Lecture 02 Physical and Link Layers

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2021

Some slides borrowed from: Peter Steenkiste (CMU), Christian Poellabauer (Notre Dame)

Today's Goals

Introduce OSI layer model of communication

- Overview of concerns for the Physical and Data link layers
 - Speak the "lingo" of wireless communication
 - Present technology aspects that we will return to in specific protocols

Describe Medium Access Control mechanisms

Outline

OSI Layers

Physical Layer

Data Link Layer

Communication layers

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

What goes on at each of these?

OSI model of communication layers

- Transport
 - How to form connections between computers
 - TCP and UDP
- Network
 - How to send packets between networks
 - IP
 - CS domain: CS340
- Data Link
 - How to send frames of data
 - Ethernet, WiFi
 - Our focus
- Physical
 - How to send individual bits
 - Ethernet, WiFi
 - EE domain: EE307, EE380, EE395

Protocols are "layered"

- Headers for each layer of communication wrap data
 - Data is wrapped with header for the network to make a packet
 - Packet is wrapped with header for the link to make a frame

Transmitting data between networks

Model != reality

- Wireless protocols don't always split between layers cleanly
 - Usually explain parts of physical, data link, and possibly upper layers
- Model still helps conceptualize stack-up though
 - Layering of some type still occurs

Layering for IoT (joke) (kind of)

MQTT is a publish/subscribe message broker

Outline

OSI Layers

Physical Layer

Data Link Layer

Physical Layer

- How bits are transmitted
 - Wireless makes this entirely different from wired cases
- Important considerations
 - Signal strength
 - Modulation
 - Frequency

Why use wireless?

There are no wires!

- No need to install and maintain wires
 - Reduces cost
 - Simplifies deployment place devices wherever makes sense
- Supports mobile users
 - Move around office, campus, city
 - Move devices around home

What is hard about wireless?

There are no wires!

- Wired networks are constant, reliable, and physically isolated
 - Ethernet has the same throughput minute-to-minute
 - Bits sent through Ethernet or USB are (usually) received
- Wireless networks are variable, error-prone, and shared
 - WiFi throughput changes based on location and walls
 - Signals from nearby devices interfere with your signals
 - Individual bits might flip or never be heard at all

Wireless is a shared medium

- Wired communication has signals confined to a conductor
 - Copper or fiber
 - Guides energy to destination
 - Protects signal from interference
- Wireless communication is inherently broadcast
 - Energy is distributed in space
 - Signals must compete with other signals in same frequency band

Increasing network capacity is challenging

- Wired networks just add more wires
 - Buses are many signals in parallel to send more data

- Wireless networks are harder
 - Adding more links just increases interference
 - Need to expand to different frequencies

Model of RF communication

Energy that radiates spherically from an antenna

- Attenuation with distance
 - Density of energy reduces over time, distance
 - Signal strength is reduced, errors go up
- Two key features
 - Error rates depend on distance
 - Spatial reuse of frequencies

Signal strength is measured in decibels

- Power is measured in Watts or dBw or dBm
 - $Power_{dBw} = 10 * log_{10}(Power_{Watts})$
 - $Power_{dBm} = 10 * log_{10}(Power_{milliwatts})$
- dBm is most relevant to the IoT domain
 - 0 dBm equals 1 mW transmit power
 - Example
 - Max BLE transmit power for nRF52840: 8 dBm (6.31 mW)
 - Min BLE receive sensitivity for nRF52840: -95 dBm (316.2 fW)

• Rule of thumb: +3 dB is double the power

Propagation degrades RF signals

- Attenuation in free space
 - Signals get weaker as they travel over long distances
 - Signal spreads out -> free space path loss
- Obstacles can weaken signal through absorption or reflection

- Important: distance is NOT the only signal strength loss
 - Free space path loss calculation will not give you accurate range for a signal

ITU model for Indoor Attenuation

```
\begin{split} L &= 20 \, \log_{10} f \, + \, N \, \log_{10} d \, + \, P_f(n) \, - \, 28 \end{split} where, L = \text{the total path loss. Unit: decibel (dB).} f = \text{Frequency of transmission. Unit: megahertz(MHz).} d = \text{Distance. Unit: meter (m).} N = \text{The distance power loss coefficient.} n = \text{Number of floors between the transmitter and receiver.} P_f(n) = \text{the floor loss penetration factor.}
```

- Models like this are more trustworthy than FSPL
 - https://en.wikipedia.org/wiki/ITU_model_for_indoor_attenuation

Modulation

Encoding digital data in an analog "carrier" signal

- Basic forms:
- Amplitude-shift Keying (ASK)
 - Modify amplitude of carrier signal
- Frequency-shift Keying (FSK)
 - Modify frequency of carrier signal
- Phase-shift Keying (PSK)
 - Modify phase of carrier signal

RF communication frequencies

Wireless spectrum is allocated to specific uses

Unlicensed bands are where IoT thrives

- 902 MHz 928 MHz
 - LPWANs

- 2.4 GHz to 2.5 GHz
 - WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi

- Cellular uses licensed bands at great cost
 - Why?

Unlicensed bands are where IoT thrives

902 MHz – 928 MHz
 LPWANs

- 2.4 GHz to 2.5 GHz
 WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi

- Cellular uses licensed bands at great cost
 - Why? No interference from other users

Frequency Hopping Spread Spectrum

- Transmitter hops through a sequence of transmit channels
 - Spend some "dwell time" on each channel before hopping again
 - Receiver must know the hopping pattern
- Avoid causing or receiving prolonged interference

Sidebar: inventor of FHSS — Hedy Lamarr

- Actress and Inventor
 - Designed FHSS with George Antheil during WWII
 - Idea: torpedo control can't be easily jammed if it jumps around

https://en.wikipedia.org/wiki/Hedy_Lamarr#Inventor

Outline

OSI Layers

Physical Layer

Data Link Layer

Data Link Layer

- Framing
 - Combine arbitrary bits into a "packet" of data
- Logical link control
 - Manage transfer between transmitter and receiver
 - Error detection and correction
- Media access
 - Controlling which device gets to transmit next
- Inherently coupled to PHY and its decisions

Framing

- Typical packet structure
 - Preamble Existence of packet and synchronization of clocks
 - Header Addresses, Type, Length
 - Data Payload plus higher layer headers (e.g. IP packet)
 - Trailer Padding, CRC

Preamble	Destination Address			Data	CRC
----------	------------------------	--	--	------	-----

- Wireless considerations
 - Control information for Physical Layer
 - Ensure robustness for header
 - Explicit multi-hop routing
 - Possibly different data rates for different parts of packet

Error control: detection and recovery

- Detection: only detect errors
 - Make sure corrupted packets get discarded
 - Cyclical Redundancy Checks
 - Detect single bit errors
 - Detect "burst" errors of several contiguous bits
- Recovery: also try to recover from small bit errors
 - Forward error correction
 - Retransmissions
 - Far more important for wireless because the cost of transmission is higher

Medium Access Control

How does a network determine which transmitter gets to transmit?

- Remember: the wireless medium is inherently broadcast
 - Two simultaneous transmitters may lose both packets

Analogy: wireless medium as acoustic

- How do we determine who gets to speak?
 - Two simultaneous speakers also lose both "transmissions"

Analogy: wireless medium as acoustic

- How do we determine who gets to speak?
 - Two simultaneous speakers also lose both "transmissions"
- Eye contact (or raise hand) -> out-of-band communication
- Wait until it's quiet for some time -> carrier sense multiple access
- Strict turn order -> time division multiple access
- Just speak and hope it works -> ALOHA
- Everybody sing at different tones -> frequency division multiple access (stretching the metaphor)

• Others?

MAC protocol categorization

ALOHA

- ALOHAnet (1971)
 - University of Hawaii Norman Abramson
 - First demonstration of wireless packet network
- Rules
 - 1. If you have data to send, send it
- Two (or more) simultaneous transmissions will collide and be lost
 - Wait a duration of time for an acknowledgement
 - If transmission was lost, try sending again "later"
 - Want some kind of exponential backoff scheme here

Packet collisions

- Each packet transmission has a window of vulnerability
 - Twice the on-air duration of a packet
 - Transmissions during the packet are bad

Transmissions before packet can also be bad

Slotted ALOHA

- Split time into synchronized "slots"
- Any device can transmit whenever it has data
 - But it must transmit at the start of a slot
 - And its transmission cannot be longer than a slot
 - Removes half of the possibilities for collisions!
 - At the cost of some synchronization method

ALOHA throughput

 It can be shown that traffic maxes out at

• ALOHA: 18.4%

Slotted ALOHA: 36.8%

 Assuming Poisson distribution of transmission attempts

 Slotted throughput is double because the "before" collisions can no longer occur

Capture effect

- Actually, two packets at once isn't always a total loss
 - The louder packet can still sometimes be heard if loud enough
- How much louder?
 - Ballpark 12-14 dB
- When does this work?
 - Depends on the radio hardware
 - Louder packet first almost always works
 - Louder packet second sometimes works

CSMA/CA – Carrier Sense Multiple Access with Collision Avoidance

- First listen for a duration and determine if anyone is transmitting
 - If idle, you can transmit
 - If busy, wait and try again later

"listen before send"

- Can be combined with notion of slotting
 - If current slot is idle, transmit in next slot
 - If current slot is busy, follow some algorithm to try again later

CSMA/CD – CSMA with Collision Detection

- Detect collisions during your own transmission
 - Works great on wired mediums (Ethernet, I2C)
- Somewhere between challenging and impossible for wireless
 - Transmit and receive are usually the same antenna
 - Receiving while transmitting would be drowned out by transmission
 - Remember: TX at 8 dBm and RX at -95 dBm

Hidden terminal problem

CSMA with RTS/CTS

 Hidden terminal problem means that two transmitters might never be able to detect each other's transmissions

A partial solution

- When channel is idle, transmitter sends a short Request To Send (RTS)
- Receiver will send a Clear To Send (CTS) to only one node at a time
- RTS collisions are faster and less wasteful than hidden terminal collisions
- Downside: overhead is high for waiting for CTS when contention is low

Contention-free access control protocols

- Goal: split up communication such that devices will not conflict
- Can be predetermined or reservation-based
 - Devices might request to join the schedule and be given a slot
 - Devices lose their slot if it goes unused for some amount of time
 - Reservations often occur during a dedicated CSMA contention slot
 - Assignment of schedules can be complicated
- Really efficient at creating a high-throughput network
 - Assuming they are all following the same protocol
 - Otherwise, interference can be very problematic

FDMA – Frequency Division Multiple Access

- Split transmissions in frequency
 - Different carrier frequencies are independent
 - Fundamentally how RF spectrum is split
- Technically, each device uses a separate, fixed frequency
 - Walkie-talkies

- Conceptually, how RF channels work
 - WiFi networks pick different bands
 - 802.15.4 picks a channel to communicate on

TDMA – Time Division Multiple Access

- Split transmissions in time
 - Devices share the same channel
- Splits time into fixed-length windows
 - Each device is assigned one or more windows
 - Can build a priority system here with uneven split among devices
- Requires synchronization between devices
 - Often devices must listen periodically to resynchronize
 - Less efficient use of slots reduce synchronization
 - Large guard windows. E.g. 1.5 second slot for a 1 second transmission

Real-world protocol access control

- ALOHA
 - BLE advertisements
 - Unlicensed LPWANs: Sigfox, LoRaWAN
- CSMA
 - WiFi (slotted, CSMA/CA)
- TDMA
 - BLE connections
 - Cellular LPWANs: LTE-M and NB-IoT

Outline

OSI Layers

Physical Layer

Data Link Layer