Lecture 14 Deep-Dive into LPWANs

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2021

Today's Goals

- Overview of other unlicensed LPWAN approaches
 - Sigfox
 - 802.11ah
 - TV Whitespaces
- Discuss Cellular IoT protocols

Deep-dive into challenges LPWANs face

Outline

- Unlicensed LPWANs
 - Sigfox
 - 802.11ah
 - TV Whitespaces

Cellular IoT

LPWAN Challenges

Sigfox

Very low-rate (600 bps), very long-range (10+ km) communication

- Star-topology networks, with always-listening gateways
 - Any number of low-power end devices
- Uplink-focused communication

Applications: very low-rate metering

Sigfox PHY

- Unlicensed-band communication
 - Europe 868 MHz. US 902-928 MHz (915 MHz band)

- Ultra-narrowband 600 Hz (100 Hz Europe) channel bandwidth
 - Detection only needs to occur at very specific frequency
 - Helps improve signal-to-noise ratio

Sigfox unbalanced uplink and downlink

- Uplink
 - 600 Hz bandwidth, 600 bps, DBPSK
- Downlink
 - 1.5 kHz bandwidth, 600 bps, GFSK
- Particularly optimized for Europe
 - Uplink on 1% duty cycle channel, up to 14 dBm
 - Downlink on 10% duty cycle channel, up to 27 dBm
- Works fine in US too
 - Gets more power (24 dBm up is typical, up to 32 dBm down) and more range

Sigfox link budget

- Why transmit at 100-600 bps?
 - For greatly increased link budget
- Link budget: 150-160 dBm
 - Assuming Tx at ~20 dBm
 - Means Rx Sensitivity of -130 dBm (10 dBm better than LoRaWAN)
- Resulting range: 10-15 km in urban environments
 - Except that buildings lead to dead spots in range

Sigfox MAC

- Aloha-style access control (send whenever)
 - No acknowledgements!
- Send message three times for increased reliability
 - Then listen for downlink at a set period later on a known frequency

Sigfox uplink packet

- Up to 29 bytes total per packet
 - Payload: up to 12 bytes
- Other fields
 - Preamble + Frame Sync are really a 6 byte field for radio sync
 - Authentication: 2-5 bytes
 - Frame Check Sequence: 16-bit CRC

Aside: why faster bitrate in the US?

- Packet size up to 29 bytes (232 bits)
 - At 100 bps: 2.32 seconds on air
 - At 600 bps: 0.387 seconds on air

Maximum dwell time for 915 MHz band: 400 ms

Sigfox downlink packet

- Similar structure, 28 bytes total
 - Payload: up to 8 bytes
- Larger preamble + frame sync of 13 bytes

Error Correcting Code for increased reliability

Sigfox deployments

- Proprietary network with managed deployment
 - Like cellular networks
 - Sigfox deploys networks and transports data
 - 140 uplink messages plus 4 downlink message per day

- Connectionless communication
 - Devices are registered with the networks
 - Keys are provided in the software image
 - Any deployed Sigfox gateway can collect transmitted data
 - Enables mobile applications

Sigfox coverage (Winter 2021)

Outline

- Unlicensed LPWANs
 - Sigfox
 - · 802.11ah
 - TV Whitespaces

Cellular IoT

LPWAN Challenges

IEEE standard for LPWANs

- 802.11ah (HaLow) standard in 2016
 - First real hardware in 2020
 - Still not in real-world use yet
- Focus on the indoor-to-outdoor scenario
 - Medium range (maximum 1 km)
- 915 MHz communication
 - **NOT** interoperable with other 802.11 access points and devices
- Theoretically up to 356 Mbps
 - Practically, most devices are expected to implement 150 kbps to 8 Mbps

802.11ah allows multiple bandwidth allocations

Expected throughput vs. coverage

802.11ah architecture

- Star topology
 - Up to 8191 devices per access point
- Devices are assigned to a group
 - Groups are scheduled slots with TDMA
 - Within a slot CSMA/CA is used for contention among devices
 - Devices not in the group can sleep until their slot
- Traditional IP communication on top of that
 - And traditional 802.11 security mechanisms (WPA2/TLS)

Outline

- Unlicensed LPWANs
 - Sigfox
 - 802.11ah
 - TV Whitespaces

Cellular IoT

LPWAN Challenges

TV whitespaces

- Unused TV channels between 54 MHz and 698 MHz
 - VHF (54-216 MHz)
 - UHF (470-698 MHz)
 - 6 MHz channel width
- Allocated but unused
 - FCC allows unlicensed use
 - IF you do not interfere with primary users

Sensing channel use

- Variation in use
 - Spatial: Cannot assume same channel will be free everywhere
 - Temporal: Cannot assume channel will be free at all times
- Cognitive radio approach
 - Dynamically identify unused portions of spectrum
- Database approach
 - Let someone else do the scanning. Consult database based on location and time

Sensor Networks Over tv Whitespaces (SNOW)

- A design for sensor networks over whitespaces
 - Base Station manages channel for deployment
 - Frequency division for devices. Each uplinks on separate subcarrier
 - Downlink is one OFDM transmission. Each device hears its frequency

Outline

- Unlicensed LPWANs
 - Sigfox
 - 802.11ah
 - TV Whitespaces

Cellular IoT

LPWAN Challenges

3GPP

- 3rd Generation Partnership Project (3GPP)
 - Developed 3G, 4G, 5G
- Industry alliance for development of telecoms standards
 - Established around 1998
 - Makes "Releases" which are roughly analogous to IEEE standards/versions
 - Release 8 (2008) LTE ~4G
 - Release 15 (2018) NR (New Radio) ~5G
- Focused on the practical
 - Different group actually defined 4G (ITU). 3GPP made LTE

Cells in a cellular network

- Split a physical area into a number of non-overlapping cells
 - Each cell gets a cell tower and a frequency band assigned to it
 - Apply frequency bands so nearby cells use different frequencies

More complicated real-world cells

- Place towers at corners of cells
 - Directional antennas send three different frequency bands, one per cell
 - Each cell gets three tower and three bands
- Density of cells varies based on expected number of users
 - Change cell size using Power Control

LTE Categories

- Different equipment supports different "categories" of LTE
 - Maximum MCS index supported

- Examples
 - iPhone 6 (2015): Cat 4
 - Pixel 3 (2018): Cat 16

User equipment ÷ Category	Max. L1 data rate Downlink (Mbit/s)	Max. number of DL MIMO ◆ layers	Max. L1 data rate Uplink (Mbit/s)	3GPP Release ◆
1	10.3	1	5.2	
2	51.0	2	25.5	
3	102.0	2	51.0	Rel 8
4	150.8	2	51.0	
5	299.6	4	75.4	
6	301.5	2 or 4	51.0	
7	301.5	2 or 4	102.0	Rel 10
8	2,998.6	8	1,497.8	
9	452.2	2 or 4	51.0	
10	452.2	2 or 4	102.0	Rel 11
11	603.0	2 or 4	51.0	
12	603.0	2 or 4	102.0	
13	391.7	2 or 4	150.8	Rel 12
14	391.7	8	9,585	
15	750	2 or 4	226	
16	979	2 or 4	n/a	
17	25,065	8	n/a	Rel 13
18	1,174	2 or 4 or 8	n/a	
19	1,566	2 or 4 or 8	n/a	
20	2,000	2 or 4 or 8	315	Rel 14
21	1,400	2 or 4	300	Rel 14

Additional low-end categories for IoT

- LTE Cat 0
 - Traditional LTE, but focused on the really low end
- LTE-M (LTE Cat M1)
 - 375 kbps uplink, 300 kbps downlink (for the actually implemented mode)
 - Reduced power and maximum bandwidth
 - Increased range
- NB-IoT (LTE Cat NB1)
 - 65 kbps uplink, 26 kbps downlink
 - Reduced power and greatly reduced bandwidth
 - Greatly increased range

LTE-M and NB-IoT were developed in parallel

LTE-M and NB-IoT downlink and uplink

- OFDMA downlink
 - Put the more complicated hardware in the cell tower
- SC-FDMA (single carrier FDMA) uplink
 - Blocks of subchannels combined into one signal
 - Similar concept, but simpler for end devices to implement

LTE resource allocation

- Cellular uses OFDMA to schedule
 - Time + Frequency -> "2D Scheduling"
- Cellular uses single channels up to 20 MHz
 - Further divides these into 100 Resource Blocks

- 12 subcarriers for OFDM in frequency (15 kHz each)
- 7 symbols in time (0.5 ms)
 - Remember, better modulation can pack many bits into a symbol
- Devices are allocated frequency and time based on what they are sending
 - Allocated in units of Resource Blocks

Resources used by LTE-M and NB-IoT

- LTE-M uses up to 6 resource blocks
 - 1.4 MHz of bandwidth (1.080 MHz)
 - Can co-exist with other normal LTE traffic, scheduled by cell tower
 - Limited to only some capability of LTE
- NB-IoT uses up to 1 resource block
 - 200 kHz of bandwidth (180 kHz)
 - Multiple deployment options
 - Guard-band in practice

Utilizing single resource block (180kHz) within an LTE carrier

Utilizing unused resource blocks within an LTE carrier guard-band

Utilizing stand-alone 200 kHz carrier

Reducing power for IoT devices

- Reduce maximum Tx power to 20 dBm
 - Increased receive sensitivity will cover it
- Extended Discontinuous Reception
 - Allow devices to reduce paging period and still stay on network
 - Cell tower will hold messages

Further power reduction for simple devices

- Power Saving Mode
 - For very simple, uplinkfocused devices allow them to turn off entirely but stay connected
 - Minutes to days in duration
 - Notify tower before sleeping, listen for packets after each transmission

Improved range for LTE-M and NB-IoT

- LTE defines a Maximum Coupling Loss (MCL) a.k.a Link Budget
 - Traditional cellular: 144 dB (~2.5 km)
 - LTE-M: 160 dB (~5 km)
 - NB-IoT: 164 dB (~10 km)
 - Sigfox: ~155 dB
 - LoRaWAN: ∼143 dB
- Note that cellular networks are on higher frequencies
 - Example: 1900 GHz

Cellular deployments

- Originally unclear which would be dominant
 - Verizon and AT&T focused on LTE-M
 - T-Mobile focused on NB-IoT
 - All rolled out services nationwide in the 2018-2019 timeframe

- Networks are expanding to provide both capabilities
 - LTE-M: AT&T, T-Mobile, US Cellular, Verizon
 - NB-IoT: AT&T, T-Mobile
- Pricing models still very uncertain
 - NB-IoT example: \$5 per device per year up to 12 MB, 10 packets per hour
 - Future adoption will greatly depend on these

Microcontroller support

- Devices need to be certified
 - Hardware and software
 - Tend to be modules or dual-core systems
- Add a SIM card to connect to network

Outline

- Unlicensed LPWANs
 - Sigfox
 - 802.11ah
 - TV Whitespaces

Cellular IoT

LPWAN Challenges

Do novel networks meet application needs?

- How do we compare varied requirements and capabilities?
 - Networks have throughput per gateway and range of gateway.
 - Applications have throughput per device and deployment area.
- Each gateway must support throughput for all devices in its coverage area.
 - Deployment areas are often wider than a single gateway's range.
- Solution: compare the density of communication.
 - Data communication rate per unit area.

PRESIDIO OF

New metric for wide-area communication.

Our proposed metric: bit flux

- $bit flux = \frac{network throughput}{coverage area}$
- Units: bit per hour / m²

First suggested by Mark Weiser

Branden Ghena, et al. "Challenge: Unlicensed LPWANs Are Not Yet the Path to Ubiquitous Connectivity." *MobiCom'19*

PRESIDIO OF

Bit flux can measure application needs.

For an application:

$$bit flux = \frac{\sum each \ device's \ uplink}{deployment \ area}$$

Assumes a relatively homogeneous distribution.

PRESIDIO OF

Bit flux can measure network capabilities.

For a network:

$$bit flux = \frac{gateway \ goodput}{gateway \ coverage \ area}$$

- Assumes a non-overlapping deployment of gateways.
- Note that bit flux alone ignores the total number of gateways required.

Bit flux accounts for spatial reuse.

 Reducing coverage area and deploying additional gateways improves capacity.

• $bit flux \uparrow = \frac{gateway goodput}{coverage area \downarrow}$

Bit flux measurement for LoRaWAN.

Networks differ in capability by orders of magnitude.

Range reduction results in a bit flux curve for each network.

Let's compare network capabilities to a real-world application.

Smart household electric meters.

- ~250 bytes of data every 4 hours
- ~370000 electric customers in San Francisco

$$\frac{250 \ bytes}{4 \ hours} * 370000 \ devices \approx \frac{51000 \ bps}{120 \ km^2} \approx 1.5 \frac{bph}{m^2}$$

All networks are capable of meeting the data needs of electricity metering.

Unlicensed LPWANs lag behind Cellular IoT in ability to support applications.

2G < 0.03% utilized8

Sigfox requires range reduction to meet application needs.

Capacity solutions are relatively straightforward.

- Better access control mechanisms.
- Recover simultaneous transmissions (Choir and Charm).
- Increase bandwidth (TV white spaces).
- All likely come at the cost of increased energy usage...
 - Results in a protocol that looks pretty similar to cellular...

Adwait Dongare, et al. "Charm: exploiting geographical diversity through coherent combining in low-power wide-area networks." *IPSN'18* **Rashad Eletreby, et al.** "Empowering low-power wide area networks in urban settings." *SIGCOMM'17*

Abusayeed Saifullah, et al. "SNOW: Sensor network over white spaces." SenSys'16

LoRaWAN devotes most of its network capacity to a single application.

Coexistence is inevitable in urban areas.

- Urban environments and long range lead to many overlapping deployed networks.
- Capacity problems worsen coexistence by devoting more bandwidth to one application.
- It's not just electricity metering...

Coexistence in unlicensed bands is a more difficult problem.

- No methods for inter-network negotiation so far.
- Without buy-in from most deployments, all access control becomes uncoordinated.

Cellular IoT does not have this problem

Cellular may dominate future deployments.

 LTE-M and NB-IoT are now deployed in the US (and worldwide).

• Licensed bandwidth avoids the coexistence problem.

- Cellular may solve many applications but is not a perfect solution.
 - Still has higher energy and monetary costs for use.
 - Also limited to where service is already available.

Unlicensed LPWANs are still useful for some scenarios.

- Controlled or unoccupied regions have reduced coexistence concerns.
 - Industrial factories, farms, parks and forests.

- Unlicensed networks are very exciting for research.
 - Anyone can deploy a network wherever they want.
 - Much easier to explore protocol modifications and new technologies.
- Research suffers without real-world applications.
 - Problem areas are strong recommendations for new research.
 - New research is only useful if they will have real-world impacts.

Implications – Low-Power Wide-Area Networks.

- Existing unlicensed LPWANs face significant challenges in supporting urban applications.
 - Best suited for industrial or agricultural uses in controlled environments.

- Research directions for unlicensed LPWANs:
 - improve network capacity,
 - · and enable coexistence.

- Cellular IoT networks (LTE-M and NB-IoT) are positioned to solve the needs of city-scale sensing.
 - If the money and energy costs are there.

Outline

- Unlicensed LPWANs
 - Sigfox
 - 802.11ah
 - TV Whitespaces

Cellular IoT

LPWAN Challenges