
CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

Lab: WiFi

Introduction
The purpose of this lab is to get you some hands-on experience with WiFi on a microcontroller:

● Scan and join networks
● Host a network
● Host and access web services

For this lab we will again be writing code using PlatformIO. We’ll be working on the Heltec WiFi
LoRa 32 v3 boards this time though, which are also supported by the Arduino libraries.

Goals
● Interact with WiFi networks
● Explore some basic IoT web services

Equipment
● Computer
● Heltec WiFi LoRa 32 v3 + USB cable (3 total for the group)

Github Classroom
● https://classroom.github.com/a/BQ_WILoV

Partners
● This lab should be done with your group of three

Submission
● Write your answers up for each task and submit a PDF to Gradescope.

Remember: I’m not looking for a formal lab report. Just your answers in any format that
makes sense. The goal is to prove that you did the lab and spent some time thinking
about it.

Page 1 of 10

https://classroom.github.com/a/BQ_WILoV
https://www.gradescope.com/


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

Table of Contents

Introduction

Table of Contents

List of Tasks

1. Software Requirements

2. ESP32 Arduino WiFi Library

3. Scan for WiFi networks

4. Connect to the Internet

5. Scan Promiscuously

6. Host a WiFi network and connect to it

7. Use MQTT across multiple devices

List of Tasks
● Section 3.1: Demonstrate ability to scan networks

● Section 4.1: Demonstrate ability to get time through the Internet

● Section 5.1: Demonstrate ability to capture packets from your other device
● Section 5.2: Determine some information about how the ESP32 client is connected

● Section 6.1: Demonstrate creation of an Access Point

● Section 7.1: Demonstrate the full working MQTT app across three devices

Page 2 of 10



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

1. Software Requirements
This lab will require writing code with PlatformIO again.

● Follow the Github classroom link to create or join your own private repo of starter code:
https://classroom.github.com/a/BQ_WILoV

● The first time you open a folder in that repo with PlatformIO, expect a lot of loading to
occur. It needs to install an entirely new toolchain to compile and upload code for
ESP-32 microcontrollers. On my desktop, this took about five minutes to complete. You’ll
see something like this:

● When you plug in the board for the first time, check that orange LED by the “RST” button
lights up. That means the board has power.

A weird quirk of this hardware is that it MUST have a USB adapter somewhere inline
when you plug it in. Plugging in directly via a USB-C to USB-C cable fails to power the
board (the implemented something about that incorrectly…). Each box should have a
USB-C to Micro USB adapter, which you can use in conjunction with the USB micro
cable you already have from previous labs.

● There’s some small, but non-zero chance you need to install a USB driver for the board.
It worked fine for me on one of my Windows computers, but not the other. I needed to
install the “CSP210x Windows Drivers” (not the Universal one), and then it worked.
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads

Even after that, you might get a very cryptic error on Windows, about not having access
to the COM port. A reboot resolves this issue. Linux and MacOS should hopefully be
fine, but let me know if you have issues.

I’ve also sometimes found that commands fail the first time, but succeed the second
time. It didn’t happen too often, but be willing to try it if things are going wrong.

Page 3 of 10

https://classroom.github.com/a/BQ_WILoV
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?tab=downloads


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

2. ESP32 Arduino WiFi Library
Our Heltec board has an ESP32 microcontroller. It is a general-purpose microcontroller, but it
has a WiFi radio peripheral (much like the nRF52 series is a microcontroller + BLE/15.4 radio).
We’ll be programming that chip and writing our own code in PlatformIO.

Documentation:

● Arduino WiFi Library API:
https://github.com/arduino-libraries/WiFi/blob/master/docs/api.md

○ WARNING: This isn’t actually the library we’re using. Our library just emulates
this one, and it doesn’t match precisely. These docs are way better though for
Client-side stuff (they don’t have Access Point stuff at all).

● ESP32 WiFi Library Docs:
https://docs.espressif.com/projects/arduino-esp32/en/latest/api/wifi.html#

○ This is the library we’re using. But the docs aren’t exactly great. You’ll still have
to use it for Access Point stuff.

● ESP32 WiFi Examples:
https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFi/examples

○ You’ll find that these cover all the basic things you want to do. My strong
recommendation is that you don’t do too much copy-paste from them and instead
use them as inspiration to write your own code. You’ll learn more that way.

○ You’ll find that a lot of code does get reused across sections. Definitely feel free
to copy-paste your own code from prior sections.

Note: for this particular class, you are allowed to use code you find online as long as you cite
it. There isn’t as much of a plagiarism concern here since our goal is really to learn about
networks, not write software. Citing where the code came from is a good practice for others who
might have to understand your own code.

Page 4 of 10

https://github.com/arduino-libraries/WiFi/blob/master/docs/api.md
https://docs.espressif.com/projects/arduino-esp32/en/latest/api/wifi.html#
https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFi/examples


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

3. Scan for WiFi networks
The first step of doing anything with WiFi is scanning for available WiFi networks.

● Create an app that can scan for WiFi networks and display them in terminal. We’ve
provided some starter code in wifi-scanner

● I highly recommend you go look at some example code.

● For each network you find, print out at least the following information:
○ SSID
○ Channel
○ Encryption
○ RSSI

1. TASK: Demonstrate ability to scan networks
○ Show me the terminal output from a scan
○ Commit your wifi-scanner code to your shared repo

Page 5 of 10



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

4. Connect to the Internet
Now let’s connect to the Internet and get some data from it! We’ll contact an NTP server and
request the current time. It’ll be in UTC, but it should make it obvious that everything is working.

● Open the wifi-client starter code

● You’ll need to specify an SSID and Password for a WiFi network. There are several
options here:

○ Use your home WiFi network. Should work fine, but you have to be at home.

○ Use Device-Northwestern network. I got this working fine too! And it works
on-campus. But you need to do a setup step.

You first need to register the device with Northwestern. There’s a web portal to do
so, and it seems to work automatically and pretty quickly (definitely within a
minute). https://device.wireless.northwestern.edu/ (You do NOT need to enable
“Sharing”.)

To get your MAC address, you’ll have to program an app on your device that will
spit out the MAC address as the first thing it does. The wifi-client app
already does this for you! Make sure you have the endianness right. The device’s
MAC address should start with Espressif’s OUI: F4-12-FA

○ Use your smartphone as a Wireless Hotspot. I’ve done this in the past and it was
fine. Definitely less desirable, but we aren’t going to be transferring any
meaningful amount of data.

● Make sure you can successfully connect to the WiFi network and get an IP address.
Sometimes this just doesn’t work for me after I reprogram or reset a device. Resetting
again once or twice has always fixed it.

● Use the Network Time Protocol to get the current time and date. Here’s a library to use:
https://github.com/taranais/NTPClient

It’s already been enabled for you in the application’s platformio.ini file.

The example in the README is probably enough to work with. You’ll want to print time
and the date though.

1. TASK: Demonstrate ability to get time through the Internet
○ Show me the terminal output printing the current date AND time
○ Commit your wifi-client code to your shared repo

Page 6 of 10

https://device.wireless.northwestern.edu/
https://github.com/taranais/NTPClient


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

5. Scan Promiscuously
This is a little more off the beaten path, but you can use an ESP32 not just to send packets, but
also to receive packets. Most radios, the ESP32 included, have an option called “promiscuous
mode” where they collect not just packets intended for them, but all packets it can sense. We’ll
use the ESP32 to do a promiscuous scan of WiFi packets and find packets being sent by the
client app we created previously.

● Start from the wifi-promiscuous example code.

The code I set up for you is based on the ESP32 sniffer application here:
https://github.com/ESP-EOS/ESP32-WiFi-Sniffer/blob/master/WIFI_SNIFFER_ESP32.in
o

● I recommend first getting it to scan any WiFi packets at all to make sure it’s working.
Print out some details about the packets so you know they seem valid.

● Next, let’s find packets being sent by the wifi-client app we wrote. You’ll need two
ESP32s for this. One should use the NTP client app you wrote previously and the other
will be running the promiscuous scanner.

You’ll need to figure out what channel your client device is connected on. It’s available
through the WiFi API once connected. Make the client app print that out.

In your client app, you should also use forceUpdate() for the NTP library so it makes
a network request each time instead of caching results for a minute. That way there are
more packets to capture.

To “filter” for only packets from your other ESP32 device, match against one of the
address fields. Either addr1 or addr2 should contain the MAC address of your ESP32
client. If there’s not a match, just return from the scanner function early.

● Once you can find packets from the device, grab interesting data from the packets! This
is mostly in the rx_ctrl field of the wifi_promiscuous_pkt_t struct.

The field itself is a struct of type wifi_pkt_rx_ctrl_t. You can find a full definition
here:
https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_wifi_ty
pes.h

(Tasks on next page)

Page 7 of 10

https://github.com/ESP-EOS/ESP32-WiFi-Sniffer/blob/master/WIFI_SNIFFER_ESP32.ino
https://github.com/ESP-EOS/ESP32-WiFi-Sniffer/blob/master/WIFI_SNIFFER_ESP32.ino
https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_wifi_types.h
https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_wifi_types.h


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

1. TASK: Demonstrate ability to capture packets from your other device
a. Show me the terminal output printing some packet data
b. Commit your wifi-promiscuous code to your shared repo

2. TASK: Determine some information about how the ESP32 client is connected
a. Which WiFi PHY protocol is it using to connect to the WiFi network? (e.g.,

802.11b, 802.11g, 802.11n, etc.)
b. Which channel is it connected on?
c. How much bandwidth is it using on that channel, 20 MHz or 40 MHz?

Page 8 of 10



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

6. Host a WiFi network and connect to it
Going back to well-worn examples, let’s make an ESP32 into an Access Point (AP) that runs its
own WiFi network.

● Start with the wifi-access-point example code.

● Figure out how to make your ESP32 into a WiFi access point.

Pick an interesting SSID for your group. You can leave the password parameter empty to
make the AP open-access.

● Connect to it with some device.

A phone works here. Although I find that on Android at least, it automatically disconnects
after finding that there is no actual Internet connection.

You can also connect with your client application! However, it’ll find that Internet access
isn’t available and the NTP library will fail.

● The ESP WiFi libraries can provide more information about clients that are connected to
it. Some starter code that fills in a wifi_sta_list_t is provided to you.

You can find the definition for that struct here:
https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_wifi_ty
pes.h

● Print out at least the following information about the clients that are connected:
○ MAC address
○ RSSI
○ Which 802.11 PHY protocols are enabled

1. TASK: Demonstrate creation of an Access Point
a. Show me the terminal output printing data about a connected client
b. Commit your wifi-access-point code to your shared repo

Page 9 of 10

https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_wifi_types.h
https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_wifi_types.h


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

7. Use MQTT across multiple devices
This is the full demonstration application! We’ll create a new network and connect two clients to
it. On that network, we’ll host an MQTT broker on the Access Point, publish from another
device, and subscribe from a third device! If you’re feeling iffy on MQTT, here’s an overview:
https://learn.sparkfun.com/tutorials/introduction-to-mqtt/all

● Three applications have been created for you:
○ wifi-access-point-broker
○ wifi-client-publisher
○ wifi-client-subscriber

● The library we’ll be using for MQTT is TinyMqtt. The documentation is pretty
non-existent, but the examples are good. See here:
https://github.com/hsaturn/TinyMqtt/tree/main/examples

The simple-broker example demonstrates running a broker. The simple-client
example demonstrates publishing. The client-without-wifi example demonstrates
subscribing.

The library has already been enabled for you in the application’s platformio.ini file.

● The TinyMQTT library requires that you run an update function in your loop(). To make
this work, you need to avoid any use of delay() in your loop. You can still have periodic
loop behavior though through the use of the millis() function and storing the past
time. See simple-client for an example of this.

● You can publish to any topic you want (it’s an arbitrary string) and with any data you want
(also a string). However, make sure the data changes in some way!

1. TASK: Demonstrate the full working MQTT app across three devices
a. I’ll take your word for it. Write a couple of sentences on what you did and how it

worked and show relevant terminal output from devices. Or you could
alternatively include a link to a short video of it working

b. Commit code for all three applications to your shared repo

Page 10 of 10

https://learn.sparkfun.com/tutorials/introduction-to-mqtt/all
https://github.com/hsaturn/TinyMqtt/tree/main/examples

