx Cable Loss \qquad Cable Loss \qquad Receiver Rx$$

- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

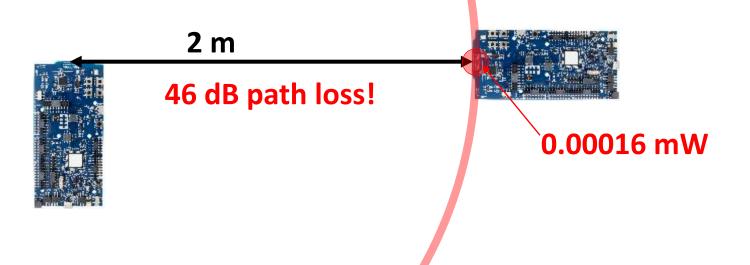


Wait, (()) is not an antenna


- Indeed, this little strip of metal is the actual antenna
 - Receiver only recovers the part of the signal that hits its antenna ("aperture")


- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)


- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)


- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

Okay.. So what's the limit?

- We will use the nrf52840 in lab:
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

- 8 dBm -95 dBm = 103 dB link margin
- For FSPL alone for a 2.4 GHz signal, 103 dB is 1,400 m!

Bluetooth does not go 1.4 km...

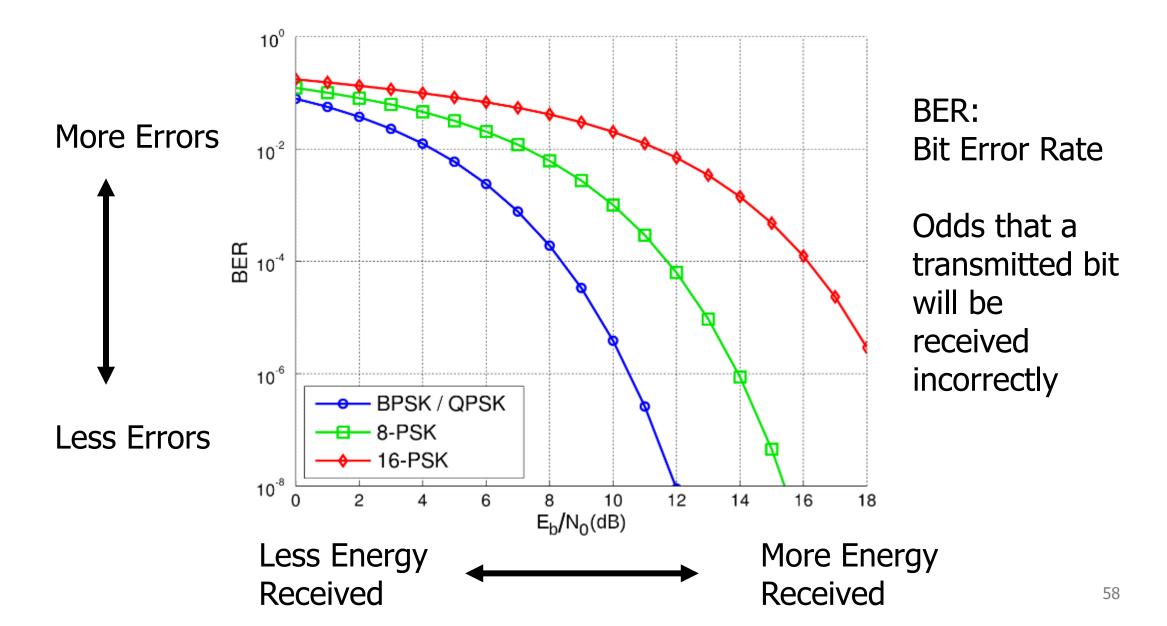
Propagation is one thing that degrades RF signals

- Attenuation in free space
 - Signals get weaker as they travel over long distances
 - Signal spreads out -> free space path loss
- Important: distance is NOT the only signal strength loss
 - Free space path loss calculation will not give you accurate range for a signal
- Obstacles can weaken signal through absorption or reflection
 - Precise quantitative details are in the EE domain
 - We'll use examples to develop qualitative instincts in this class

Many factors affect the ability to actually receive data

• Here's some examples, from DW1000 [ultra wideband transceiver]

Table 6: Typical Receiver Sensitivity Characteristics											
Packet Error Rate	Data Rate	Typical Receiver Sensitivity -106	Units dBm/500 MHz	Condition/Note							
				Preamble 2048	Carrier frequency offset ±1 ppm. Requires use of the "tight"	All					
10%	110 kbps	-107	dBm/500 MHz	Preamble 2048	Rx operating parameter set – see [2]	measurements performed on Channel 5, PRF 16 MHz. Channel 2 is approximately 1 dB less sensitive					
1%	110 kbps	-102	dBm/500 MHz	Preamble 2048	Carrier frequency offset ±10 ppm						
	850 kbps	-101	dBm/500 MHz	Preamble 1024							
	6.8 Mbps	-93 (*-97)	dBm/500 MHz	Preamble 256							
10%	110 kbps	-106	dBm/500 MHz	Preamble 2048							
	850 kbps	-102	dBm/500 MHz	Preamble 1024							
	6.8 Mbps	-94 (*-98)	dBm/500 MHz	Preamble 256							

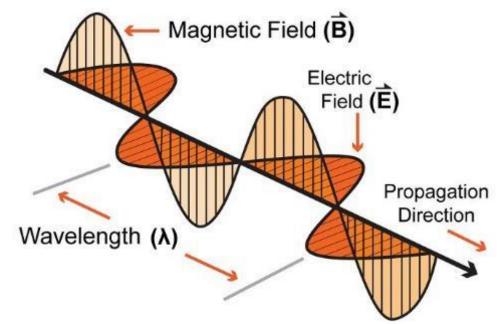

ITU model for Indoor Attenuation

$$L = 20 \, \log_{10} f + N \, \log_{10} d + P_f(n) - 28$$

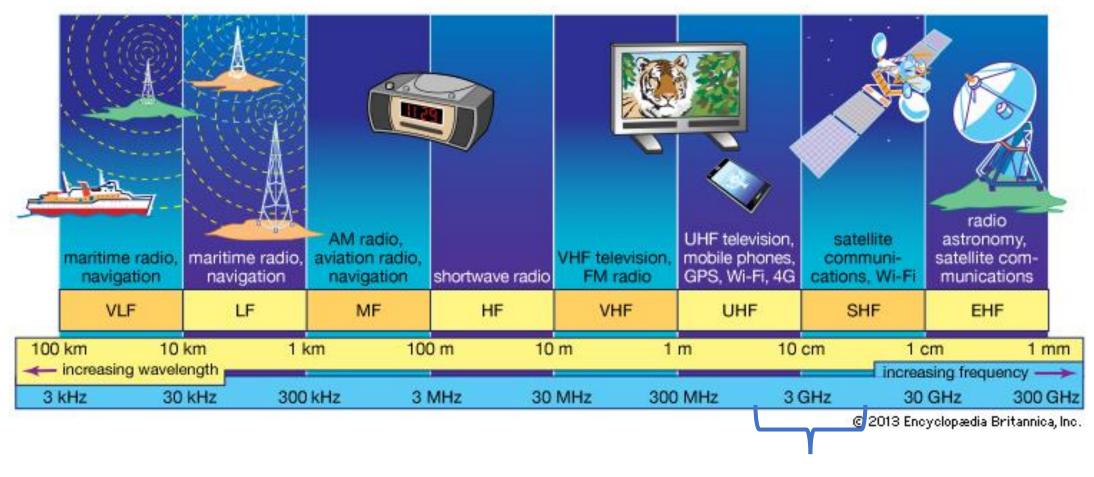
where,

- L = the total path loss. Unit: decibel (dB).
- f = Frequency of transmission. Unit: megahertz(MHz).
- d = Distance. Unit: meter (m).
- N = The distance power loss coefficient.
- n = Number of floors between the transmitter and receiver.
- $P_{\rm f}(n)$ = the floor loss penetration factor.
- Models like this are *less bad* than Free-Space Path Loss
 - <u>https://en.wikipedia.org/wiki/ITU_model_for_indoor_attenuation</u>

Lower received energy increases error rates



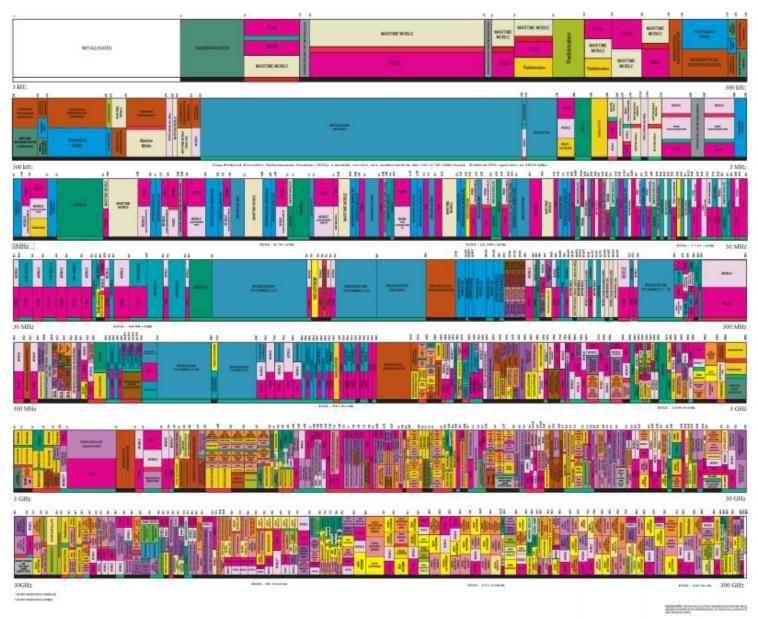
Signal qualities


- 1. Signal strength
 - The amount of energy transmitted/received

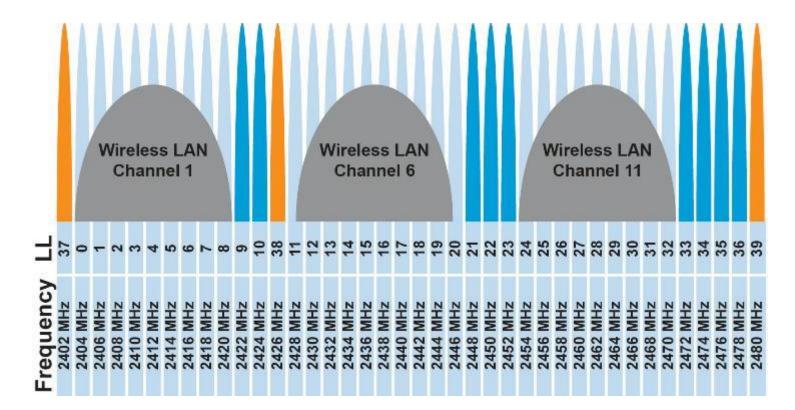
2. Signal frequency and bandwidth

- Which "channel" the signal is sent on
- 3. Signal modulation
 - How data is encoded in the signal

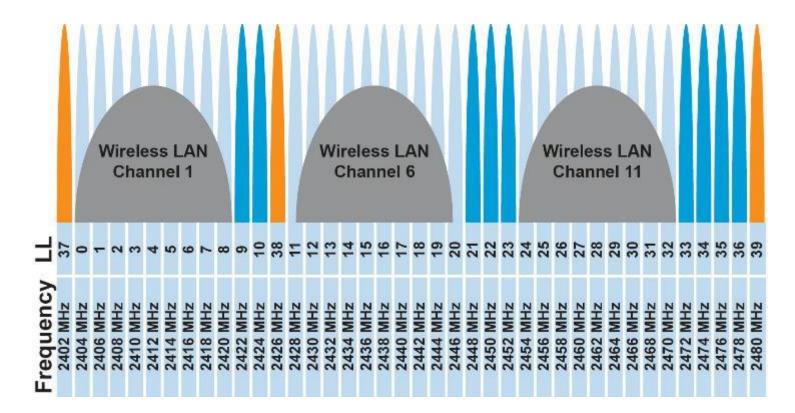
RF communication frequencies


IoT focus

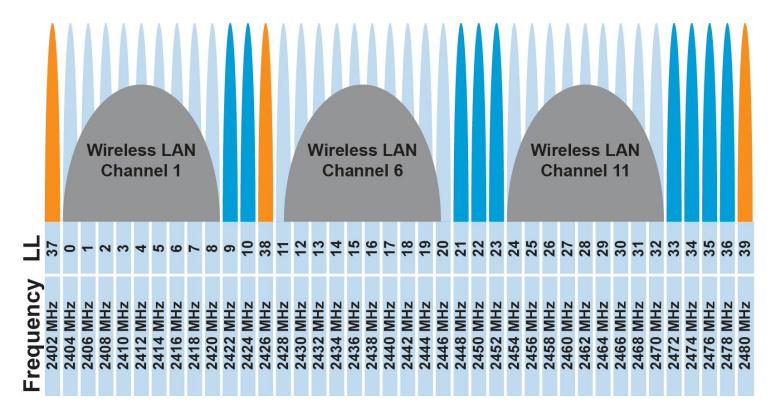
Wireless spectrum is allocated to specific uses


THE RADIO SPECTRUM

Unlicensed bands are where IoT thrives

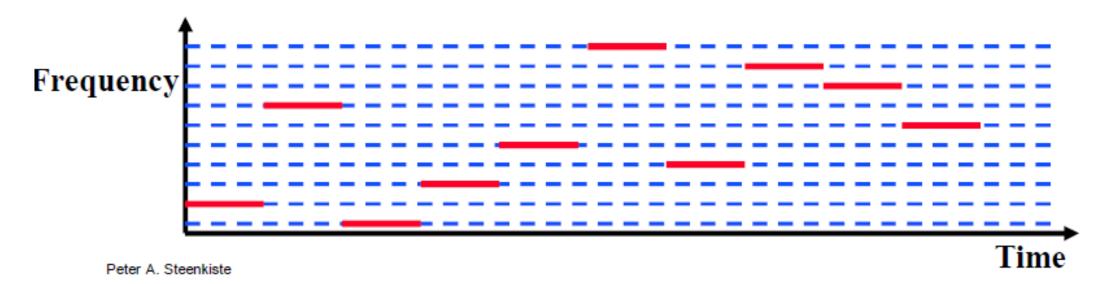

- 902 MHz 928 MHz
 - LPWANs
- 2.4 GHz to 2.5 GHz • WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi

- Cellular uses licensed bands at great cost
 - Why?


Unlicensed bands are where IoT thrives

- 902 MHz 928 MHz
 - LPWANs
- 2.4 GHz to 2.5 GHz • WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi

- Cellular uses licensed bands at great cost
 - Why? No interference from other users


Different technologies use spectrum in different ways

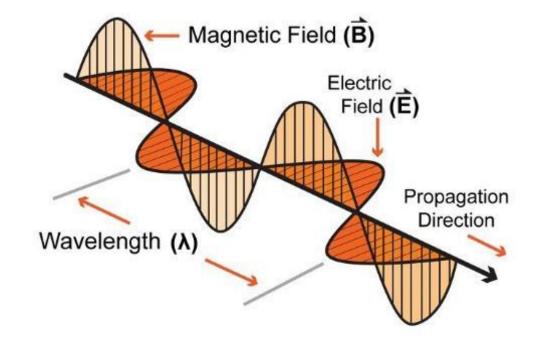
- How spectrum is used affects: cost (\$), robustness, throughput...
 - We will talk about how each technology uses spectrum, and implications
- This graphic shows how BLE and WiFi interoperate; more on this next week

Frequency Hopping Spread Spectrum

- Transmitter hops through a sequence of transmit channels
 - Spend some "dwell time" on each channel before hopping again
 - Receiver must know the hopping pattern
- Avoid causing or receiving prolonged interference

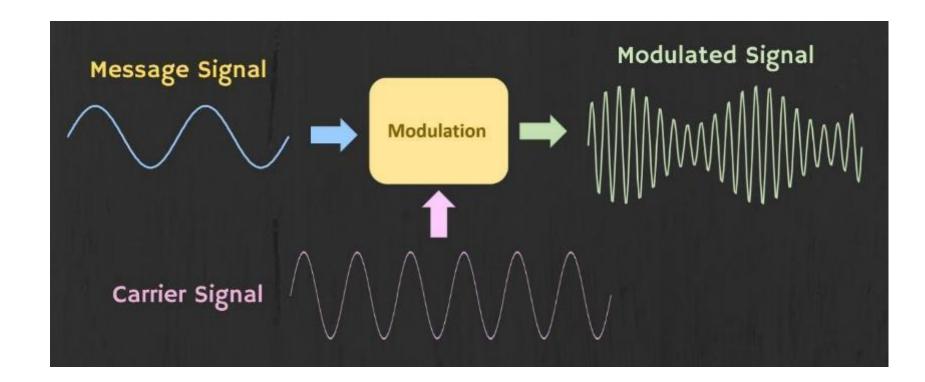
Sidebar: inventor of FHSS – Hedy Lamarr

- Actress and Inventor
 - Designed FHSS with George Antheil during WWII
 - Idea: torpedo control can't be easily jammed if it jumps around

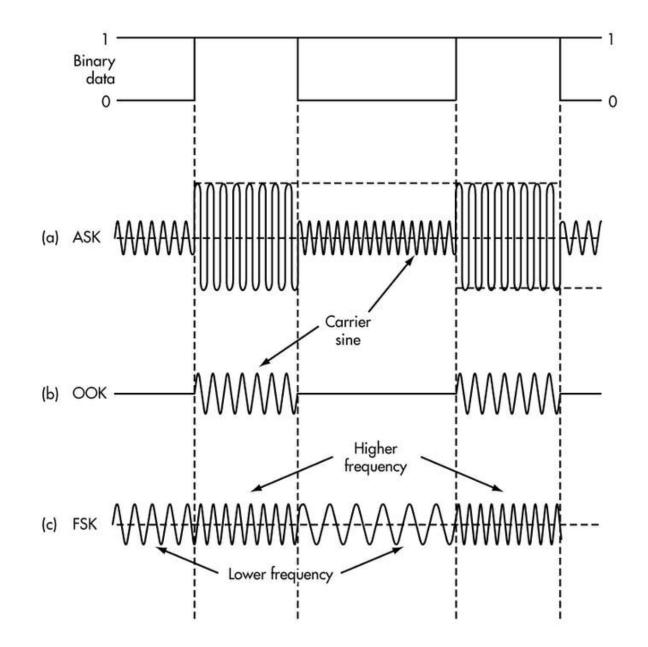

<u>https://en.wikipedia.org/wiki/Hedy_Lamarr#Inventor</u>

Signal qualities

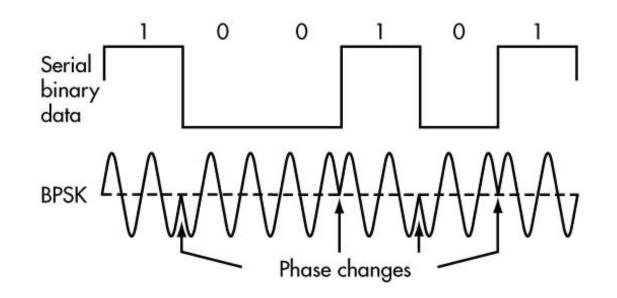
- 1. Signal strength
 - The amount of energy transmitted/received
- 2. Signal frequency and bandwidth
 - Which "channel" the signal is sent on


3. Signal modulation

• How data is encoded in the signal


Modulation

- Encoding signal data in an analog "carrier" signal
 - Carrier signal defines the frequency
 - Modulation scheme + data define bandwidth required


Modulation types

- Encoding binary data on a signal
- Amplitude-shift Keying (ASK)
 - Modify amplitude of carrier signal
 - On-Off Keying (OOK) is an extreme example
- Frequency-shift Keying (FSK)
 - Modify frequency of carrier signal

Modulation types

- Phase-shift keying (PSK)
 - Modify phase of carrier signal
 - Usually differential: the change signifies data

- More complicated possibilities exist
 - QAM (Quadrature Amplitude Modulation) combines amplitude and phase shift keying
 - Allows for more than one bit per "symbol"

Modulation tradeoffs

- Various tradeoffs between different modulation schemes
 - Bandwidth requirements, transceiver hardware, immunity to noise, etc.
- ASK (amplitude) is simple but susceptible to noise
 - Noise exists in the real world
- FSK (frequency) is relatively simple and robust to noise, but uses more bandwidth
 - Bandwidth is limited, but still commonly used
- PSK (phase) energy efficient and robust, but more complex hardware
 - More expensive hardware, but very commonly used

Break + Say hi to your neighbors

- Things to share
 - Name
 - Major
 - One of the following
 - Favorite Candy
 - Favorite Pokemon
 - Favorite Emoji

Break + Say hi to your neighbors

- Things to share
 - Name -Branden
 - Major -EE, CE, and CS
 - One of the following
 - Favorite Candy Twix
 - Favorite Pokemon Eevee
 - Favorite Emoji 🛛 🗞

Outline

- OSI Layers
- Internet Architecture (Upper Layers)
- Physical Layer
- Data Link Layer

Data Link Layer

- Framing
 - Combine arbitrary bits into a "packet" of data
- Logical link control
 - Manage transfer between transmitter and receiver
 - Error detection and correction
- Media access
 - Controlling which device gets to transmit next
- Inherently coupled to PHY and its decisions

Framing

- Typical packet structure
 - Preamble Existence of packet and synchronization of clocks
 - Header Addresses, Type, Length
 - Data Payload plus higher layer headers (e.g. IP packet)
 - Trailer Padding, CRC

Preamble	Destination Address			Data	CRC	
----------	------------------------	--	--	------	-----	--

- Wireless considerations
 - Control information for Physical Layer
 - Ensure robustness for header
 - Explicit multi-hop routing
 - Possibly different data rates for different parts of packet

Error control: detection and recovery

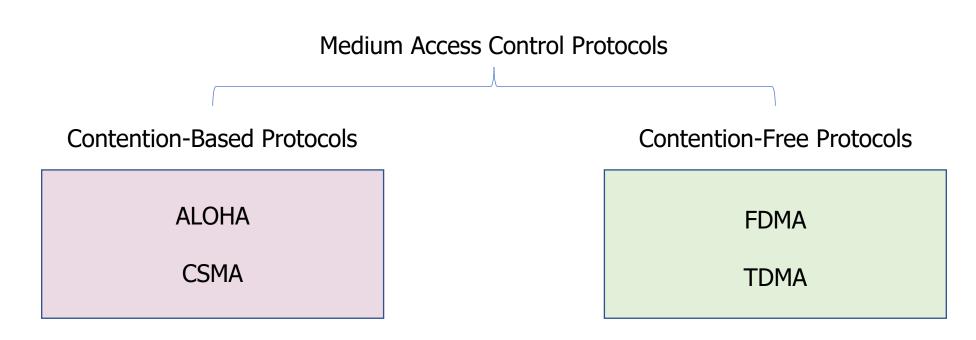
- Detection: only detect errors
 - Make sure corrupted packets get discarded
 - Cyclical Redundancy Checks
 - Detect single bit errors
 - Detect "burst" errors of several contiguous bits
- Recovery: also try to recover from small bit errors
 - Forward error correction
 - Retransmissions
 - Far more important for wireless because the cost of transmission is higher

Medium Access Control

• How does a network determine which transmitter gets to transmit?

- Remember: the wireless medium is inherently broadcast
 - Two simultaneous transmitters may lose both packets

Analogy: wireless medium as acoustic

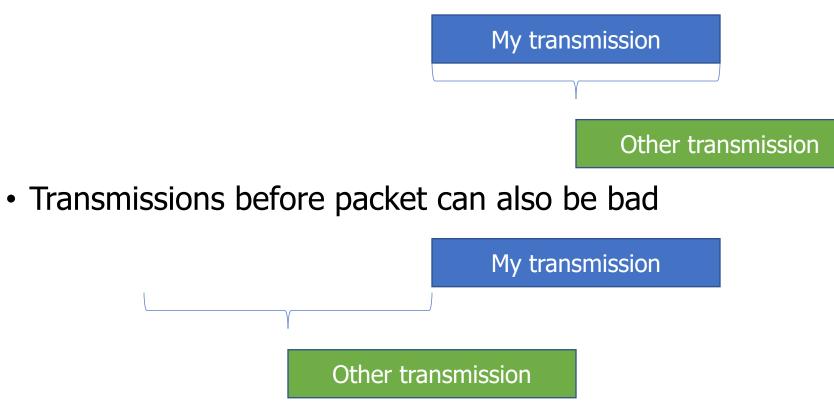

- How do we determine who gets to speak?
 - Two simultaneous speakers also lose both "transmissions"

- Task: in one minute you will have to recite the alphabet
 - We'll jump by tables, one person per letter
 - You all fail if two people speak at the same time
 - I will ban any strategy that two tables use

Analogy: wireless medium as acoustic

- How do we determine who gets to speak?
 - Two simultaneous speakers also lose both "transmissions"
- Eye contact (or raise hand) -> out-of-band communication
- Wait until it's quiet for some time -> carrier sense multiple access
- Strict turn order -> time division multiple access
- Just speak and hope it works -> ALOHA
- Everybody sing at different tones -> frequency division multiple access (stretching the metaphor)
- Everyone speak in different languages -> code division multiple access
- Others?

MAC protocol categorization

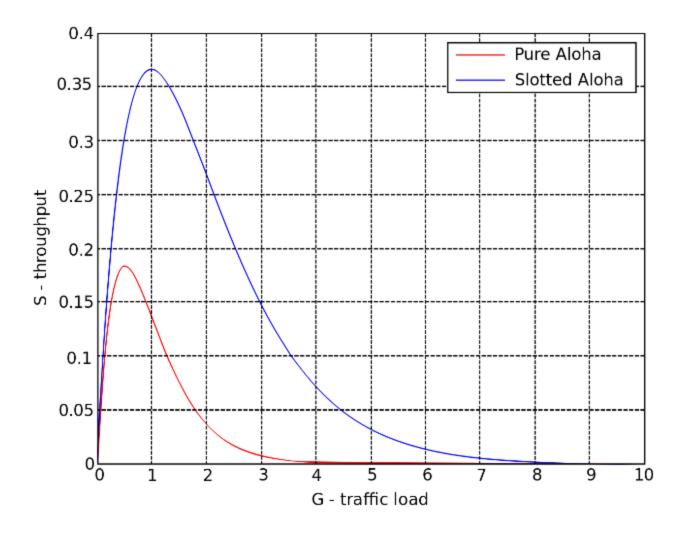

Also, CDMA

ALOHA

- ALOHAnet (1971)
 - University of Hawaii Norman Abramson
 - First demonstration of wireless packet network
- Rules
 - 1. If you have data to send, send it
- Two (or more) simultaneous transmissions will collide and be lost
 - Wait a duration of time for an acknowledgement
 - If transmission was lost, try sending again "later"
 - Want some kind of exponential backoff scheme here

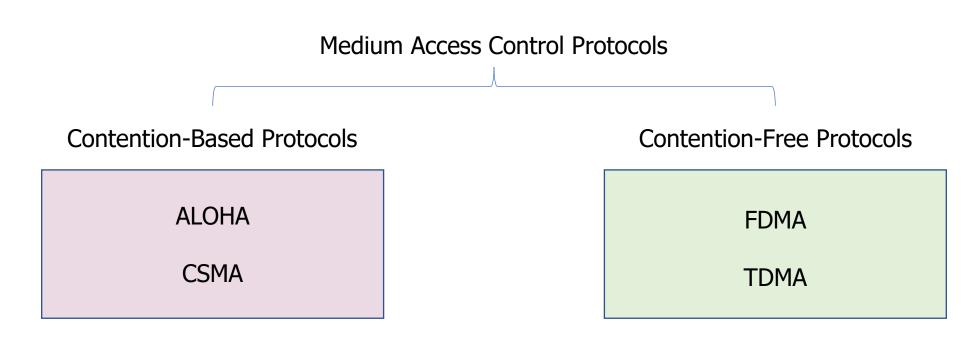
Packet collisions

- Each packet transmission has a window of vulnerability
 - Twice the on-air duration of a packet
 - Transmissions during the packet are bad


Slotted ALOHA

- Split time into synchronized "slots"
- Any device can transmit whenever it has data
 - But it must transmit at the start of a slot
 - And its transmission cannot be longer than a slot
 - Removes half of the possibilities for collisions!
 - At the cost of some synchronization method

ALOHA throughput


- It can be shown that traffic maxes out at
 - ALOHA: 18.4%
 - Slotted ALOHA: 36.8%
- Assuming Poisson distribution of transmission attempts
- Slotted throughput is double because the "before" collisions can no longer occur

Capture effect

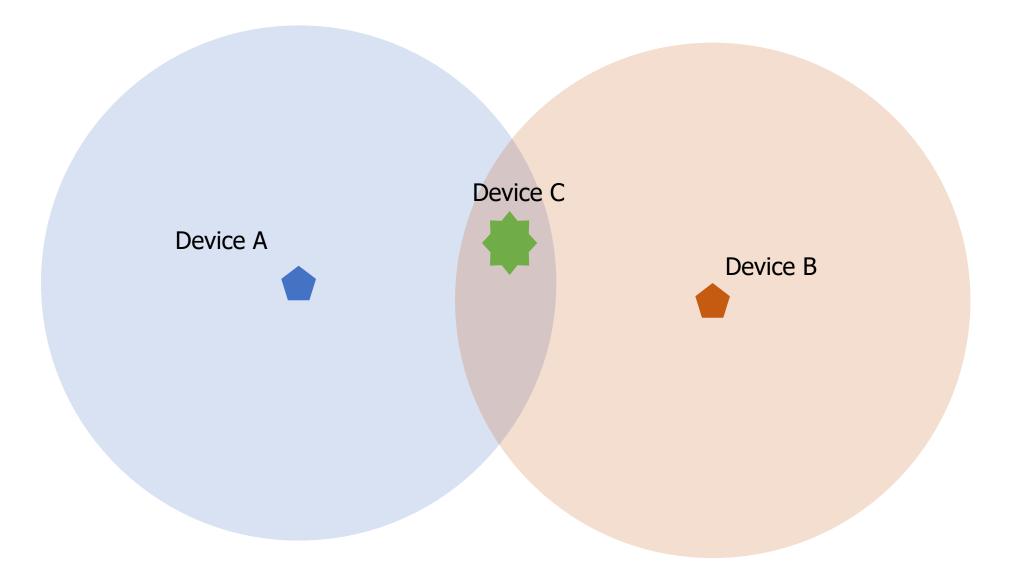
- Actually, two packets at once isn't always a total loss
 - The louder packet can still sometimes be heard if loud enough
- How much louder?
 - Ballpark 12-14 dB
- When does this work?
 - Depends on the radio hardware
 - Louder packet first almost always works
 - Louder packet second *sometimes* works

MAC protocol categorization

Also, CDMA

CSMA/CA – Carrier Sense Multiple Access with Collision Avoidance

- First listen for a duration and determine if anyone is transmitting
 - If idle, you can transmit
 - If busy, wait and try again later
- "listen before send"
- Can be combined with notion of slotting
 - If current slot is idle, transmit in next slot
 - If current slot is busy, follow some algorithm to try again later

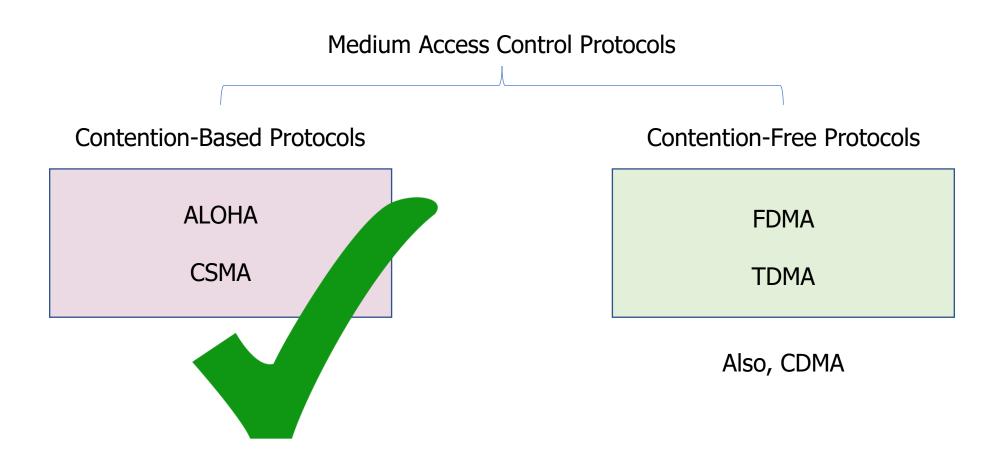

CSMA/CD – CSMA with Collision Detection

- Detect collisions during your own transmission
 - Works great on wired mediums (Ethernet, I2C)
- Very challenging for wireless systems
 - Transmit and receive are usually the same antenna
 - Receiving while transmitting would be drowned out by transmission
 - Remember: TX at 8 dBm and RX at -95 dBm

 Area of active research! 		Throughput Analysis of CSMA With Imperfect Collision Detection in Full Duplex-Enabled WLAN Megumi Kaneko	
2017 18th Annual Conference on Wireless On-demand Network Systems and Services (MCNS) On the Feasibility of Collision Detection		Abstract—As an alternative to carrier sense multiple access (CSMA) with collision avoidance in half-duplet wireless local area network (WLAN) that incurs heavy control evarhast, full-duplet WLANs enabling wireless collision detection (WCD) by simultaneous carrier sourching and delta transmission are geth-	main reasons. Firstly, a collision detected at the transmitter does not necessarily imply a collision at the receiver due to the notuce of windows channels such as large/small-scale fading. Secondly, detecting simultaneous transmissions during
in Full-Duplex 802.11 Radio Michele Segata, Renato Lo Cigno Dept. of Information Engineering and Computer Science, University of Trento, Italy (inserted, loci and Idi si, unit in the	2014 IEEE 22nd International Conference on Network Protoco	lithough CSMA with perfect ibancements, actual perfor-	one's own transmission is very challenging, as the transmitter's self-interference signal power is several orders of magnitudes higher than that of collision signals to be detected. Thus, a number of PHY layer WCD schemes have been proposed [7], [8]. A MIMO-based scheme is designed in [7] for detecting an interfering preamble signal at one of the trans- mit amennas, and a self-interference canceller is designed by the order of the scheme scheme is designed.
the notion of channel itself becomes blurred, as there n intrinsic sparial reuse and stations very far one anoth intrinsic sparial reuse and stations wery far one anoth intrinsic sparial reuse and stations in between. Still, the pos- ordeveck features and characteristics, including the internet as aventuation in the sparial reuse and stations and avoid the waste of channel is of detecting collisions and avoid the waste of channel is.	Concise Paper: Semi-Synchronous Channel Full-Duplex Wireless Networks Xiufeng Xie and Xinyu Zhang University of Wisconsin-Madison Email: {xiufeng.xyzhang}@ecc.wisc.edu		in [8] which enables the transmitter to detect simultaneous transmissions even under very high self-interference. Such schemes allow the UTs to detect potential collisions dur- ing transmissions process without any delay, leading to large throughput improvements exerpted to CSMACA [5]. Note that [5] assumed an ideal WCD where any collision can be performly detected at the transmitter. In [9], the impact of interference on full-delayer transmitter restriction is address

89

Hidden terminal problem

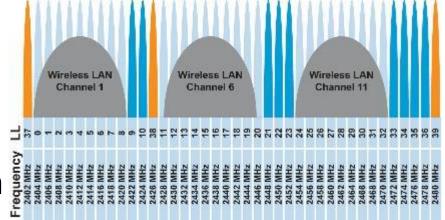


CSMA with RTS/CTS

• Hidden terminal problem means that two transmitters might never be able to detect each other's transmissions

- A partial solution
 - When channel is idle, transmitter sends a short Request To Send (RTS)
 - Receiver will send a Clear To Send (CTS) to only one node at a time
 - RTS collisions are faster and less wasteful than hidden terminal collisions
 - Downside: overhead is high for waiting for CTS when contention is low

MAC protocol categorization


Contention-free access control protocols

- Goal: split up communication such that devices will not conflict
- Can be predetermined or reservation-based
 - Devices might request to join the schedule and be given a slot
 - Devices lose their slot if it goes unused for some amount of time
 - Reservations often occur during a dedicated CSMA contention slot
 - Assignment of schedules can be complicated
- Really efficient at creating a high-throughput network
 - Assuming they are all following the same protocol
 - Otherwise, interference can be very problematic

FDMA – Frequency Division Multiple Access

- Split transmissions in frequency
 - Different carrier frequencies are independent
 - Fundamentally how RF spectrum is split
- Technically, each device uses a separate, fixed frequency
 - Walkie-talkies

- Conceptually, how RF channels work
 - WiFi networks pick different bands
 - 802.15.4 picks a channel to communicate on

TDMA – Time Division Multiple Access

- Split transmissions in time
 - Devices share the same channel
- Splits time into fixed-length windows
 - Each device is assigned one or more windows
 - Can build a priority system here with uneven split among devices
- Requires synchronization between devices
 - Often devices must listen periodically to resynchronize
 - Less efficient use of slots reduce synchronization
 - Large guard windows. E.g. 1.5 second slot for a 1 second transmission

Real-world protocol access control

- ALOHA
 - BLE advertisements
 - Unlicensed LPWANs: Sigfox, LoRaWAN
- CSMA
 - WiFi (slotted, CSMA/CA)
- TDMA
 - BLE connections
 - Cellular LPWANs: LTE-M and NB-IoT

Outline

- OSI Layers
- Internet Architecture (Upper Layers)
- Physical Layer
- Data Link Layer