Lecture 11 WiFi PHY

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2021

Northwestern

Today's Goals

- Discuss WiFi physical layers
 - Get a feel for what choices are leading to more throughput
 - Think a little about what the costs of that are

Outline

• WiFi Overview

- WiFi PHY
 - 802.11/802.11b
 - 802.11a/802.11g
 - 802.11n/802.11ac
 - Real-World WiFi

What is WiFi?

What is WiFi?

(That title is a joke. Even my grandparents know what WiFi is.)

WiFi is the most successful wireless protocol.

802.11 timeline

- 1985 US FCC rules ISM band for unlicensed use
- 1990s WaveLAN (NCR Corporation, Netherlands)
 Wireless ethernet for cashier systems
- 1997 802.11 specification
- 1999 802.11b and 802.11a amendments
- 1999 WiFi Alliance formed for certification of devices
- 1999 Apple iBook is the first consumer WiFi product

Major amendments

	Protocol	Year	Frequency	PHY	Max Rate	Range
-	802.11	1997	2.4 GHz	DSSS/FHSS	2 Mbps	20 m
1	802.11b	1999	2.4 GHz	DSSS	11 Mbps	35 m
2	802.11a	1999	5 GHz	OFDM	54 Mbps	35 m
3	802.11g	2003	2.4 GHz	OFDM	54 Mbps	38 m
4	802.11n	2009	2.4/5 GHz	OFDM + MIMO	600 Mbps	70 m
5	802.11ac	2013	5 GHz	OFDM + MIMO	3.4 Gbps	35 m

- 802.11b was very popular but is now usually unsupported
- 802.11a never saw major deployment
- WiFi Alliance rebranded 802.11ac as "WiFi 5" and backported scheme

Resources

- Peter Steenkiste Carnegie Mellon University
 - <u>https://www.cs.cmu.edu/~prs/wirelessS18/handouts/L11-AdHoc.pdf</u>
 - <u>https://www.cs.cmu.edu/~prs/wirelessS18/handouts/L12-LAN.pdf</u>

- Raj Jain Washington University in Saint Louis
 - <u>https://www.cse.wustl.edu/~jain/cse574-14/ftp/j_05lan.pdf</u>
 - <u>https://www.cse.wustl.edu/~jain/cse574-14/ftp/j_06lan.pdf</u>
- Honestly
 - <u>https://en.wikipedia.org/wiki/IEEE_802.11</u>

Outline

• WiFi Overview

• WiFi PHY

- 802.11/802.11b
- 802.11a/802.11g
- 802.11n/802.11ac
- Real-World WiFi

WiFi Physical Layer

- Details start to get pretty messy here for multiple reasons:
- Different countries/regions have different standards
 Channels look a little different in different areas
- 2. WiFi has evolved over the last 20 years
 - Different features are designed for different amendments
- 3. WiFi is focused on improving throughput
 - Solutions that were initially "too complicated" no longer are

Goal: improve throughput

- In twenty years, WiFi has gone from 2 Mbps to 3 Gbps
- How does a network improve its throughput?

Goal: improve throughput

- In twenty years, WiFi has gone from 2 Mbps to 3 Gbps
- How does a network improve its throughput?
- 1. More capable modulation and/or bit transmission
 - Techniques like OFDM and MIMO

- 2. More bandwidth
 - Increased channel with at 2.4 Ghz and bigger 5 GHz channels

Walking through PHY changes by amendment

	Protocol	Year	Frequency	PHY	Max Rate	Range
-	802.11	1997	2.4 GHz	DSSS/FHSS	2 Mbps	20 m
1	802.11b	1999	2.4 GHz	DSSS	11 Mbps	35 m
2	802.11a	1999	5 GHz	OFDM	54 Mbps	35 m
3	802.11g	2003	2.4 GHz	OFDM	54 Mbps	38 m
4	802.11n	2009	2.4/5 GHz	OFDM + MIMO	600 Mbps	70 m
5	802.11ac	2013	5 GHz	OFDM + MIMO	3.4 Gbps	35 m

Original WiFi specification (1997)

- Legacy WiFi
 - Frequency Hopping Spread Spectrum (FHSS)
 - GFSK (Gaussian Frequency-Shift Keying)
 - Relatively simple radio design
 - Frequency hopping over 80 channels (1 MHz each)
 - Actually supports an Infrared PHY as well!!

802.11b (1999)

- 802.11b
 - Direct Sequence Spread Spectrum (DSSS)
 - DBPSK and DQPSK (Differential Binary/Quadrature Phase-Shift Keying)

- Translate data into "codes"
 - Each data bit corresponds to several code bits (Chips)
 - Chips are what is actually modulated over the air
 - Data can be recovered by knowing the code patterns

DSSS goals

- DSSS increases bandwidth of a signal
 - Beyond what is needed for the data
 - Energy is smeared across the frequencies
- More robust against interference
 - Narrowband signals knock out only part of the signal
 - Data can be recovered from partial code

• Cost: using a lot of bandwidth for only a little data

802.11b channels

- 14 channels total
 - 1-11 for US
 - 1-13 for most of the rest of the world
 - 1-14 for Japan (but 14 only for 802.11b
- 22 MHz channels
 - 5 MHz spacing -> significant channel overlap
 - Channels 1, 6, and 11 can be used without overlap

Walking through PHY changes by amendment

	Protocol	Year	Frequency	PHY	Max Rate	Range
-	802.11	1997	2.4 GHz	DSSS/FHSS	2 Mbps	20 m
1	802.11b	1999	2.4 GHz	DSSS	11 Mbps	35 m
2	802.11a	1999	5 GHz	OFDM	54 Mbps	35 m
3	802.11g	2003	2.4 GHz	OFDM	54 Mbps	38 m
4	802.11n	2009	2.4/5 GHz	OFDM + MIMO	600 Mbps	70 m
5	802.11ac	2013	5 GHz	OFDM + MIMO	3.4 Gbps	35 m

OFDM enables higher throughput

Replace DSSS with Orthogonal Frequency Division Multiplexing

• OFDM idea

- Split band into a number of narrow subcarriers
- Subcarriers are spaced so that they don't interfere
- Transmit on multiple subcarriers at once to increase throughput

OFDM enables higher throughput at complexity cost

- Receivers collect signal from entire channel
 - And then can split it apart to gain the data on each subcarrier

- Tradeoffs
 - Benefits: more throughput, still robust against narrowband interference
 - Costs: more complicated and sensitive radio design

802.11a (1999)

- Applied OFDM techniques on the 5 GHz band
 - Enabled more data throughput 54 Mbps (compare to 11 Mbps for 802.11b)
- Multiple rates available
 - BPSK/QPSK/QAM over OFDM
 - Quadrature Amplitude Modulation (QAM)
- Never reached widespread adoption
 - Regulatory hurdles in some regions
 - More complicated hardware delayed it

RATE bits	Modulation type	Coding rate	Data rate (Mbit/s) ^[a]
1101	BPSK	1/2	6
1111	BPSK	3/4	9
0101	QPSK	1/2	12
0111	QPSK	3/4	18
1001	16-QAM	1/2	24
1011	16-QAM	3/4	36
0001	64-QAM	2/3	48
0011	64-QAM	3/4	54

802.11a channels

- 802.11a did promote the use of 5 GHz band
 - Several 20 MHz channels with no overlap
 - Big increase from "three" channels of 2.4 GHz
 - Various regional rules on a number of different channels
 - Needs to avoid frequencies in use by existing radar deployments
 - Orange channels aren't used in the US at least, except for enterprise

802.11g (2003)

- Applies OFDM to 2.4 GHz band
 - Increases throughput from 11 Mbps to 54 Mbps
 - Repeats rate choices of 802.11a but on more support 2.4 GHz band
- Same 2.4 GHz channels as 802.11b, but 20 MHz bandwidth
 - Still 1, 6, 11 in US
 - 1, 5, 9, 13 in other regions
- Backwards compatible with 802.11b
 - Capable of DSSS communication when required

Cost of supporting 802.11b

- 802.11g uses a completely different PHY layer than 802.11b
 - DSSS -> OFDM
 - Unintelligible to old receivers creating an interoperability problem
- Interoperability mode: send part of message in old format
 - DSSS header with OFDM payload
 - Adds overhead and slows down the entire network
 - Starting with 802.11n, routers don't support 802.11b by default

Improved WiFi hardware is in high demand

- Typically, standards lead hardware by several years
 - BLE 5.2 is out, but 5.0 is just being adopted in phones
- Development of 802.11g hardware started *before* finalization of standard
 - Demand for increased performance was already high in 2003

- Phenomena continues in modern WiFi and Cellular protocols
 - Hardware supports some features as soon as it's clear they'll exist

Walking through PHY changes by amendment

	Protocol	Year	Frequency	PHY	Max Rate	Range
-	802.11	1997	2.4 GHz	DSSS/FHSS	2 Mbps	20 m
1	802.11b	1999	2.4 GHz	DSSS	11 Mbps	35 m
2	802.11a	1999	5 GHz	OFDM	54 Mbps	35 m
3	802.11g	2003	2.4 GHz	OFDM	54 Mbps	38 m
4	802.11n	2009	2.4/5 GHz	OFDM + MIMO	600 Mbps	70 m
5	802.11ac	2013	5 GHz	OFDM + MIMO	3.4 Gbps	35 m

How do we increase throughput?

- Wired world
 - Add more wires in parallel

- Wireless world
 - Add more antennas?

MIMO – Multiple In Multiple Out

- N x M subchannels can be used to send data simultaneously
 - Huge boost in data throughput
 - Antenna diversity adds to reliability as well
- The signals may interfere with each other
 - But receiving all of them allows the data to be recovered
- Beamforming
 - Use interactions between array of antennas to focus energy on the receiver
 - Way outside of the scope of this class

Expandable bandwidth

- OFDM allows many subcarriers within a channel to be used at once
 - Throughput scales with the amount of bandwidth available
 - Allow larger 40 MHz channels to be used

802.11g/n (OFDM) 20 MHz ch. width - 16.25 MHz used by sub-carriers

802.11n (2009)

- Supports OFDM and MIMO on 2.4 GHz and 5 GHz
- Supports 20 MHz and 40 MHz channels
 - Easier to create large channels in 5 GHz band
- Backwards compatible with 802.11g (tries not to be with 802.11b)
- Wildly successful
 - Still the 2.4 GHz band protocol (802.11ac is 5 GHz only)
 - A little less than half of the networks visible to me are still 802.11n
 - The "building WiFi" is still 802.11g...

802.11n modulation and coding schemes

Modulation and coding schemes

			Coding	Data rate (in Mbit/s) ^[a]			
MCS index	Spatial	Modulation		20 MHz channel		40 MHz channel	
Index	Streams	type	Tate	800 ns Gl	400 ns GI	800 ns Gl	400 ns Gl
0	1	BPSK	1/2	6.5	7.2	13.5	15
1	1	QPSK	1/2	13	14.4	27	30
2	1	QPSK	3/4	19.5	21.7	40.5	45
3	1	16-QAM	1/2	26	28.9	54	60
4	1	16-QAM	3/4	39	43.3	81	90
5	1	64-QAM	2/3	52	57.8	108	120
6	1	64-QAM	3/4	58.5	65	121.5	135
7	1	64-QAM	5/6	65	72.2	135	150
8	2	BPSK	1/2	13	14.4	27	30
9	2	QPSK	1/2	26	28.9	54	60
10	2	QPSK	3/4	39	43.3	81	90
11	2	16-QAM	1/2	52	57.8	108	120
12	2	16-QAM	3/4	78	86.7	162	180
13	2	64-QAM	2/3	104	115.6	216	240
14	2	64-QAM	3/4	117	130	243	270
15	2	64-QAM	5/6	130	144.4	270	300
16	3	BPSK	1/2	19.5	21.7	40.5	45
17	3	QPSK	1/2	39	43.3	81	90
18	3	QPSK	3/4	58.5	65	121.5	135
19	3	16-QAM	1/2	78	86.7	162	180

	Spatial	Modulation	Coding	Data rate (in Mbit/s) ^[a]			
MCS				20 MHz channel		40 MHz channel	
Index	Streams	type	Tate	800 ns GI	400 ns GI	800 ns GI	400 ns Gl
20	3	16-QAM	3/4	117	130	243	270
21	3	64-QAM	2/3	156	173.3	324	360
22	3	64-QAM	3/4	175.5	195	364.5	405
23	3	64-QAM	5/6	195	216.7	405	450
24	4	BPSK	1/2	26	28.8	54	60
25	4	QPSK	1/2	52	57.6	108	120
26	4	QPSK	3/4	78	86.8	162	180
27	4	16-QAM	1/2	104	115.6	216	240
28	4	16-QAM	3/4	156	173.2	324	360
29	4	64-QAM	2/3	208	231.2	432	480
30	4	64-QAM	3/4	234	260	486	540
31	4	64-QAM	5/6	260	288.8	540	600
30 31	4	64-QAM 64-QAM	3/4 5/6	234 260	260 288.8	486 540	540 600

MCS – Modulation and Coding Scheme GI – Guard Interval: delay between transmitted symbols

Multi-user Multiple In Multiple Out (MU-MIMO)

- Multi-user MIMO uses the same techniques to send in parallel to multiple devices
 - Devices cannot cancel out interference anymore
 - Send slower, more reliable data streams to overcome this

802.11ac (2013)

- Update for 5 GHz band only
 - Supports Downlink MU-MIMO (from AP to device)
 - Supports channels widths up to 160 MHz
 - Engineering updates: up to 256-QAM
- Routers apply 802.11ac to 5 GHz and 802.11n to 2.4 GHz

802.11ac channels

802.11ac Channel Allocation (N America)

*Channels 116 and 132 are Doppler Radar channels that may be used in some cases.

802.11ac modulation and coding schemes

802.11ac - VHT MCS, SNR and RSSI

20MHz 40MHz 80MHz 160MHz VHT Modulation Coding Data Rate Min. Data Rate Data Rate Min. Data Rate Min. Min. MCS RSS RSS RSSI RSS 800ns 400ns 800ns 400ns SNR 800ns 400ns SNR 800ns 400ns SNR SNR 1 Spatial Stream BPSK 2 -82 13.5 15 5 -79 29.3 32.5 -76 58.5 65 11 -73 0 1/2 6.5 7.2 8 -70 -79 27 30 -76 58.5 65 -73 117 130 1 **QPSK** 1/2 13 14.4 8 11 14 -77 -71 -68 2 **QPSK** 3/4 19.5 21.7 9 40.5 45 12 -74 87.8 97.5 15 175.5 195 18 16-QAM 1/2 26 28.9 -74 54 60 14 -71 117 130 17 -68 234 260 20 -65 3 11 -70 18 -67 351 -61 16-QAM 3/4 39 43.3 15 81 90 175.5 195 21 -64 390 24 4 64-QAM 2/3 52 57.8 18 -66 108 120 21 -63 234 260 24 -60 468 520 27 -57 5 64-QAM 3/4 58.5 65 20 -65 121.5 135 23 -62 263.3 292.5 26 -59 526.5 585 -56 29 5/6 72.2 25 28 -61 292.5 325 -58 585 650 -55 64-QAM 65 -64 135 150 31 34 7 8 256-QAM 3/4 78 86.7 29 -59 162 180 32 -56 351 390 35 -53 702 780 38 -50 -54 9 256-QAM 5/6 31 -57 180 200 34 390 433.3 37 -51 780 866.7 40 -48 2 Spatial Streams BPSK -79 58.5 65 -76 117 130 11 -73 1/2 13 14.4 2 -82 27 30 8 0 5 260 -70 **QPSK** 117 130 11 -73 234 1 1/2 26 28.9 -79 54 60 8 -76 14 -71 -68 2 QPSK 3/4 -77 90 12 -74 175.5 195 15 351 390 18 39 43.3 9 81 234 17 -65 3 16-QAM 1/2 52 57.8 -74 108 120 14 -71 260 -68 468 520 20 11 -67 -61 3/4 78 86.7 -70 162 180 18 351 390 21 -64 702 780 24 4 16-QAM 15 115.6 -63 936 -57 5 64-QAM 2/3 104 18 -66 216 240 21 468 520 24 -60 1040 27 64-QAM 3/4 -65 243 270 23 -62 526.5 585 26 -59 1053 1170 29 -56 6 117 130.3 20 28 -61 585 650 31 -58 1170 -55 7 64-QAM 5/6 130 144.4 25 -64 270 300 1300 34 256-QAM 3/4 156 29 324 360 32 -56 702 780 35 -53 1404 1560 -50 8 173.3 -59 38 34 -54 780 1560 1733.3 -48 256-QAM 5/6 360 400 866.7 37 -51 40 9 31 -57 **3 Spatial Streams** -73 BPSK 21.7 87.8 97.5 -76 175.5 195 11 0 1/2 19.5 2 -82 40.5 45 -79 8 -70 1 **QPSK** 1/2 39 43.3 -79 81 90 8 -76 175.5 195 11 -73 351 390 14 -68 2 **QPSK** 3/4 121.5 12 -74 263.3 292.5 15 -71 526.5 585 18 58.5 65 -77 135 390 17 702 -65 3 16-QAM 1/2 86.7 -74 162 180 14 -71 351 -68 780 20 -61 16-QAM 3/4 -67 526.5 585 21 -64 1053 1170 24 4 -70 243 270 18 117 130 15 -57 5 64-QAM 2/3 324 360 21 -63 702 780 24 -60 1404 1560 27 -66 173.3 23 -62 26 -59 -56 64-QAM 3/4 1579.5 1755 29 6 175.5 195 20 -65 364.5 405 -55 877.5 975 31 -58 1755 7 64-QAM 5/6 195 216.7 25 -64 405 450 28 -61 1950 34 256-QAM -50 3/4 234 260 486 540 32 -56 1053 1170 35 -53 2106 2340 38 256-QAM 34 1300 37 -51 40 -48 5/6 260 600 -54 288.9 -57 1170

4 spatial streams is also allowed, getting up to 3466 Mbps

Outline

• WiFi Overview

• WiFi PHY

- 802.11/802.11b
- 802.11a/802.11g
- 802.11n/802.11ac
- Real-World WiFi

Goal: improve throughput

- In twenty years, WiFi has gone from 2 Mbps to 3 Gbps
- How does a network improve its throughput?
- 1. More capable modulation and/or bit transmission
 - Techniques like OFDM and MIMO
 - Original 2 Mbps -> 54 Mbps with OFDM -> 346 Mbps with MIMO (100x)
 - Engineering improvements are baked into these steps too
- 2. More bandwidth
 - Increased channel with at 2.4 Ghz and bigger 5 GHz channels
 - 346 Mbps with 20 MHz -> 3466 Mbps with 160 MHz (10x)

Bit rate adaptation

- All modern WiFi standards support multiple bit rates (MCS)
- Many factors can influence the choice of bit rate
 - Capability of device: not all devices support all bit rates
 - Range and packet reliability (interference)

Bit rate adaptation

- Selecting the right rate at the right time is a complex problem
 - And needs to be decided per-device
 - Trial and Error
 - Failures -> reduce rate
 - Successes -> increase rate
 - Signal strength
 - Use channel state information to decide
 - Context sensitive
 - Mobile devices need lower rates

Real-world 802.11 channel use – 5 GHz

- Devices use 80 MHz channels almost entirely
 - One network using 40
 MHz channel
- No use of the more complicated bands
- Why is no one using channel 165?

Real-world 802.11 channel use – 5 GHz

- Devices use 80 MHz channels almost entirely
 - One network using 40
 MHz channel
- No use of the more complicated bands
- Why is no one using channel 165?
 - That would be a 20 MHz channel
 - And can't be added on its own

Real-world 802.11 channel use – 2.4 GHz

- Most networks use 20 MHz channels 1, 6, or 11
 - Just use 5 GHz for faster speeds
- Several networks create 40 MHz allocations

Real-world 802.11 channel use – some routers are weird

- Some networks are weird
- Why make a 40 MHz allocation centered on channel 6??!
- Some 20 MHz networks use channels 2, 9, or 10

Outline

- WiFi Overview
- WiFi PHY
 - 802.11/802.11b
 - 802.11a/802.11g
 - 802.11n/802.11ac
 - Real-World WiFi