Lecture 01 Introduction

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2021

Today's Goals

Overview of the course

Introduction to the Internet of Things

Introduction to wireless communication

Outline

Who and Why

Internet of Things

Course Overview

Overview of wireless networks

Welcome to CS397/497!

- ~16 students (9 undergrad, 7 grad)
 - Lots of different backgrounds and interests
- This is going to be like a graduate course
 - No exams!
 - Occasional paper reading
 - Majority of your grade is the final project
- This course is based on discussion and questions
 - Expect to attend course sessions, keep webcam on, and interact
 - You're hopefully here because you want to be and want to learn

Branden Ghena (he/him)

- Assistant Faculty of Instruction
- Education
 - Undergrad: Michigan Tech
 - Master's: University of Michigan
 - PhD: University of California, Berkeley
- Research
 - Resource-constrained sensing systems
 - Low-energy wireless networks
 - Embedded operating systems
- Teaching
 - Computer Systems
 - Intro to Computer Systems
 - Operating Systems
 - Microprocessor System Design

Things I love

Undergraduate: satellite radios and computers

 How the heck are you supposed to learn this stuff?

Grad school: resource-constrained embedded systems

- Most interesting to me: the interfaces
 - Hardware and software
 - Applications and OS
 - Communication
- Again: learn by doing
 - And with significant assistance from your peers

Faculty: now I can choose what to teach!

- Goal: provide classes that teach more advanced embedded systems topics
 - Hopefully, generally useful to other nearby domains of CS and ECE too!
- Result: this course!
 - Really would be much nicer in person, but
 - Course goals: make students familiar with a number of different wireless protocols and their tradeoffs
 - Practical hands-on experience with some networks
 - Open-ended project where students can choose their specific focus

Outline

Who and Why

Internet of Things

Course Overview

Overview of wireless networks

Perspective of this course

- This class is about wireless protocols
 - For a specific domain: the Internet of Things
- So we'll spend some amount of time discussing the Internet of Things and embedded systems
 - Including how to program embedded systems

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Thought experiment on capabilities

- What if the Nest thermostat was powered by an entire desktop?
 - 8-core x86-64 processor, 32 GB RAM, 1 TB SSD

Would that still count as IoT?

Why don't we see that in practice?

Thought experiment on capabilities

- What if the Nest thermostat was powered by an entire desktop?
 - 8-core x86-64 processor, 32 GB RAM, 1 TB SSD

Would that still count as IoT?

Why don't we see that in practice?

Cost

Thought experiment on energy

IoT devices include a mix of batteries, wall power, (and energy-harvesting)

- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

Thought experiment on energy

IoT devices include a mix of batteries, wall power, (and energy-harvesting)

- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

Deployability

Branden's take on the Internet of Things

- Key features
 - Computation
 - Local to the device
 - With some capability for arbitrary compute and storage
 - Connectivity
 - Almost certainly wireless
 - Likely Internet, possibly local
 - Interaction
 - Sensing or Actuation
- Secondary features
 - Low energy
 - (Relatively) Low cost

Warning: Internet of Crap

Internet of Insecure Crap

- Mirai botnet (2016)
- Takes control of up to 600,000 insecure connected devices
 - IP-attached cameras, DVRs, routers, printers
- Used to DoS websites

Outline

Who and Why

Internet of Things

Course Overview

Overview of wireless networks

General course structure

- Mondays and Wednesdays
 - Lecture and discussion about networks
- Fridays
 - Labs and projects
 - A brief overview from me about what's going on
 - Open work period while on zoom still
 - Closest I can get to a "lab" setting

Grading

- 35% Lab projects
- 65% Final project

- Seriously, no exams or homework or participation points
 - The point of in-class material is to teach you and prepare you for projects
 - Come because you want to learn it

Labs

- Semi-guided efforts of getting wireless communication working on real hardware
 - 1. Get embedded software working
 - 2. Bluetooth Low Energy advertisements
 - 3. Bluetooth Low Energy connections
 - 4. Thread network
- In a perfect world we would also do something with WiFi and something LPWAN
 - Would need additional hardware
 - And extra time that we don't have this quarter

Lab hardware

- nRF52840dk
 - Microcontroller with BLE and Thread support
 - JTAG support built into the board

Hopefully also useful for final projects for some portion of you!

- Fill out campuswire survey!
 - I'll start ordering stuff tomorrow

Lab grading

- Around one page submission on canvas
 - "Prove to me that you did this lab"
 - Point me at public Github code. Include pictures of debug output/network visualization. Discuss what did/didn't work.
 - NOT a formal lab writeup
- Playing this pretty loose since it's a small, experimental class
 - There's always a chance something in labs won't work

Project

Classic grad school "do a project"

- Come up with something you're interested in exploring that is linked to the topics of class
 - Definitely acceptable to overlap with research or other classes
 - Work in small groups of 2-3 students
- This is your chance to decide what you're actually interested in and to guide your own learning
- Good ideas should be a lot of work too

Project proposals

- Proposals due Monday, February 1st
 - 3 weeks from today
 - Want to provide plenty of time to work on the project
- Start thinking about project ideas and finding partners now
 - Preferably two-three people. One is possible. Four+ needs to be justified.

- I am very happy to talk about ideas during office hours
 - Goal is that we'll have talked about it at some point before you submit the proposal

Project ideas

- Analyze and optimize a deployed network
 - Measure throughput, or energy, or latency, etc.
 - Determine how to improve network for application use case
- Implement and evaluate a modified network protocol
 - Change something about the specification of an existing protocol
 - Measure the effect that it has on a deployment

Project ideas

- Simulate a wireless network
 - Accurately predict throughput, energy, latency, etc.
 - Could be done in any language or platform (e.g. NS-3)
- Visualize network performance
 - Provide tools for understanding and debugging performance
 - Real-time or historical snapshot

Hardware for projects

Mostly up to you to provide

- Talk to me about your needs, and I might have ideas or things to lend out that will help
 - I've got lots of random stuff on hand, as does Josiah

Outline

Who and Why

Internet of Things

Course Overview

Overview of wireless networks

Schedule

Week	Monday	Wednesday	Friday
Jan 11-15	Introduction		MAC Protocols +Recorded Lab Embedded
Jan 18-22	MLK Day	BLE Advertisements	Lab Advertisements
Jan 25-29	BLE connections	Bluetooth Classic	Lab Connect
Feb 1-5	802.15.4	Thread	Lab Thread
Feb 8-12	Zigbee/Advanced	WiFi	slack
Feb 15-19	WiFi 2	LPWANs	Updates
Feb 22-26	Cellular	Cellular 2	slack
Mar 1-5	Localization	Backscatter	Updates
Mar 8-12	Wrapup + Extra	Presentations	Presentations 2

Bluetooth Low Energy

- Bluetooth Classic was good for enabling device to device communication
 - But not particularly fast or low energy
- Bluetooth Low Energy was developed to improve this
 - Focuses on low-energy interactions
 - Much lower throughput that Bluetooth

- Supported by hardware devices already in smartphones
 - Humans can interact directly with nearby devices!!

802.15.4 & Thread

- 802.15.4 is a low-energy physical layer
 - Radio chips have been widely available for 15-20 years

- Significant amounts of sensor network research have focused on building layers on top of 802.15.4
 - Access control layers
 - Network layers
- Thread is a selection of these possibilities to make a network
 - Uses IPv6 networking!!

WiFi (802.11)

- Ubiquitous wireless communication
 - High energy requirements for high throughput communication

- Now accessible through relatively low power radios
 - ESP32, Electric Imp, and company
 - Still significantly more effort than BLE or Thread
- IoT devices can use the same WiFi that's already available
 - No need for additional infrastructure!!

LPWANs (Low-Power Wide-Area Networks)

- How do we collect data from city-scale deployments?
 - There's an unmet need for long-range, but low-throughput networks
 - Existing cellular technologies focus on human requirements
- Still a brand new space (relatively)
 - Unlicensed-band technologies in last 5 years: Sigfox and LoRaWAN
 - Cellular technologies in last 2 years: LTE-M and NB-IoT
- Focus on long-range, low-energy, low-throughput
 - One gateway can cover an entire city!!

Extras

Extremely active research areas

- Backscatter
 - Insanely low-energy communication
 - Enables energy-harvesting indoor devices
- Localization
 - How do we find all this stuff?
 - And how do devices determine where they are relative to each other?
- Other topics are possible if desired. Tell me what focus you want.

Why use wireless?

There are no wires!

- No need to install and maintain wires
 - Reduces cost
 - Simplifies deployment place devices wherever makes sense
- Supports mobile users
 - Move around office, campus, city
 - Move devices around home

What is hard about wireless?

There are no wires!

- Wired networks are constant, reliable, and physically isolated
 - Ethernet has the same throughput minute-to-minute
 - Bits sent through Ethernet or USB are (usually) received
- Wireless networks are variable, error-prone, and shared
 - WiFi throughput changes based on location and walls
 - Signals from nearby devices interfere with your signals
 - Individual bits might flip or never be heard at all

Wireless is a shared medium

- Wired communication has signals confined to a conductor
 - Copper or fiber
 - Guides energy to destination
 - Protects signal from interference
- Wireless communication is inherently broadcast
 - Energy is distributed in space
 - Signals must compete with other signals in same frequency band

Increasing network capacity is challenging

- Wired networks just add more wires
 - Buses are many signals in parallel to send more data

- Wireless networks are harder
 - Adding more links just increases interference
 - Need to expand to different frequencies

RF communication

IoT focus

Wireless spectrum is allocated to specific uses

Unlicensed bands are where IoT thrives

- 902 MHz 928 MHz
 - LPWANs

- 2.4 GHz to 2.5 GHz
 - WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi

Cellular uses licensed bands

Model of RF communication

Energy that radiates spherically from an antenna

- Attenuation with distance
 - Density of energy reduces over time, distance
 - Signal strength reduced, errors go up
- Two key features
 - Error rates depend on distance
 - Spatial reuse of frequencies

Outline

Who and Why

Internet of Things

Course Overview

Overview of wireless networks