
CS433 Wireless Protocols for the Internet of Things
Spring 2025

Lab: BLE

Introduction
The purpose of this lab is to get you some hands-on experience with Bluetooth Low Energy.
This will come in a couple of different forms:

●​ Scanning BLE traffic with Wireshark
●​ Write code for BLE advertisers/peripherals
●​ Write code for BLE scanners/centrals

To get this working, we’ll have to install some tools for interacting with the nRF52840DK
hardware. This stuff tends to be pretty finicky. It’s really easy to mess it up for some reason or
another. Since everyone will be working in small groups, hopefully at least one of you can get
stuff working for integrating with wireshark and for programming boards.

Goals

●​ Enable BLE scanning with the nRF52840DK and Wireshark
●​ Write embedded applications capable of performing as BLE peripherals and centrals
●​ Better understand how BLE communication works

○​ Peripheral advertisements, Central scanning, and connections with services

Equipment

●​ Computer
●​ nRF52840DK + USB cable
●​ Smartphone (optional)

Documentation:

●​ https://docs.zephyrproject.org/apidoc/latest/index.html

Github Classroom

●​ https://classroom.github.com/a/Kn_jCFzd

Partners

●​ This lab should be done with your group

Page 1 of 25

https://docs.zephyrproject.org/apidoc/latest/index.html
https://classroom.github.com/a/Kn_jCFzd

CS433 Wireless Protocols for the Internet of Things
Spring 2025

Table of Contents

Introduction
Table of Contents
List of Checkoffs
Lab Setup

1. Optional: nRF Connect Smartphone App
2. Install nRF Connect for Desktop
3. Install nRF Connect SDK for VS Code
4. Run a Sample Application

Wireshark Scanning
5. Integrate BLE Scanning into Wireshark
6. Investigating BLE Advertisements

BLE Advertising and Scanning
7. Create Your Lab Git Repo
8. Programming a BLE Advertiser
9. Programming a BLE Scanner

BLE Peripheral and Central
10. Programming a BLE Peripheral
11. Programming a BLE Central

BLE Service
12. LED Control Application

Page 2 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

List of Checkoffs
●​ Section 4.1: Show that the LED is now blinking​

●​ Section 6.2: Explain a BLE packet captured with Wireshark​

●​ Section 8.1: Show that you got advertisements working​

●​ Section 9.1: Show that you got scanning working
●​ Section 9.2: Receive an advertisement from your own advertiser
●​ Section 9.3: Wireshark capture of a Scan Request and Scan Response​

●​ Section 11.1: Show the count value read multiple times​

●​ Section 12.1: Demonstrate the working application

Page 3 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

Lab Setup

1.​ Optional: nRF Connect Smartphone App

You can optionally install the nRF Connect app on your phone (it’s just called “nrf Connect for
Mobile” probably easier to search, but here are links nonetheless):

●​ https://apps.apple.com/us/app/nrf-connect-for-mobile/id1054362403
●​ https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

You’ll find this app generally useful for understanding what’s going on in this lab and interacting
with devices around you. I personally used it while developing all of the applications.

The application can allow your phone to scan for devices and to advertise. Clicking an individual
device will show more data, possibly including raw advertisement data. You can also connect to
devices, look at their services, and read/write characteristics.

Android allows you to do everything, while Apple allows some subset of this. For example on
Apple you cannot see the addresses of BLE devices. You may also not be able to see the
device at all if its advertisement is malformed.

In the app, you’ll find that you’re overwhelmed with how many devices there are around. I
strongly recommend you filter the devices. You could set an RSSI limit of -70 to only see
relatively nearby devices. You should also exclude Apple, Microsoft, and Exposure Notifications
so they don’t overload your feed.

Page 4 of 25

https://apps.apple.com/us/app/nrf-connect-for-mobile/id1054362403
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_US&gl=US

CS433 Wireless Protocols for the Internet of Things
Spring 2025

2.​ Install nRF Connect for Desktop

Nordic has a suite of really nice software tools that help support experimentation with their
hardware platforms.The app will work on Windows, MacOS, and Linux. and it uses your
nRF52840DK hardware to actually interact with devices.

Not everything in the nRF Connect panel is supported by the nrf52840DK (and some things
that look like they wouldn’t be supported, are; e.g. the “RSSI Viewer” works fine, despite saying
it’s for the nRF52832).

Download and install the nRF Connect for Desktop tools:
https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-desktop

Note: If you’re on MacOS or Linux, you will need to install SEGGER J-Link separately. You can
install “J-Link Software and Documentation Pack” from here (For M1 Macs, you might have to
pick the Universal Installer). If you don’t have J-Link, you can get error logs like these:

By default, the desktop app is just an empty shell that can install sub-apps. Go ahead and install
the Bluetooth Low Energy app, the Programmer, and the RSSI Viewer.

1.​ To use the nRF52840DK, first connect the board to your computer using the USB port on
the narrow side of the board (that is, NOT the port labeled “nRF USB”).

2.​ Turn on the board. Make sure the Power Switch in the corner is set to “ON”.
a.​ The other switches should be on “VDD” and “Default” respectively

3.​ Choose the Programmer app from the nRF Connect tools.
4.​ Select the nRF52840DK by clicking “Select Device” in the top left.
5.​ Then choose “Erase all” to reset the board.
6.​ After that, you should be ready to use other applications in nRF Connect.​

●​ Windows: If you can’t get the board to Erase and it’s throwing up red messages about

not finding your debugger or running an emulator, then you need to install the USB driver
for JLink devices. Go to Device Manager, find your device, which is probably listed as
“Bulk interface” with a little yellow exclamation point, mostly the follow this to install the
driver: https://wiki.segger.com/Incorrect_J-Link_USB_driver_installed

○​ The folder is something like: “C:\Program Files\SEGGER\JLink_V794e”

●​ MacOS: sometimes the system starts continuously popping up messages about not

ejecting the board safely.
○​ The solution generally seems to be to reinstall JLink and maybe to update the

JLink firmware on your board
○​ You can try installing those tools directly with brew:

Page 5 of 25

https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-desktop
https://www.segger.com/downloads/jlink
https://wiki.segger.com/Incorrect_J-Link_USB_driver_installed

CS433 Wireless Protocols for the Internet of Things
Spring 2025

■​ brew install –cask nordic-nrf-command-line-tools
■​ Then run jlinkexe which should hopefully trigger a firmware udpate

○​ An extreme, but not unreasonable, option here is to disable those notifications
permanently:
https://www.reddit.com/r/MacOS/comments/10xpjk9/comment/la7ar8k/?utm_sour
ce=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_conte
nt=share_button​

When you finish using an app, be sure to disconnect from it:

Try out some of those apps you installed. The RSSI Viewer should show you signal strength
measurements for all 40 BLE channels. The Bluetooth Low Energy app functions very similarly
to the nRF Connect app on your phone. Both allow you to scan for nearby devices, connect to
them, and investigate services they provide. Play around for a bit and see what’s nearby. You
might be surprised by what you find.

CHECKOFF: None. Continue to the next section.

Page 6 of 25

https://www.reddit.com/r/MacOS/comments/10xpjk9/comment/la7ar8k/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button
https://www.reddit.com/r/MacOS/comments/10xpjk9/comment/la7ar8k/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button
https://www.reddit.com/r/MacOS/comments/10xpjk9/comment/la7ar8k/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button

CS433 Wireless Protocols for the Internet of Things
Spring 2025

3.​ Install nRF Connect SDK for VS Code
To program our boards, we’re going to use Nordic’s nRF Connect extension for VS Code. Using
this installation guide: https://nrfconnect.github.io/vscode-nrf-connect/get_started/install.html

1.​ Install the nRF Connect SDK using the Toolchain Manager on the nRF Connect for
Desktop.

a.​ Open the nRF Connect for Desktop. Install the Toolchain Manager tool.

​

b.​ Open the Toolchain Manager and install nRF Connect SDK v2.9.1 (or whatever
option exists, but try to stay in version 2 if possible)

c.​ Once the nRF Connect SDK is installed, we will use it on Visual Studio Code
using the nRF Connect for VS Code extension.

2.​ Install nRF Connect for VS Code Extension

a.​ Click on the Open VS Code button.

Page 7 of 25

https://nrfconnect.github.io/vscode-nrf-connect/get_started/install.html

CS433 Wireless Protocols for the Internet of Things
Spring 2025

b.​ A notification appears with a list of missing extensions that you need to install,
including those from the nRF Connect for Visual Studio Code extension pack.
Click “Install missing extensions”.

c.​ Once the extensions are installed, click the Open VS Code button again. You

should see the nRF Connect extension installed in your VS Code.

Image source: https://nrfconnect.github.io/vscode-nrf-connect/get_started/install.html

●​ Linux: you need to install nRF Command Line tools manually. Pick “Linux x86 64” from
the dropdown (unless you’re a different arch, but I’d be surprised), and then if you’re not
sure which file, download the DEB file.

○​ After it’s downloaded, you can install it with “sudo apt install ./name.deb” (where
name is it’s name and you’d better be in the right directory already)

CHECKOFF: None. Continue to the next section.

Page 8 of 25

https://nrfconnect.github.io/vscode-nrf-connect/get_started/install.html
https://www.nordicsemi.com/Products/Development-tools/nRF-Command-Line-Tools/Download

CS433 Wireless Protocols for the Internet of Things
Spring 2025

4.​ Run a Sample Application
We’re going to load some code on the dev kit and start playing around with it! We’ll start with the
“hello world” of embedded systems: blinking some LEDs.

●​ Open the nRF Connect extension on VS Code.
●​ Choose Create a new application from the side bar.

●​ In the VSCode dropdown, choose to “Copy a sample.” Choose the Application template

as zephyr/samples/basic/blinky.

●​ Click on Create Application.

○​ Windows: if your username has a space in it, you likely have to put the
application in a different location. I made “C:/nrf_apps/” and put my stuff in there.

●​ You will now see a “blinky” application appear under the Applications tab in nRF
Connect.

●​ Before we can run this application, we need to create a Build Configuration for this
application. Click on where it says “Click to create one” or “Add Build Configuration”.

Page 9 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

●​ In the Add Build Configuration page, choose:

○​ Board as nrf52840dk/nrf52840
○​ Base Configuration as prj.conf
○​ Click on Build Configuration. This should start building the app. It’ll take a minute,

let it run until the pop-up in the bottom right finishes.​

●​ You will also notice a few new tabs appear below the Application tab on the side bar.

○​ In the “BLINKY” tab, you can see the source code for the application. This will
change based on the current active application (the one you’ve picked in the
Applications tab).​

●​ We will now flash the application to your nrf52840DK board.

○​ Connect your board over USB (the one on the narrow end, NOT labeled “nRF
USB”)

Page 10 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

○​ Choose Flash from the Actions tab. The Actions tab gives you options to Build,
Debug, and Flash your application.​

○​ Note: On MacOS if you’re given a choice, pick the lower numbered JLink serial
port.​

●​ Once it has flashed, you should see the LED on your board flashing.​

○​ You may have to power cycle your board for the app to start (either flip the on/off
switch or unplug/replug the board)

1.​ CHECKOFF: Show that the LED is now blinking

Page 11 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

Wireshark Scanning

5.​ Integrate BLE Scanning into Wireshark
Next, we’re going to add an external capture source to Wireshark that allows it to sniff BLE
communication by using the nRF52840DK. The full guide that we’re following is here:
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_B
LE_UG_v4.0.0.pdf (WARNING: the interface won’t appear in Wireshark until you actually
program your board, see the instructions below)

1.​ Get a copy for the sniffer ZIP:
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/dow
nload​

2.​ The sniffer receiver is written in Python. You’ll need Python3 and pyserial >= 3.5. If
you don’t have Python3, follow the python install guide. For pyserial, you can run
python3 -m pip install pyserial once Python is installed. This does work on
Windows with a little bit of effort. (Windows users: allowing the installer to add Python to
the PATH will make it possible to run Python without typing the full path to the
executable.)​

3.​ We need to copy over the “extcap” stuff to the correct folder so Wireshark can find it. I
can’t write better instructions than Nordic already did:
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_S
niffer_BLE_UG_v4.0.0.pdf#page=7​
(Note: we’ve already handled the python requirements from step 1 by installing
pyserial) Warning: The interface still won’t appear in Wireshark until you actually
program the device in the next step.​

4.​ Open the Programmer app, and drag the
/hex/sniffer_nrf52840dk_nrf52840_4.1.1.hex precompiled firmware over for
programming. Then write that firmware to your nRF52840DK.​

5.​ After reprogramming, re-connect your USB to the other USB port (labeled “nRF USB”)

6.​ Either restart Wireshark or go to “Capture Menu -> Refresh Interfaces”. You should now
(hopefully) see a new capture interface: “nRF Sniffer for Bluetooth LE”.​

Page 12 of 25

https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_BLE_UG_v4.0.0.pdf
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_BLE_UG_v4.0.0.pdf
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/download
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le/download
https://www.python.org/downloads/
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_BLE_UG_v4.0.0.pdf#page=7
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_BLE_UG_v4.0.0.pdf#page=7

CS433 Wireless Protocols for the Internet of Things
Spring 2025

7.​ Double-click it to start capturing!

What's extcap?

We are setting up wireshark to use an external capture device (your dev kit). That requires a
few pieces, which those instructions walk you through.

●​ First, you need a physical radio which is configured to sniff packets.
●​ Then, you need some interface software that runs on your computer and talks to the

radio (this is the nrf_sniffer_ble program – it doesn't actually sniff, it just sets up a
serial tunnel to record packets being streamed off by the firmware loaded on the
dongle).

●​ Finally, wireshark needs to know what kind of packets are being sniffed and how to
decode them. That's what the 'profile' is.

Heads Up (for Windows folks): The default extcap folder on windows is a temporary folder. If
you suddenly can't find the capture interface and it used to be there, check if you need to
re-copy the extcap files and set it up again.

Lots of things can go wrong here!

●​ Be sure that you’re following all the steps and didn’t skip anything. Also check the
troubleshooting steps here:
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_S
niffer_BLE_UG_v4.0.0.pdf#page=24

●​ There is also a totally separate new system you could roll the dice on if this isn’t working
at all:
https://docs.nordicsemi.com/bundle/nrfutil/page/nrfutil-ble-sniffer/nrfutil-ble-sniffer_0.16.0
.html

Page 13 of 25

https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_BLE_UG_v4.0.0.pdf#page=24
https://docs-be.nordicsemi.com/bundle/nrfutil_ble_sniffer_pdf/raw/resource/enus/nRF_Sniffer_BLE_UG_v4.0.0.pdf#page=24
https://docs.nordicsemi.com/bundle/nrfutil/page/nrfutil-ble-sniffer/nrfutil-ble-sniffer_0.16.0.html
https://docs.nordicsemi.com/bundle/nrfutil/page/nrfutil-ble-sniffer/nrfutil-ble-sniffer_0.16.0.html

CS433 Wireless Protocols for the Internet of Things
Spring 2025

●​ Generally, each group only needs one or maybe two students to get Wireshark working.
So as long as it’s good for most of you, you’re okay.​

If you’re still having problems, ask for help!​
​

​
CHECKOFF: None. Continue to the next section.

Page 14 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

6.​ Investigating BLE Advertisements
Now that you’ve (hopefully) got the Wireshark external capture working, let’s investigate some
BLE packets! Run wireshark and collect packets for a few seconds. Then take a look at the
packets you received and answer a few questions..

1.​ How many transmissions do you see in one second?​
​
Note: if you don’t see many devices around first HOW?! and secondly, try again on
campus. I was literally collecting thousands of packets from my office.​
​

2.​ CHECKOFF: Pick a received advertisement, show me the packet data, and explain the
meaning of all of the bytes of it.​
​
Note: you can ignore the bytes that are part of the “nRF Sniffer for Bluetooth LE”. That
appends extra bytes to the start with metadata.​
​
The real data should be 47 bytes or less and will be highlighted when you select
“Bluetooth Low Energy Link Layer” in Wireshark. Clicking different parts within this will
highlight the bytes that correspond to different fields.

●​ I recommend you keep Wireshark up on one of your computers as you do the next
steps. You’ll need to do some scanning again to check that stuff is working.

Page 15 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

BLE Advertising and Scanning

7.​ Create Your Lab Git Repo
We want to share code between everyone in the group, so we’re going to use Github. Github
classroom makes private repos for each student team so you can get the starter code and
upload your own modifications. I can access all student repos, but you can only access your
own.

●​ There is a github classroom link on the first page of this document. Click it!​

●​ Pick a team name
○​ Unless someone else already started it, in which case, join their team name​

●​ Generally, do what github classroom says​

●​ At the end, it should create a new private repo that you have access to for your code

○​ Be sure to commit your code to this repo often during class!​

●​ The repo link might 404. If so, you first have to go to https://github.com/nu-cs433-student
and join the organization

○​ I’m reusing the CE346 org for student repos for this class. Don’t worry about it

●​ Clone the repo locally on your computer
○​ If you’re on Windows: git BASH does a good job https://gitforwindows.org/

■​ Make sure there are no space characters in the entire path to the repo.
Probably put it somewhere like “C:/nrf_apps/REPONAME” if you have a
space in your username.

○​ If you’re on MacOS or Linux, you can clone the repo from command line
○​ We’ll be using VSCode for everything, and it has a mechanism for working with

git too, so you could use that:
https://code.visualstudio.com/docs/sourcecontrol/overview#_cloning-a-repository

●​ *** NEW *** Apply updates to the starter code
○​ Download: ble-starter-updates.patch

https://drive.google.com/file/d/14NCl-lpgREx3kjfCr4IWQLbOdrvzdukA/view?usp=
sharing

○​ cd into your repo
○​ git apply <PATH_TO_ble-starter-updates.patch>
○​ Commit those updates to the code
○​ Explanation: two bugs found in the starter code

Page 16 of 25

https://github.com/nu-cs433-student
https://gitforwindows.org/
https://code.visualstudio.com/docs/sourcecontrol/overview#_cloning-a-repository
https://drive.google.com/file/d/14NCl-lpgREx3kjfCr4IWQLbOdrvzdukA/view?usp=sharing
https://drive.google.com/file/d/14NCl-lpgREx3kjfCr4IWQLbOdrvzdukA/view?usp=sharing

CS433 Wireless Protocols for the Internet of Things
Spring 2025

1.​ Some CMakeLists.txt pointed at ../src/main.c instead of
src/main.c​

2.​ Zephyr changed its logging mechanisms so all logging is controlled
through CONFIG_LOG instead of other configurations (like the
BLE-specific one I used to use)

CHECKOFF: None. Continue to the next section. ​
However, make sure to commit your code as you go!

Page 17 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

8.​ Programming a BLE Advertiser
We’ll start by sending BLE advertisements from a board that’s been programmed as a BLE
peripheral. We’re using Zephyr, an operating system for the nRF52 devices that provides
support for BLE and many other libraries and tools.

●​ Open the “ble-beacon” application in VSCode using “Open an existing application”​

●​ Add a build configuration for it, same as before:

○​ Board as nrf52840dk_nrf52840
○​ Configuration as prj.conf

●​ Build the code, Flash it to the nRF52840DK
○​ You can use Wireshark or a phone with the nRF Connect app to see that the

device exists.
○​ When the device starts, it prints out some information about its BLE configuration

including its BLE address. You might have to hit the Reset button to see the
message (as it likely printed before the Monitor task had started).

○​ You may see an error, which you can ignore as it doesn’t seem to affect the
operation of the device.

●​ Monitor board output
○​ To view board print statements, you’ll need to open a serial terminal. In the

application panel on the left, under “CONNECTED DEVICES”, you should see a
serial number for your board, then in a dropdown from that, one or more serial
devices. The little “plug” icon when you hover over one of the serial devices
should open up a serial port to it.

○​ If it asks you for settings: 115200, 8n1, and rtscts:off are correct (115200
baudrate, 8 data bits with no parity bits and one stop bit, and no
request-to-send/clear-to-send)

○​ Hit the reset button to see print output.​

Page 18 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

●​ Play around with this code:
○​ Change the device’s name to reflect your team in some way. The goal here is to

know that you’re working with your own device, not someone else’s.
○​ Change the advertising interval so that packets are sent every 333 ms.

■​ You’ll need to change the first argument to bt_le_adv_start()
■​ Look up the BT_LE_ADV_PARAM macro by searching the Zephyr docs
■​ Note, the advertising intervals are specified in multiples of 0.625 ms. So,

an interval of 0xf0 corresponds to 150 ms.​

●​ Add appearance to the advertising payload. The value 0x0040 should make the device
claim to be a “Generic Phone” per the BLE specification:
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Num
bers/out/en/Assigned_Numbers.pdf?v=1707335302187 (Section 2.6.3)

○​ You might want to look through the SDK (zephyr/samples/bluetooth) to figure out
how to do this. In the nRF Connect sidebar of VSCode, you can “Browse
Samples”, or you could look through the files where they’re installed on your
computer

○​ You will likely find the BT_DATA_BYTES macro helpful. Note: BT_DATA_BYTES
takes bytes one after the other in little endian format.

○​ Also, the BT_DATA_* defines are helpful as well. (BT_DATA_GAP_APPEARANCE)
○​ iOS: if you’re using the nRF Connect app on iOS, you probably can’t see this

appearance even if you get it right. Thanks Apple. Use the nRF Connect desktop
app instead?​

1.​ CHECKOFF: show that you got advertisements working
○​ Information on Wireshark or a phone would be fine here
○​ Include the Appearance you set​

Page 19 of 25

https://docs.zephyrproject.org/apidoc/latest/index.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf?v=1707335302187
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf?v=1707335302187

CS433 Wireless Protocols for the Internet of Things
Spring 2025

9.​ Programming a BLE Scanner
Advertisements are only useful if something listens for them. In this portion, we will program the
nRF52840DK to support the Central role so it can receive BLE advertisements. Scanning for
other BLE devices is a very important and useful functionality.

●​ Open the “ble-scanner” project. Create a configuration with the right parameters. Build
the code, Upload it to your other nRF52840DK, and Monitor the board output.

○​ Your device should begin printing information about the BLE devices around it.
○​ If you make one board the scanner, and one the peripheral, you should see the

peripheral’s advertisements appearing in the scanner’s output. (Leave your third
device as Wireshark so you can debug!)​

If your space is anything like mine, there should be a LOT of data printed. Let’s reduce that.​

●​ Print something special when you receive an advertisement from your own advertiser.​

●​ Filter which device information prints based on RSSI.
○​ Pick whatever RSSI value you think makes sense, and only print data from

devices with an RSSI value greater than that (RSSI is negative, so smaller
magnitude is greater signal strength received).​

Next try to use Scan Requests and Scan Responses.

●​ Enable Scan Requests for your scanner. In BLE terms, this is known as “active
scanning” and is a configuration you can apply at setup time. Go check the API for the
parameter.

○​ To get the scan requests to use your actual BLE address, you will also need to
add CONFIG_BT_SCAN_WITH_IDENTITY=y to the zephyr/prj.conf file.

○​ You can edit the file by choosing in the NRF CONNECT side panel:​
“Config files->Kconfig->prj.conf”​

●​ Use your Wireshark setup with the dongle to capture a Scan Request and Scan
Response occurring.

○​ If there are no devices responding to Scan Requests nearby, you could program
your peripheral to have Scan Response data! (but we won’t require you to)

Page 20 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

1.​ CHECKOFF: show that you got scanning working.
○​ Data in the terminal output works here.

2.​ CHECKOFF: show that you were able to receive an advertisement from your own

advertiser.
○​ Again, in terminal is fine.​

3.​ CHECKOFF: demonstrate a scan request and scan response pair for ANY device

○​ Wireshark is the best for this.
○​ Doesn’t have to be your device (as you probably didn’t add scan response data

to it)

(You can do all of these checkoffs at one time, that’s fine)

Page 21 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

BLE Peripheral and Central

10.​ Programming a BLE Peripheral
The peripheral device acts as a server. It uses the GATT to host services and characteristics
which other BLE devices can interact with. First we will create a simple service that exposes a
counter from the nRF52840DK.

●​ Open the “ble-peripheral” app in VSCode. Configure the build and do all the other
normal stuff.

●​ Change the device name to something unique you can identify.

●​ Change the UUID very slightly so it doesn’t match any other group in the class.

●​ Build and flash the app to an nRF52840DK.

○​ If you get linker errors during the build, make sure CONFIG_BT=y and
CONFIG_BT_PERIPHERAL=y are in the prj.conf file. (“Config
files->Kconfig->prj.conf”)

●​ Connect to your board using the nRF connect app (or any other tool).

●​ You should see a custom service with UUID similar to
“5253FF4B-E47C-4EC8-9792-69FDF4923B4A”. Select that service. It should have one
characteristic which supports reading. Read the characteristic. You should receive a
fixed value (it will not change if you read multiple times).

●​ Update the code to change from a fixed value to a 32 bit counter. The counter should
increment every time the characteristic is read. It should maintain its count as clients
connect and disconnect (that is the count should only reset on a power cycle or hard
reset).

Tip: You can use the nRF Connect for Desktop BLE Standalone tool to help inspect your
peripheral’s GATT server. There is also a `ble-central-explorer` app in the github repo.

CHECKOFF: None. Continue to the next section.

Page 22 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

11.​ Programming a BLE Central
The central device will connect to your peripheral and display the current count.

●​ Open the “ble-central” app from the repo in VSCode.​

●​ It is helpful to read the example code “bottom up”. That is, scroll to the bottom and start
with the main function. You should then be able to follow the functions up through the file
to get a sense of what is going on.

●​ The key function for your central device is the library function bt_gatt_discover().
This function is used to discover services and attributes.

○​ The discover mechanism is configured using the discover_params struct.
○​ You will notice that the bt_gatt_discover() function is called multiple times.

This allows finding the service first, and then finding the contained characteristic.

●​ Update the code to discover your counter service and attribute and UUID value.

●​ Once you find the correct attribute, read it to get the current count. Then print the count
to the terminal.

●​ Update the code to only connect to your group’s peripheral.

●​ In summary, your code should:

○​ Scan for advertisements.
○​ Find an advertisement from your device.
○​ Connect to your device.
○​ Read the characteristic.
○​ Print the count value.

1.​ CHECKOFF: Show the count from the terminal and demonstrate that it changes.

○​ Connect multiple times to see the count increase.

Page 23 of 25

https://docs.zephyrproject.org/apidoc/latest/structbt__gatt__discover__params.html

CS433 Wireless Protocols for the Internet of Things
Spring 2025

BLE Service

12.​ LED Control Application
This is the big finale for this lab. We’re going to program one board as a peripheral with
controllable LEDs and one board as a Central which controls LEDs based on button presses.
You’ll have to make new applications for both of these so you don’t overwrite other applications.

Peripheral Implementation

●​ You must implement a new GATT service with a UUID similar to
BDFC9792-8234-405E-AE02-35EF4174B299.

○​ But you should change it slightly to differentiate your group from other groups.
●​ It must contain four characteristics. The characteristics must use 16 bit UUIDs: 0x0001,

0x0002, 0x0003, and 0x0004. The characteristics correspond to the LEDs on the
nRF52840DK:

Characteristic UUID LED Length (Bytes)

0x0001 LED1 1

0x0002 LED2 1

0x0003 LED3 1

0x0004 LED4 1

●​ Each characteristic must be writable. Writing any non-zero value to the characteristic

should turn on the corresponding LED, while writing a value of zero should turn off the
corresponding LED. By default, all LEDs should be off.

●​ For an example of controlling the LEDs, see the “blink” app in the repo

Central Implementation

●​ Scan for advertisements with the BDFC9792-8234-405E-AE02-35EF4174B299 service
(well, whatever you changed it to anyways). It should connect if it finds a matching
device and then it should discover services/characteristics.

●​ The bt_gatt_write() function can be called any time while a connection exists, it
doesn’t have to be called during discovery. Your discovery function could save the
uint16_t values returned from bt_gatt_attr_value_handle() to read from the
characteristic at a later time.

●​ Button presses should result in bt_gatt_write() calls. For an example of reading
button presses, see the “button” app in the repo.

Page 24 of 25

CS433 Wireless Protocols for the Internet of Things
Spring 2025

●​ You can decide how exactly you want this to work: either pressing a button should toggle
the state of the corresponding LED, or pressing a button lights the LED and releasing a
button unlights it.

1.​ CHECKOFF: Demonstrate the working LED control application.

○​ Explain the code you wrote to make this work as well for both peripheral and
central.

○​ Was anything particularly challenging to get working?

Page 25 of 25

	Lab: BLE
	Introduction
	Table of Contents
	
	List of Checkoffs
	Lab Setup
	1.​Optional: nRF Connect Smartphone App
	2.​Install nRF Connect for Desktop
	3.​Install nRF Connect SDK for VS Code
	

	4.​Run a Sample Application

	Wireshark Scanning
	5.​ Integrate BLE Scanning into Wireshark
	6.​ Investigating BLE Advertisements

	BLE Advertising and Scanning
	7.​ Create Your Lab Git Repo
	8.​Programming a BLE Advertiser
	9.​Programming a BLE Scanner

	BLE Peripheral and Central
	10.​Programming a BLE Peripheral
	11.​Programming a BLE Central

	BLE Service
	12.​LED Control Application

