Lecture 01 Introduction

CS433 – Wireless Protocols for IoT Branden Ghena – Spring 2025

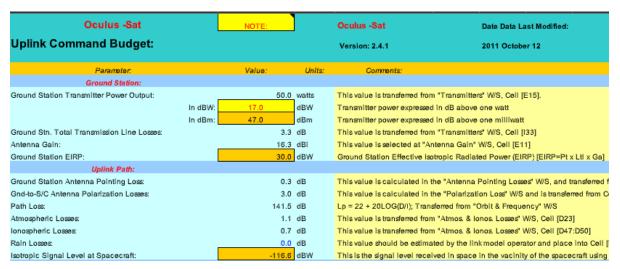
Materials in collaboration with Pat Pannuto (UCSD) and Brad Campbell (UVA)

Welcome to CS433!

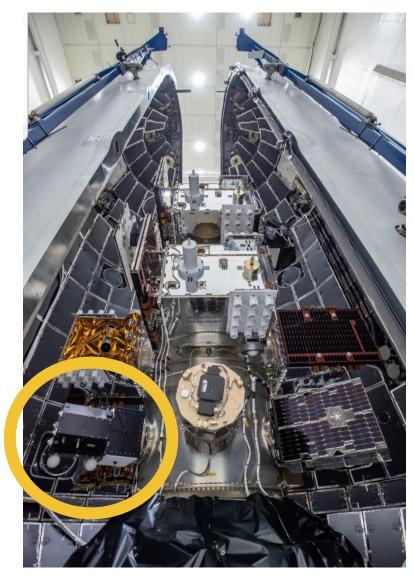
- Goal: get a feel for wireless communication and protocols
 - How are they used?
 - Why are they different and in what ways?
 - Which applications are they most useful for?
- 25 students (17 undergrad, 8 grad)
 - Lots of different backgrounds and interests (CS, ECE, Robotics, Data Science, Music, Mathematics)
- This course is based on discussion and questions
 - Expect to attend classes, ask questions, and interact with others
 - You're hopefully here because you want to be and want to learn

Branden Ghena (he/him)

- Assistant Faculty of Instruction
- Education
 - Undergrad: Michigan Tech
 - Master's: University of Michigan
 - PhD: University of California, Berkeley
- Research
 - Resource-constrained sensing systems
 - Low-energy wireless networks
 - Embedded operating systems
- Teaching
 - Computer Systems
 - CS211: Fundamentals of Programming II
 - CS213: Intro to Computer Systems
 - CS343: Operating Systems
 - CE346: Microprocessor System Design
 - CS433: Wireless Protocols for the IoT



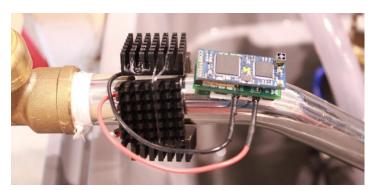
Things I love



Undergraduate: satellite radios and computers

 How the heck are you supposed to learn this stuff?

Grad school: resource-constrained embedded systems



- Most interesting to me: the interfaces
 - Hardware and software
 - Applications and OS
 - Communication
- Again: learn by doing
 - With significant assistance from my peers

Faculty: now I can choose what to teach!

- Goal: provide classes that teach more advanced embedded systems topics
 - Overlaps strongly with CS and ECE, but hopefully useful to other engineering and sciences domains too

- Result: this course!
 - Course goals: make students familiar with a number of different wireless protocols and their tradeoffs
 - Practical hands-on experience with as many networks as possible
 - Open-ended design for final, chance to delve deeply into materials
 - Recently updated to a real course number: CS433
 - Let me know if you still see CS397 references around anywhere

Today's Goals

Introduction to the Internet of Things and Embedded Systems

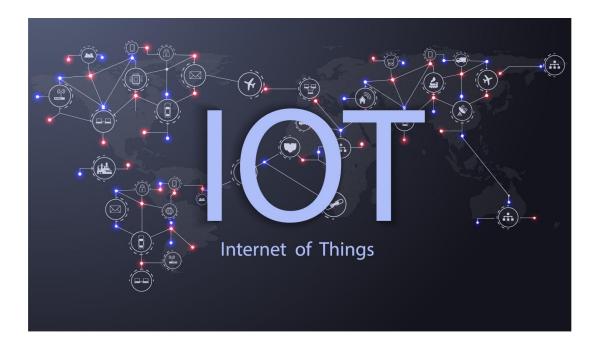
Overview of the course

Introduction to wireless communication

Outline

Who and Why

Internet of Things


Embedded Systems

Course Overview

Overview of wireless networks

Perspective of this course

- This class is about wireless protocols
 - For a specific domain: the Internet of Things
- So we'll spend some amount of time discussing the Internet of Things and embedded systems

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Thought experiment: headphones

What about battery powered wireless headphones?

Would that still count as IoT?

Thought experiment: headphones

- What about battery powered wireless headphones?
- Would that still count as IoT?

- Feels to me like a personal device rather than infrastructure
- Something important about having many users

Thought experiment: desktop IoT

- What if the Nest thermostat was powered by an entire desktop?
 - 8-core x86-64 processor, 32 GB RAM, 1 TB SSD

Would that still count as IoT?

Why don't we see that in practice?

Thought experiment: desktop IoT

- What if the Nest thermostat was powered by an entire desktop?
 - 8-core x86-64 processor, 32 GB RAM, 1 TB SSD

Would that still count as IoT?

Why don't we see that in practice?

Cost

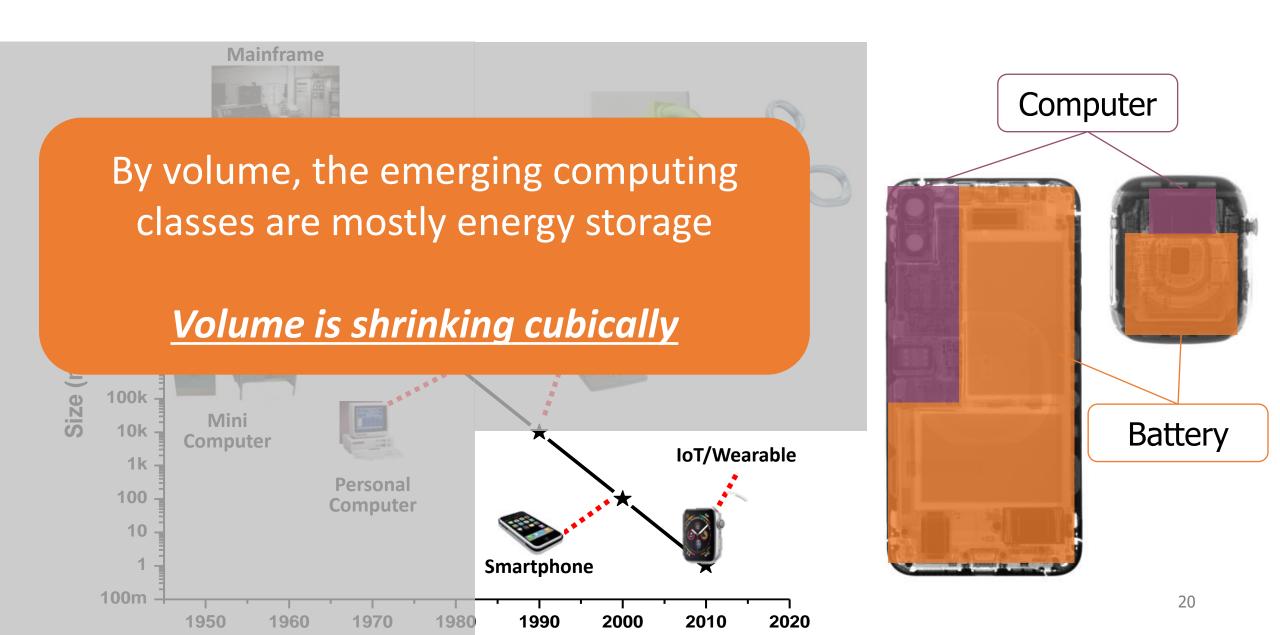
Focus on energy needs

- The origins of IoT are battery-powered sensing systems
 - And energy-harvesting devices

- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

Focus on energy needs

- The origins of IoT are battery-powered sensing systems
 - And energy-harvesting devices


- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

Deployability

Largest IoT challenges: power and communication

- This class is about wireless technologies
 - For resource-constrained systems, such as the IoT
- We will focus on the tradeoffs between technologies
 - How they balance differing constraints
 - Power, spectrum, complexity, etc.
 - And the technical foundations of these designs and differences

Energy is the defining constraint of emerging technologies

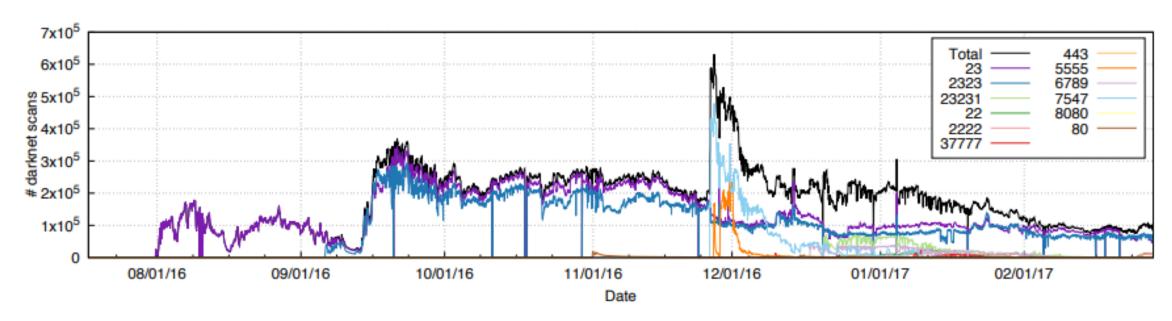
Branden's take on the Internet of Things

- Key features
 - Computation
 - Local to the device
 - With some capability for arbitrary compute and storage
 - Connectivity
 - Almost certainly wireless
 - Likely Internet, possibly local
 - Interaction
 - Sensing or Actuation
- Secondary features
 - Low energy
 - (Relatively) Low cost

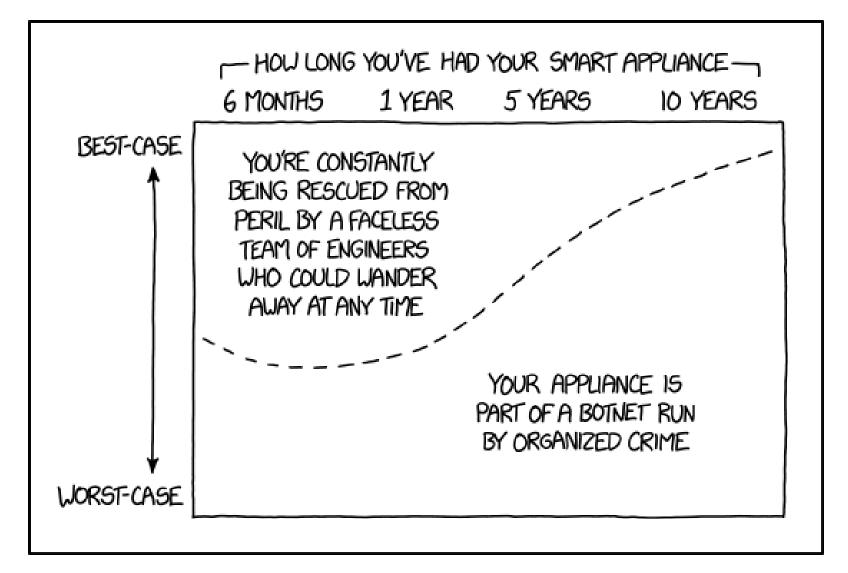
Pat Pannuto's take on the Internet of Things

- His early grad school essays described the "last inch" problem
 - Now he often says "expanding the reach of digital world"
- For him, it is about 'networked' 'things'
 - Which implicitly adds some computational capacity

Assistant Professor, UC San Diego https://patpannuto.com/


He teaches a version of this course there, and we share materials back-and-forth!

Warning: Internet of Crap



Internet of Insecure Crap

- Mirai botnet (2016)
- Takes control of up to 600,000 insecure connected devices
 - IP-attached cameras, DVRs, routers, printers
- Used to DoS websites

Break + xkcd

https://xkcd.com/1966/

Outline

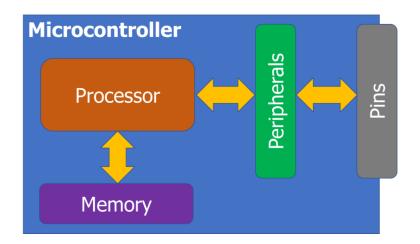
Who and Why

Internet of Things

Embedded Systems

Course Overview

Overview of wireless networks


What are embedded systems

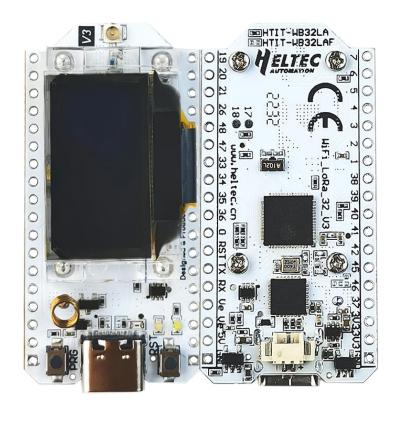
- Embedded systems are devices containing computers that are used as a device rather than as a computer
 - Computers are embedded into the device
- Internet of Things devices are embedded devices
- But there are embedded systems that are not IoT
 - Smart vehicles and Robotics
 - Personal devices
 - Security or management chips inside other devices (like laptops/smartphones)
- Example: USB-C power brick has more compute than Apollo 11 did

Microcontrollers drive most embedded systems

- Microcontroller: entire computer in a single chip
 - Processor
 - Working memory: SRAM (like RAM)
 - Nonvolatile memory: Flash (like SSD)
 - Peripherals
 - I/O pins
 - Analog Inputs and Outputs
 - Timers
 - Wireless radios
 - Cryptography accelerators

- Buses
 - UART
 - I2C
 - SPI
 - USB

How is a microcontroller different?


- A very constrained computer
 - Simple processor
 - 16 or 32 bits (usually 32-bit these days)
 - Processor speed in MHz
 - Single core, pipelined processor
 - No cache, or maybe a very small instruction cache
 - Memory measured in kB
 - Code executes right from read-only Flash (which is part of the address space)
 - Sometimes no OS support at all
 - "bare-metal" programming

Nordic nRF52840DK - BLE & Thread

- nRF52840 microcontroller dev kit
 - Microcontroller is the bottom chip
 - Everything else is just to program it, measure power, and connect to external things
- nRF52840
 - 64 MHz, 32-bit ARM Cortex-M4F
 - 1 MB Flash, 256 KB RAM
 - A bunch of peripherals
 - Bluetooth Low Energy and 802.15.4 communication

Heltec WiFi LoRa 32 v3 - WiFi & LoRa

- ESP32 microcontroller
 - 240 MHz, 32-bit custom architecture
 - 384 kB Flash, 512 kB RAM
 - A bunch of peripherals
 - WiFi and Bluetooth Low Energy communication
- SX1262
 - LoRa transceiver (connected over SPI)

OLED display

Embedded systems are programmed in C

- C++ also used
 - Occasionally assembly or other things (Rust, Lua, Python)
- But even the few things C gives you aren't necessarily available
 - Heap space possibly nonexistent
 - You have to choose some space in RAM to save as a heap
 - And then include the algorithm for allocating that memory
 - Printf could be nonexistent too!!
 - There's no STDIN/STDOUT/STDERR because there is no shell
 - Might be able to do serial output though our boards can

Embedded software

- There are a multitude of embedded software systems
 - Every microcontroller vendor has their own
 - Popular platforms like Arduino
- Embedded OSes
 - Contiki, Riot, Zephyr, Mynewt, FreeRTOS, Tock
- nRF52840DK has support across all of these
- WiFi LoRa 32 v3 should work with some
 - Best support likely in Arduino

Break + Question

What's the advantage of a microcontroller?
 Why not use a traditional computer processor instead?

Break + Question

What's the advantage of a microcontroller?
 Why not use a traditional computer processor instead?

Simplicity

- Processor, memory, and peripherals are all in one chip
- Makes the circuit board easier to design too

Cheaper in practice

- They don't sell as many low-end processors anymore
- They still sell many low-end microcontrollers
- (this is somewhat of a circular chain though)

Outline

Who and Why

Internet of Things

Embedded Systems

Course Overview

Overview of wireless networks

Course Staff

- Instructor: Me!
- PM: Evan Bertis-Sample
 - Took the class last year!
 - Lots of Formula team experience on telemetry and data acquisition

- We'll have weekly office hours to support you all
 - Schedule posted soon

Asking questions

Class and office hours are always an option!

- Piazza:
 - Post questions
 - Answer each other's questions
 - Find lab partners
 - Information from the course staff
 - Post private info just to course staff
- Please do not email me! Post to Piazza instead!
 - Let me know if you don't have access

Lectures

Tuesdays and Thursdays, in this room at this time

- No particular textbook makes sense for this class
 - Very few schools teach this area of communication/networks
- Automatically recorded (best-effort)
 - Panopto tab in Canvas
- Slides posted to Canvas homepage right before lecture

Grading

- 45% Lab projects hands-on semi-guided activities
 - Small groups of three students (except for the first one)
 - Likely 5 of these in total
- 25% Homeworks pencil-on-paper practice
 - Likely 4 of these, with the last worth double
 - Individual work
- 15% Quizzes 15-minute, on-paper
 - Likely 3 of these
 - Tuesdays during the last part of class, dates on Canvas
- 15% Final design project paper writeup
 - One of these due during exam week
 - Individual work

Labs

- Practice interacting with and considering networks
- Group work (teams of three) except the first one
- Should all include real hardware and real wireless communication
 - 1. Wireshark (worth a little less, individual starter lab)
 - 2. Bluetooth
 - 3. Thread
 - 4. WiFi
 - 5. LoRaWAN

Graded partially (primarily?) on "checkoffs"

Friday lab sessions

- New this quarter: reserved time on Fridays to start labs
 - Time when you whole group is available to work together

I'll be there to help answer questions and get you started

- You are expected to attend these when we're starting a new lab
 - Let me know in advance if you're sick and can't make it
 - Some Fridays are "Lab Office Hours", so I'll be there but you aren't required to be. Good time to get checkoffs though

Homeworks

- Analysis, designing, calculating
 - 1. Background
 - 2. BLE packets
 - 3. Matter
 - 4. Cellular (worth double)
- Usually take the form of some details on paper and you looking stuff up on your own
 - Looking through wireless specifications and searching on the internet
- Individual work

Late Policy

- You can submit homeworks and labs late
- 20% penalty to maximum grade per day late
 - Example: two days late means maximum grade is 60%
- There are exceptions to this:
- 1. We will be flexible with deadlines for problems outside of your control
 - Sick, family emergency, broken computer
 - Contact me (via Piazza) as soon as possible

Slip Days

2. Slip days let you turn in a homework late and receive no penalty

- Each student gets 3 slip days
 - Apply to homeworks and labs (not final project or quizzes)
 - You don't need to tell us you're using them, we'll just automatically apply them at the end of the year as best helps your grade
 - Be sure to coordinate about them on partner assignments

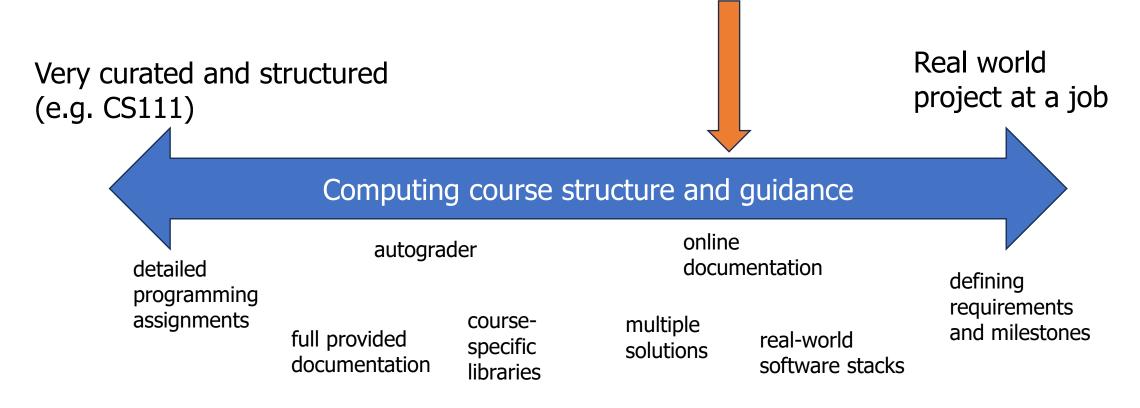
Examples:

- Turn in a homework three days late
- Turn in a homework two days late and a lab one day late
- Turn in a homework four days late with only a one-day penalty

Quizzes

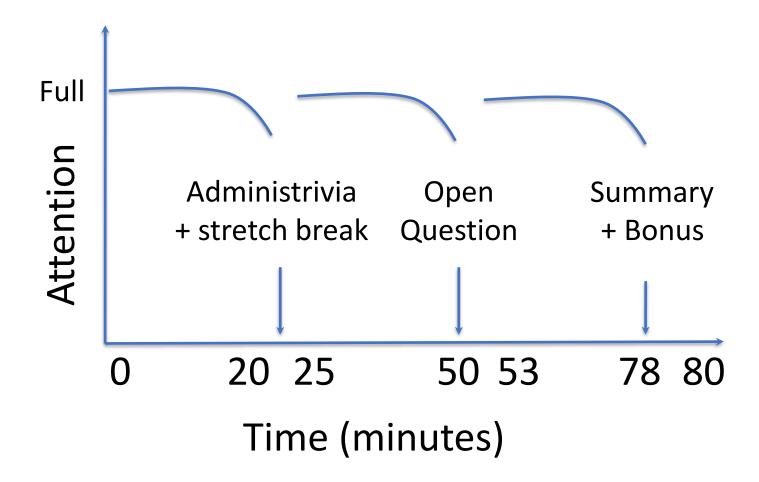
- In-class, on-paper, closed notes individual quizzes
 - Usually about 15 minutes and held at the end of lecture
- Cover the last three weeks worth of material
 - So make sure you're up-to-date on what we're talking about

• First quiz is Tuesday, April 22th (fourth week of classes)

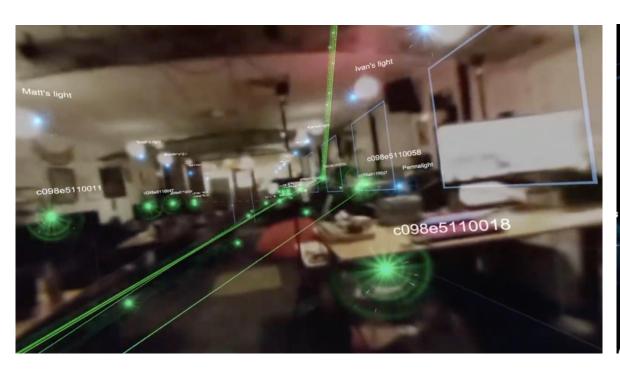

Final design project

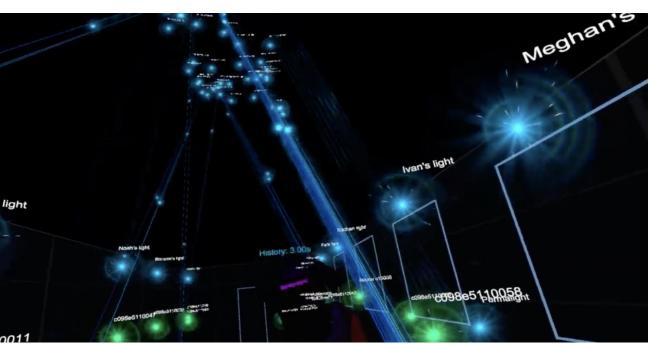
- Design a communication plan for an application of your choice
- Explain application and determine what its constraints are
 - Cost, power, scale, data, reliability
- Actually think through how it will work, citing real-world capabilities
 - Research and cite data you find
 - Explain and consider tradeoffs
- This is the "final project" for the course
 - Design rather than real hardware

On upper-level courses


- The point is to be here because you're actually interested in the material
 - Come to lecture and discuss ideas with us
 - Focus on actually understanding stuff
- You can help guide the course
 - It's okay to derail lecture (sometimes) with interesting tangents
 - I'm happy to add material on other topics if you ask

What to expect


- Figure stuff out on your own! (or with a group)
- Goal is to help prepare you to engineer projects in the real world


Architecture of a lecture

Break+Video

Wireless Network Visualization (Dr. Meghan Clark – UC Berkeley) https://www.youtube.com/watch?v=KLOdp54_qJ4

Outline

Who and Why

Internet of Things

Embedded Systems

Course Overview

Overview of wireless networks

Bluetooth Low Energy (BLE)

- Bluetooth Classic was good for enabling device to device communication
 - But not particularly low energy
 - And very bad at short-term, one-time connections
- Bluetooth Low Energy was developed to improve this
 - Focuses on low-energy interactions
 - Much lower throughput that Bluetooth

- Supported by hardware devices already in smartphones
 - Humans can interact directly with nearby devices!!

802.15.4 & Thread

- 802.15.4 is a low-energy physical layer
 - Radio chips have been widely available for 15-20 years

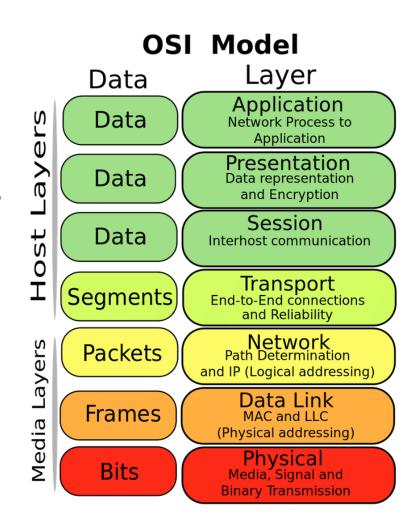
- Significant amounts of sensor network research have focused on building layers on top of 802.15.4
 - Access control layers
 - Network layers
- Thread is a selection of these possibilities to make a network
 - Uses IPv6 networking!!
 - Basis for modern smart-home standards: Matter

WiFi (802.11)

- Ubiquitous wireless communication
 - High energy requirements for high throughput communication

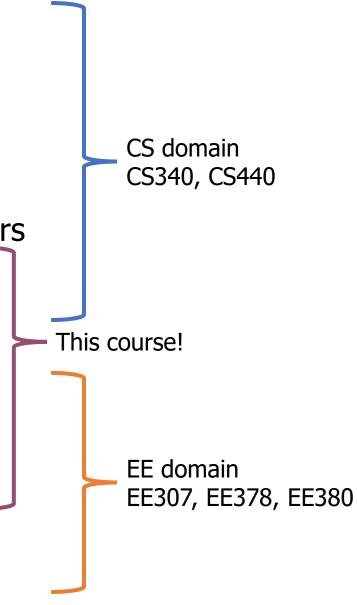
- Now accessible through relatively low power radios
 - ESP32 is dominant here
 - Still significantly more effort than BLE or Thread
- IoT devices can use the same WiFi that's already available
 - No need for additional infrastructure!!

LPWANs (Low-Power Wide-Area Networks)


- How do we collect data from city-scale deployments?
 - There's an unmet need for long-range, but low-throughput networks
 - Existing cellular technologies focus on human requirements
- Still a brand new space (relatively)
 - Unlicensed-band technologies in last 10 years: Sigfox and LoRaWAN
 - Cellular technologies in last 4 years: LTE-M and NB-IoT
- Focus on long-range, low-energy, low-throughput
 - One gateway can cover an entire city!!

Extra topics

- Backscatter
 - Insanely low-energy communication
 - Enables energy-harvesting indoor devices
- Localization
 - How do we find all this stuff?
 - And how do devices determine where they are relative to each other?
- Satellite Communication
 - Growing use-case
- Other topics are possible if desired! (seriously!)
 - Reach out and tell me what you want to learn about (that's clearly a class topic)


OSI model of communication layers

- Transport
 - Sending data between applications
 - TCP and UDP
- Network
 - Sending data between networked computers
 - IP
- Data Link
 - Sending collections of bits
 - Ethernet, WiFi
- Physical
 - Sending individual bits
 - Ethernet, WiFi

Where does this class focus?

- Transport
 - Sending data between applications
 - TCP and UDP
- Network
 - Sending data between networked computers
 - IP
- Data Link
 - Sending collections of bits
 - Ethernet, WiFi
- Physical
 - Sending individual bits
 - Ethernet, WiFi

Outline

Who and Why

Internet of Things

Embedded Systems

Course Overview

Overview of wireless networks