Lecture 11 WiFi MAC

CS433 – Wireless Protocols for IoT Branden Ghena – Spring 2025

Materials in collaboration with Pat Pannuto (UCSD) and Brad Campbell (UVA)

Administrivia

• Hw: Matter due today

Another week on Lab: Thread

Lab: WiFi starts on Friday

Today's Goals

Introduce MAC layer concepts in 802.11

Understand what exists, what is actually used, and why

- Explore two additional areas in 802.11
 - Microcontroller use of WiFi
 - Future of WiFi

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC
- Roaming
- Microcontrollers and WiFi
- MQTT

Basic WiFi network

Star topology network

- Basic Service Set (BSS)
 - Access point(s)
 - Multiple connected clients
- Service Set ID (SSID)
 - Identifies network
 - Broadcast by access point in beacons

WiFi superframe structure

- Beacon followed by contention-free period followed by contention
 - Repeats periodically (default ~100 ms)
 - 802.15.4 adopted a similar superframe
- This is more hypothetical than real

Contention-free access

- Known as Point Coordination Function (PCF)
 - Allocates a contention-free period for specific devices
 - Access Point decides when to grant based on requests
- Drawbacks
 - Latency depends on beacon intervals
 - Mechanism for explicit Quality of Service is unclear
- PCF is not used in practice
 - 802.11e adds a revised Quality of Service mechanism
 - Especially with the adoption of MU-MIMO and OFDMA techniques, it's just not necessary

WiFi superframe in practice

- Continuous contention access period
 - Any device may send at any time
 - PCF is unused in practice
- Periodic beacons
 - Which also use CSMA and therefore may be delayed

802.11 beacons

- Transmitted periodically (~100 ms by default)
 - Enable discovery of network
 - Contain capabilities and SSID for the network (802.11b/g/n/ac/ax...)
 - Assign contention-free slots if used
 - Notify devices of waiting packets
 - Traffic Indication Map (TIM) has a bitmap specifying which devices data is for
 - Enables devices to sleep, skipping a number of beacons
 - Handles broadcast/multicast messages
 - Every N beacons includes a notation of available broadcast messages
 - Messages are transmitted during next contention access period using normal CSMA
 - Defines maximum sleep period for devices (must listen to these beacons)

Contention-based access

- Known as Distributed Coordination Function (DCF)
 - Base communication method for WiFi (essentially always)
 - All packets are immediately ACK'd by receiving device
 - Uses CSMA/CA to determine when it can send
 - With random backoff
 - Problem: packets can be very long (up to 20 milliseconds)
 - Solution: Network Allocation Vector (NAV)
 - Packets include a notation of their duration
 - Sensing the beginning of a packet allows backoff to skip the whole packet duration before continuing

Reminder: hidden terminal problem

- Two devices communicating with Access Point may not be able to hear each other
 - CSMA fails and Access Point losses both messages

A solution: RTS/CTS (Request/Clear To Send)

Drawbacks of RTS/CTS

- Four packets per data (RTS, CTS, Data, Ack)
 - Could have just sent data instead of RTS
- Significant portion of traffic are application-layer Acks
 - Probably better to just have it fail and try again later
- RTS/CTS only used for very large packets in practice
 - *It's mentioned still in 802.11n and 802.11ac, so not entirely unused

Backoff in WiFi

- Listen for activity
 - If free
 - Wait for Inter Frame Spacing (IFS)
 - If still free, transmit
 - If busy
 - Randomly select a number of backoff Slots
 - Count down slots whenever medium is not busy
 - If busy when backoff completes:
 - Increase maximum backoff Slots
 - Repeat
- Slot time: basic time unit for protocol
 - Total time of: switch from Rx to Tx, plus processing time, plus propagation delay

Prioritizing packets with varying IFS

- Tiered Contention Multiple Access (TCMA)
 - Idea: assign different inter-frame spacing based on traffic class
 - Inherently prioritizes communication
- Acknowledgements sent with Short IFS (SIFS)
 - Will always transmit before new data clears CSMA check
- New data sent with longer DCF IFS (DIFS)

Putting backoff together

- Two variables
 - Contention Window (CW) maximum backoff amount
 - Backoff Count (BO) current remaining backoff
- When attempting to send, if busy Backoff selected in [0, CW]
 - Countdown Backoff slots whenever medium is not busy
 - At 0, attempt to transmit if not busy
 - If busy, double Window and select Backoff again
- 802.11g values:
 - Slot time= 20 us, CWmin= 15 slots (300 us), CWmax= 1023 slots (20 ms)
 - SIFS= 10 us, DIFS= 50 us

- A and B want to send, but they see that the medium is busy
 - Followed by an Acknowledgement after SIFS

- Each chooses a random backoff [0, CW] (we'll say CW is 32)
 - Start counting down backoff slots

- C wants to send, waits DIFS, and can send immediately
 - No other traffic is going on
 - A and B pause backoff for packet duration

- A and B used NAV to pause backoff for entire traffic plus ACK
 - After DIFS, resume backoff count from its previous value

- B reaches zero backoff, finds channel empty, transmits
 - A pauses its backoff again for duration plus ACK

Break + Hacking

• If you wanted maximum data throughput on a WiFi radio, and you were willing to be non-standards-compliant, what would you do?

Break + Hacking

- If you wanted maximum data throughput on a WiFi radio, and you were willing to be non-standards-compliant, what would you do?
 - Never backoff at all. Just try during the next open period
 - Always be "device C" in our previous example
 - Use a shorter SIFS than other devices
 - If you start transmitting sooner, you get to keep transmitting!
 - Other devices will backoff on your transmission
 - Tragedy of the Commons: this utterly fails if many radios follow it

Outline

• 802.11 Access Control

• 802.11 Frame format

• 802.11e Improvements to MAC

Roaming

Microcontrollers and WiFi

MQTT

802.11 frame

Field	Frame control		Address 1	Address 2	Address 3	Sequence control	Address 4		HT. control		Frame check sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

- Frame control (various bits)
 - Type of packet (Control, Management, Data)
 - Subtype (Association, RTS, CTS, Ack, etc.)
 - Indication of to/from "distribution system" (Internet rather than intranet)

Duration

- Specifies on-air time of full packet in microseconds
- Note: no actual length field (**)

Surprising, but smart!

Recall MCS vary — but everyone needs to be able to parse header (for duration, for NAV)

Length can be very large (e.g. in ac: 5.5 ms max duration is 4.5 MB length!); sent at full data rate

802.11 frame

Field	Frame	Duration,	Address	Address	Address	Sequence	Address	QoS	HT	Frame	Frame check
rieiu	control	id.	1	2	3	control	4	control	control	body	sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

- Sequence control
 - 4-bit fragment number
 - 12-bit sequence number
- Quality of Service control
 - Identifies traffic category
- High Throughput Control
 - Configurations for selecting best data rate

- Frame body
 - Max size depends on PHY
 - ~2000 for lower rates
 - ~8000 for 802.11n
 - ~11000 for 802.11ac
- Frame check sequence
 - 32-bit CRC

Sending frames in WiFi

- Frame bursting (handles one really big packet)
 - Transmit multiple frames in a row

- Frame fragmentation
 - Split service data over multiple frames
- Frame aggregation (handles many very small packets)
 - Multiple service data in a single frame
 - Allows multiple packets to reach Access Point in a single transmission

Calculating packet durations

- Example duration for a 1500 byte 802.11g packet
 - 6 Mbps for header
 - 24 Mbps for payload
 - 566 µs for total packet
 - Plus 10 µs for SIFS
 - Plus 34 µs for ACK

 https://sarwiki.informatik.huberlin.de/Packet transmission tim e in 802.11

	Data transmission bitrate (802.11g / a*):		24 Mbps	
		Bitrate	Length	Time
		(Mbit/s)	(bits)	(µs)
	DIFS			28
D	PHY header: PLCP preamble	-	-	16
Α	PHY header: PLCP header	6	24	4
	MAC headers (28 bytes) + MAC			
T	body	24	12246	512
Α	signal extension time			6
	tx time data:			566
	SIFS			10
Α	PHY header: PLCP preamble	-	-	16
С	PHY header: PLCP header	6	24	4
K	MAC headers + PHY pad	24	134	8
	signal extension time			6
	tx time ack:			44
	tx time data + ack:			610

Implementation Drives Specification Sometimes

- SIFS nominally defined by processing time
 - Aside: Big challenge for SDRs
- Convolutional decoders need(ed)
 16 µs to finish processing
 - For highest-rate MCS (ERP-OFDM)
 - SIFS is 10 μs, so extension needed
- Processing must finish before next packet starts
 - To be able to decode NAV in header

Data transmission bitrate (802.11g / a*):		24 Mbps		
	Bitrate	Length	Time	
	(Mbit/s)	(bits)	(µs)	
DIFS			28	
PHY header: PLCP preamble	-	-	16	
A PHY header: PLCP header	6	24	4	
MAC headers (28 bytes) + MAC				
T body	24	12246	512	
A signal extension time			6	
tx time data:			566	
tx time data: SIFS			566 10	
	-	-		
SIFS	- 6	- 24	10	
SIFS A PHY header: PLCP preamble	- 6 24	- 24 134	10 16	
SIFS A PHY header: PLCP preamble C PHY header: PLCP header			10 16 4	
SIFS A PHY header: PLCP preamble C PHY header: PLCP header K MAC headers + PHY pad			10 16 4 8	

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC
- Roaming
- Microcontrollers and WiFi
- MQTT

802.11e improves MAC layer

- Hybrid Coordination Function (HCF)
 - Modifies contention-free access (still no one uses it)
 - Modifies contention-based access: Enhanced Distributed Channel Access (EDCA)
- Adapts Quality of Service based on application
 - Example of breaking layering for an optimization
 - Categories (lowest to highest priority):
 - Background
 - Best Effort
 - Video
 - Voice

Different priority for different application category

- Expand to more IFS lengths for different traffic categories
 - Smallest AIFS (equal to DIFS) goes to Voice, Largest to Background
 - Contention Window min and max also change for each category
 - Selects a probability that most important category goes first

Multiple queues within a single device

■ Figure 4. [3] Legacy 802.11 station and 802.11e station with four ACs within one station.

Brief 802.11ax aside

- WiFi 6 and beyond use EDCA for their OFDMA scheduling. Steps:
 - 1. Access point decides to start an OFDMA communication window
 - Mechanism called "Buffer Status Report Poll" asks how much data each device has queued to send
 - 2. Access Point wins contention in the normal CSMA method
 - 3. Access Point sends a TXOP (Transmit Opportunity) message with schedule
 - Some back-and-forth handshakes here
 - 4. Devices respond back with uplink messages
 - Uses a fast IFS to maintain contention

802.11e also adds maximum durations

- 802.11e also defines duration a device can transmit for
 - Based on PHY in use and Application category
 - Background/Best Effort: one frame per contention win
 - Example, up to 11 ms for Voice on 802.11ac
 - Could be one really big frame at a low data rate
 - Could be multiple frames in a row separated by SIFS

Break + xkcd

TECH TRIVIA: NO ONE ACTUALLY KNOWS WHAT DEVICES PRODUCE THOSE CRYPTIC WIFI NETWORKS. THEY JUST APPEAR AT RANDOM ACROSS THE EARTH'S SURFACE.

https://xkcd.com/2199/

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC
- Roaming
- Microcontrollers and WiFi
- MQTT

How do WiFi devices decide to change networks?

- WiFi "handoffs" are always initiated by the Client
 - It decides to change to a different network

- 802.11k
 - Access Points track information about neighbors
 - Clients can request a list of nearby Access Points
- 802.11v
 - Access Points can send messages to Clients with recommendations of which network to connect to
 - Which devices may choose to ignore

Apple roaming decision details

- Devices look at RSSI of packets from the Access Point
 - -70 to -75 dBm triggers roaming
 - Looks for Access Points that are 8-12 dBm stronger

- Given multiple choices, prefers in this order
 - Better version (WiFi 6 > WiFi 5)
 - Larger bandwidth (80 MHz > 40 MHz)
- Result ends up preferring faster communication
 - More reliable
 - Higher capabilities

Android has a more complicated "scoring" mechanism

Handling roaming

- For a basic WiFi connection, several packets must be sent
 - Probe response from all Access Points with details
 - Authentication does basic connection to network

Client

 Association shares encryption options and 802.11 capabilities

Security has complicated this process

 Additional packets need to be sent to verify the device's identity and exchange keys

- 802.1x (*not* 11) is a standard for an authentication server
 - Enterprise networks often use this

802.11r shares information for faster connections

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC
- Roaming
- Microcontrollers and WiFi
- MQTT

Why, why not, talk WiFi in a wireless for IoT class

- Pros
 - Ubiquitous
 - High-performance
- Cons
 - Complex configuration
 - And security requirements
 - Device-Northwestern anyone?
 - Expensive in energy and money

WiFi capability in microcontrollers

• ESP32

- Microcontroller plus WiFi radio in single chip
- (Same idea as nRF52840)

Capabilities

- 802.11b/g/n 2.4 GHz only
- 20 MHz or 40 MHz channels
- Single antenna only (no MIMO)
- MCS0-7
 - 7 Mbps 150 Mbps
- Tx power up to 20.5 dBm

Low power WiFi

- Question: should a microcontroller stay connected or reconnect?
 - Light sleep: stay connected always, only listening to beacons
 - Deep sleep: reconnect to network each time data is ready
- Answer for ESP32 depends on security and data interval
 - Resecuring during connection takes lots of energy
 - Crossover point is about 60 seconds
 - Insecure transmissions have a crossover of 5-15 seconds

https://blog.voneicken.com/2018/lp-wifi-esp-comparison/#conclusions

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC
- Roaming
- Microcontrollers and WiFi
- MQTT

MQTT – an answer to the "where do you send data" question

MQTT Roles

- MQ Telemetry Transport
 - Built for IBM MQ products

- Broker
 - Server that distributes information
- Client
 - Any device connected to the Broker

Pub/Sub Architecture

- Topic
 - String that names the data being sent
- Publish
 - Sends data with an associated Topic to Broker
- Subscribe
 - Inform Broker of which Topics you want data from
 - ALL subscribed Clients get copies of the data

MQTT Access Control

- Nothing is required by default
 - Which is its own concern
- Can require a password to communicate with Broker

- Can make access control lists on a per-topic basis
 - Each user with a given password can only access certain topics

Value of MQTT

- And that's pretty much everything there is to MQTT
 - MQTT is very simple, and that's a benefit
 - Packets are sent over TCP, so the reliability is already handled sufficiently
 - Variants can function over UDP instead

- How is data formatted?
 - However you want. It's just bytes attached to a Topic string
 - Could be an array of data bytes, JSON blob, image data, whatever
 - Up to MB of data in a single payload
 - Application-level probably knows how to decode

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC
- Roaming
- Microcontrollers and WiFi
- MQTT