
CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

Lab: BLE

Introduction
The purpose of this lab is to get you some hands-on experience with Bluetooth Low Energy.
This will come in a couple of different forms:

● Scanning BLE traffic with Wireshark
● Write code for BLE peripherals
● Write code for BLE centrals

To get this working, we’ll have to install some tools for interacting with the nRF52840DK
hardware. This stuff tends to be pretty finicky. It’s really easy to mess it up for some reason or
another. Since everyone will be working in small groups, hopefully at least one of you can get
stuff working for integrating with wireshark and for programming boards.

Let me know if you run into problems and I will help you debug!

Goals
● Enable BLE scanning with the nRF52840DK and Wireshark
● Write embedded applications capable of performing as BLE peripherals and centrals
● Better understand how BLE communication works

○ Peripheral advertisements, Central scanning, and connections with services

Equipment
● Computer
● nRF52840DK + USB cable
● Smartphone (optional)

Github Classroom
● https://classroom.github.com/a/0Z3krAZ7

Partners
● This lab should be done with your group of three

Submission
● Write your answers up for each task and submit a PDF to Gradescope.

Remember: I’m not looking for a formal lab report. Just your answers in any format that
makes sense. The goal is to prove that you did the lab and spent some time thinking
about it.

Page 1 of 19

https://classroom.github.com/a/0Z3krAZ7
https://www.gradescope.com/


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

Table of Contents

Introduction
Table of Contents
List of Tasks
1. Optional: nRF Connect Smartphone App
2. Install nRF Connect for Desktop
3. Integrate BLE Scanning into Wireshark
4. Investigating BLE Advertisements
5. Create Your Lab Git Repo
6. Setting up PlatformIO
7. Loading the Bootloader
8. Programming a Test Application
9. Programming a BLE Advertiser
10. Programming a BLE Scanner
11. BLE Services

List of Tasks
● Section 4.1: Determine transmissions per second
● Section 4.2: Entirely explain a BLE packet

● Section 8: Commit your test application modifications

● Section 9.1: Prove that you got advertisements working
● Section 9.2: Commit your BLE advertisement application modifications

● Section 10.1: Prove you got scanning working
● Section 10.2: Wireshark capture of a Scan Request and Scan Response
● Section 10.3: Commit your BLE scanning application modifications

● Section 11.1: Prove you got connections working
● Section 11.2: Commit your peripheral and central connection code

Page 2 of 19



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

1. Optional: nRF Connect Smartphone App
You can optionally install the nRF Connect app on your phone (it’s just called ‘nrf Connect for
Mobile’ probably easier to search, but here are links nonetheless):

● https://apps.apple.com/us/app/nrf-connect-for-mobile/id1054362403
● https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

You’ll find this app generally useful for understanding what’s going on in this lab and interacting
with devices around you. I personally used it while developing all of the applications.

The application can allow your phone to scan for devices and to advertise. Clicking an individual
device will show more data, possibly including raw advertisement data. You can also connect to
devices, look at their services, and read/write characteristics.

Android allows you to do everything, while Apple allows some subset of this. For example on
Apple you cannot see the addresses of BLE devices. You may also not be able to see the
device at all if its advertisement is malformed.

In the app, you’ll find that you’re overwhelmed with how many devices there are around. I
strongly recommend you filter the devices. You could set an RSSI limit of -70 to only see
relatively nearby devices. You should also exclude Apple, Microsoft, and Exposure Notifications
so they don’t overload your feed.

Page 3 of 19

https://apps.apple.com/us/app/nrf-connect-for-mobile/id1054362403
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_US&gl=US


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

2. Install nRF Connect for Desktop
Nordic has a suite of really nice software tools that help support experimentation with their
hardware platforms.The app will work on Windows, MacOS, and Linux. and it uses your
nRF52840DK hardware to actually interact with devices.

Not everything in the nRF Connect panel is supported by the nrf52840DK (and some things
that look like they wouldn’t be supported, are; e.g. the “RSSI Viewer” works fine, despite saying
it’s for the nRF52832).

Download and install the nRF Connect for Desktop tools:
https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-desktop

By default, the desktop app is just an empty shell that can install sub-apps. Go ahead and install
the Bluetooth Low Energy app, the Programmer, and the RSSI Viewer.

The Bluetooth Low Energy app functions very similarly to the nRF Connect app on your phone.
Both allow you to scan for nearby devices, connect to them, and investigate services they
provide. Play around for a bit and see what’s nearby. You might be surprised by what you find.

When you finish using an app, be sure to disconnect from it:

TASK: None. Continue to the next section.

Page 4 of 19

https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-desktop


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

3. Integrate BLE Scanning into Wireshark
Next, we’re going to add an external capture source to Wireshark that allows it to sniff BLE
communication by using the nRF52840DK. The full guide that we’re following is here:
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2
Finstalling_sniffer.html

1. Get a copy for the sniffer ZIP:
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/dow
nload

2. Open the Programmer app, and drag the
/hex/sniffer_nrf52840dk_nrf52840_4.1.1.hex precompiled firmware over for
programming. Then write that firmware to your nRF52840DK.

3. The sniffer receiver is written in Python. You’ll need Python3 and pyserial >= 3.5. If
you don’t have Python3, follow the python install guide. For pyserial, you can run
python3 -m pip install pyserial once Python is installed. This does work on
Windows with a little bit of effort.

Page 5 of 19

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2Finstalling_sniffer.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2Finstalling_sniffer.html
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/download
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/download
https://www.python.org/downloads/


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

4. We need to copy over the “extcap” stuff to the correct folder so Wireshark can find it. I
can’t write better instructions than Nordic already did:
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_
ble%2Finstalling_sniffer_plugin.html
(Note: we’ve already handled the python requirements from step 1 by installing
pyserial)

What's extcap?

We are setting up wireshark to use an external capture device (your dev kit). That requires a
few pieces, which those instructions walk you through.

● First, you need a physical radio which is configured to sniff packets.
● Then, you need some interface software that runs on your computer and talks to the

radio (this is the nrf_sniffer_ble program – it doesn't actually sniff, it just sets up a
serial tunnel to record packets being streamed off by the firmware loaded on the
dongle).

● Finally, wireshark needs to know what kind of packets are being sniffed and how to
decode them. That's what the 'profile' is.

Heads Up (for Windows folks): The default extcap folder on windows is a temporary folder. If
you suddenly can't find the capture interface and it used to be there, check if you need to
re-copy the extcap files and set it up again.

Page 6 of 19

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2Finstalling_sniffer_plugin.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2Finstalling_sniffer_plugin.html


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

5. Finally, make sure you have your nRF52840DK reprogrammed and connected over
USB, then either restart Wireshark or go to “Capture Menu -> Refresh Interfaces”. You
should now see a new capture interface: “nRF Sniffer for Bluetooth LE”.

Double-click it to start capturing!

Lots of things can go wrong here! Be sure that you’re following all the steps and didn’t skip
anything. Also check the troubleshooting steps here:
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2
Ftroubleshooting.html&cp=10_5_6

If you’re still having problems, definitely reach out and I’m happy to help!

TASK: None. Continue to the next section.

Page 7 of 19

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2Ftroubleshooting.html&cp=10_5_6
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_sniffer_ble%2FUG%2Fsniffer_ble%2Ftroubleshooting.html&cp=10_5_6


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

4. Investigating BLE Advertisements
Now that you’ve (hopefully) got the Wireshark external capture working, let’s investigate some
BLE packets! Run wireshark and collect packets for a few seconds. Then take a look at the
packets you received and answer a few questions. Include screenshots as makes sense.

1. TASK: How many transmissions do you see in one second?

Note: if you don’t see many devices around first HOW?! and secondly, try again on
campus. I was literally collecting thousands of packets from my office.

2. TASK: Pick a received packet and explain the meaning of all of the bytes of it.

Note: you can ignore the bytes that are part of the “nRF Sniffer for Bluetooth LE”. That
appends extra bytes to the start with metadata.

The real data should be 47 bytes or less and will be highlighted when you select
“Bluetooth Low Energy Link Layer” in Wireshark. Clicking different parts within this will
highlight the bytes that correspond to different fields.

● I recommend you keep Wireshark up on one of your computers as you do the next
steps. You’ll need to do some scanning again to check that stuff is working.

Page 8 of 19



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

5. Create Your Lab Git Repo
I’ll want to look at the code you wrote, so I need to give you somewhere to put it. Github
classroom makes private repos for each student team so you can get the starter code and
upload your own modifications. I can access all student repos, but you can only access your
own.

● There is a github classroom link on the first page of this document. Click it!

● Pick a team name
○ Unless someone else already started it, in which case, join their team name

● Generally, do what github classroom says

● At the end, it should create a new private repo that you have access to for your code
○ Be sure to commit your code to this repo often during class!

● The repo link might 404. If so, you first have to go to https://github.com/nu-ce346-student
and join the organization

○ I’m reusing the CE346 org for student repos for this class

● Clone the repo locally on your computer
○ If you’re on Windows: git BASH does a good job https://gitforwindows.org/
○ If you’re on MacOS or Linux, you can clone the repo from command line
○ We’ll be using VSCode for everything, and it has a mechanism for working with

git too, so you could use that:
https://code.visualstudio.com/docs/sourcecontrol/overview#_cloning-a-repository

TASK: None. Continue to the next section.
However, make sure to commit your code as you go, as I’ll want to see the final results.

Page 9 of 19

https://github.com/nu-ce346-student
https://gitforwindows.org/
https://code.visualstudio.com/docs/sourcecontrol/overview#_cloning-a-repository


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

6. Setting up PlatformIO
To program our boards, we’re going to use PlatformIO. It’s a relatively new embedded toolchain
management system, which I’m honestly pretty excited about. One of the really hard parts about
embedded systems development is making sure you have the right tools installed on your
computer: compiler, programmer, debugger, etc. And every hardware board and software
framework you work with has slightly different tools that are required. PlatformIO automatically
determines what stuff you need to program a board, and so far in my experience it does a pretty
good job. It has worked on Windows, Linux, and MacOS (both Intel and ARM).

For better and for worse, PlatformIO is almost entirely used as an extension for VSCode, so that
means we’ll be using VSCode to write our software and PlatformIO to manage our toolchains,
compile code, upload it to boards, and display output from boards.

1. Install VSCode and Platform IO

Follow the steps here: https://platformio.org/install/ide?install=vscode

It’ll take a minute or two to actually install PlatformIO. When it’s done, you’ll have to
reload VSCode and the little Ant icon will appear on the left side of it.

2. Get yourself to the PlatformIO homepage

3. Use the “Open Project” button on the PlatformIO homepage to open one of the folders
within your group’s Github starter repo. The best one to start with is “blink-and-print”
since we’ll use that in the next section.

Page 10 of 19

https://platformio.org/install/ide?install=vscode


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

4. You should now have two useful toolbars to interact with code.

The first is the VSCode explorer tab on the left, which will show you the file structure of
the application and allow you to open the code in src/main.cpp.

The second is the PlatformIO tab on the left, which will show you “Project Tasks” like
Build (compile code), Upload (load code onto the nRF52840DK), and Monitor (open a
serial console to see print output from the nRF52840DK). I mostly use “Upload and
Monitor” which recompiles, uploads, and opens a serial terminal all at once. If you later
end up opening multiple projects at once, the blue bar at the bottom has both shortcuts
to these actions and tells you which project the actions are applying to.

TASK: None. Continue to the next section.

Page 11 of 19



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

7. Loading the Bootloader
This step is VERY IMPORTANT. If you skip this, you will hypothetically spend an entire darn
Thursday trying to determine why no application code works on your boards at all.

Good news, you only have to run it once per dev kit. After that you can load applications as
many times as you want, and as long as you never entirely “Erase Flash” on the board, they’ll all
work.

Bad news, this step is very buggy. It didn’t work well at all on MacOS for me for some reason,
and it totally fails if anywhere in your file path you have a folder with a space in its name. For
example, if your Windows username is your first and last name. I have a PR out to fix this, but
we’ll have to deal with it ourselves.

● Try the “Burn Bootloader” option under “Project Tasks” with a board connected to your
computer.

○ This should and could just work. You’ll have to look at the terminal output to see if
everything seems valid or not. If you think it worked, move on to the next section.
You can always come back later if applications don’t work.

● If it just hangs forever, you’ll need to stop it. You can exit a script by clicking the “trash
can” in the process list on the right.

● If it either hung, said something dumb about invalid files, or otherwise failed, we’ll need
to do it manually.

Page 12 of 19



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

● In the PlatformIO bar, choose “PlatformIO Core CLI” on the left.

● Type in the command: pio run -v -t bootloader
○ Again, if everything just works at this step, you can be done. If not, we’ll keep

going.

● In the text output from running that command, look for a line starting with “nrfjprog
–program”. That’s the new command we’re going to need to run. Except that we should
put double quotes around the path argument to fix space issues.

● Type in the command: nrfjprog --program “filepath from that line” -f
nrf52 --chiperase --verify

○ This should actually work this time.

● If things still don’t work for you, you should first have a teammate try to burn the
bootloader for you. If no one on your team can burn a bootloader, it’s time to talk to the
professor for help.

Page 13 of 19



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

8. Programming a Test Application
We’re going to (finally) load some code on the dev kit and start playing around with it! We’ll start
with the “hello world” of embedded systems: blinking some LEDs.

● Open the “blink-and-print” project.

● Take a look at the code and understand what’s going on with it. Some functions are
taking from the Arduino API: https://www.arduino.cc/reference/en/

● Upload the code to the board and Monitor the board. You should see that LED1 on the
board toggles once per second. You should also see print statements appear on the
serial console.

○ If nothing at all happens, you should double-check that you uploaded code. Then
double-check the bootloader step from before.

○ If just the LED blinks, you’ll have to debug your serial connection to the board. I
don’t expect students to have issues here though.

● You can click the Reset button on the board to restart the code without re-uploading it.
It’s labeled “IF BOOT/RESET”.

● Play around with the code here and make sure you can modify it successfully. Change
the rate, or which LED is toggling, or the print output, or something like that.

TASK: Commit and Push your modified code to your Github classroom repo.

Page 14 of 19

https://www.arduino.cc/reference/en/


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

9. Programming a BLE Advertiser
Now that some application is working, let’s move on to more complicated stuff. We’ll send BLE
advertisements from a board that’s been programmed as a BLE peripheral.

For this lab, we’ll be using an Adafruit BLE library called: Bluefruit52. It wraps up the default
Nordic SDK calls in a few simple-to-use C++ classes. It’s not exactly the most documented thing
around, but honestly I think it’s really well designed.

Bluefruit API: (occasionally out of-date, but mostly good)
https://learn.adafruit.com/introducing-the-adafruit-nrf52840-feather/bluefruit-nrf52-api

Bluefruit Source Code: (I end up looking here if the API isn’t clear)
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/src

Bluefruit example code: (Useful for examples of how to get stuff working)
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples

● Open the “ble-peripheral-advertise” project. Build the code, Upload it, and Monitor the
board output.

○ A new BLE device should begin advertising with the name “CS397 BLE Device”.
○ You can use Wireshark or a phone with the nRF Connect app to see that the

device exists.
○ When the device starts, it prints out some information about its BLE configuration

including its BLE address. You might have to hit the Reset button to see the
message (as it likely printed before the Monitor task had started).

● Play around with this code:
○ Change the device’s name to reflect your team in some way. The goal here is to

know that you’re working with your own device, not someone else’s.
○ Change the advertising interval so that packets are sent every 333 ms.

● Add appearance to the advertising payload. The value 0x0040 should make the device
claim to be a “Generic Phone” per the BLE specification:
https://specificationrefs.bluetooth.com/assigned-values/Appearance%20Values.pdf

○ You’ll need to look through the API/source/examples to figure out how to do this

1. TASK: prove that you got advertisements working
○ A screenshot from Wireshark or even a phone would be fine here

2. TASK: Commit and Push your modified code to your Github classroom repo.
○ Should include new device name, change advertisement interval, and the

addition of appearance to the advertisement.

Page 15 of 19

https://learn.adafruit.com/introducing-the-adafruit-nrf52840-feather/bluefruit-nrf52-api
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/src
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples
https://specificationrefs.bluetooth.com/assigned-values/Appearance%20Values.pdf


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

10. Programming a BLE Scanner
Bluefruit52 and the nRF52840DK also support the Central role, so let’s try that out too!
Particularly, scanning for other BLE devices is a very important and useful functionality.

● Open the “ble-central-scan” project. Build the code, Upload it, and Monitor the board
output.

○ Your device should begin printing information about the BLE devices around it.
○ If you make one board the scanner, and one the peripheral, you should see the

peripheral’s advertisements appearing in the scanner’s output. (Leave your third
device as Wireshark so you can debug!)

If your space is anything like mine, there should be a LOT of data printed. Let’s reduce that.

● Add RSSI information to the printed output for each scanned device
○ You’ll need to grab it from the advertisement report. Here’s the layout of that

struct:
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.s132.api.v6.0.0/stru
ctble__gap__evt__adv__report__t.html?cp=4_7_3_6_2_1_4_44

● Filter which device information is shown based on RSSI
○ Pick whatever RSSI value you think makes sense, and only print data from

devices with an RSSI value greater than that (RSSI is negative, so smaller
magnitude is greater signal strength received).

○ You can filter either manually in the “scan_callback()” function, or by applying a
configuration to your Bluefruit.Scanner at setup time. Either way works.

One more thing to try here is the addition of Scan Requests and Scan Responses.

● Enable Scan Requests for your scanner. In BLE terms, this is known as “active
scanning” and is a configuration you can apply to the Bluefruit.Scanner at setup time. Go
check the API for the function.

● Use your Wireshark setup to capture a Scan Request and Scan Response occurring.
○ If there are no devices responding to Scan Requests nearby, you could program

your peripheral to have Scan Response data! (but I won’t require you to)

Tasks are on the next page!

Page 16 of 19

https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.s132.api.v6.0.0/structble__gap__evt__adv__report__t.html?cp=4_7_3_6_2_1_4_44
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.s132.api.v6.0.0/structble__gap__evt__adv__report__t.html?cp=4_7_3_6_2_1_4_44


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

1. TASK: prove that you got scanning working.
○ A screenshot of terminal output works here.

2. TASK: demonstrate a scan request and scan response pair for a single device
○ A screenshot from Wireshark is great

3. TASK: Commit and Push your modified code to your Github classroom repo.
○ Should include the RSSI modifications you made and active scanning.

Page 17 of 19



CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

11. BLE Services
This is the big finale for this lab. We’re going to program BOTH sides of a BLE connection. The
end result is that one of your nRF52840DKs will control the LED on the other nRF52840DK,
which is incredibly satisfying when you get it working.

The “ble-peripheral-led-service” app is mostly written for you. It creates a service with two
characteristics. The “data” characteristic just has some unique, static data in it so you can know
stuff is working. The “control” characteristic should be used to control the LED in some way.

● “start_adv()” is left mostly empty for you. You can decide what information you want to
advertise, but you MUST include the service UUID

○ Warning: since it’s a custom 128-bit service, that UUID is going to take up a lot of
space (18 bytes out of 31), so make sure whatever else you include in the
advertisement is succinct.

● “control_char_write_callback()” is called whenever a Central writes to the control
characteristic. You should write code that modifies the LED state based on the value
written.

○ Note that the LED is active low, so writing “low” turns it on and writing “high” turns
it off

● If you have the nRF Connect app on your phone, you can test the peripheral
implementation on its own by connecting to the device. The Up/Down arrows by
characteristics let you Read/Write them.

The “ble-central-connect” app is mostly empty. You should write the rest of the application so
that it scans, discovers your peripheral device, connects to it, discovers the
service/characteristics, and writes to the control characteristic to change the LED state.

● Useful here will be some example code with a custom service. It’s not exactly the same
as what we’re doing, but it’ll help you be aware of what things to do and what order to do
them in.

Example peripheral service implementation:
https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/e
xamples/Peripheral/custom_hrm/custom_hrm.ino

Example central service implementation:
https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/e
xamples/Central/central_custom_hrm/central_custom_hrm.ino

Tasks are on the next page!

Page 18 of 19

https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/examples/Peripheral/custom_hrm/custom_hrm.ino
https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/examples/Peripheral/custom_hrm/custom_hrm.ino
https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/examples/Central/central_custom_hrm/central_custom_hrm.ino
https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/examples/Central/central_custom_hrm/central_custom_hrm.ino


CS397/497 Wireless Protocols for the Internet of Things
Winter 2023

1. TASK: prove to me that this works
○ I’ll take your word for it. Write a couple of sentences on what you did and how it

worked.
○ You could alternatively include a link to a short video of it working.

2. TASK: Commit and Push your modified code to your Github classroom repo.
○ Include both the peripheral and central applications!

Page 19 of 19


