Lecture 16 Localization

CS397/497 – Wireless Protocols for IoT Branden Ghena – Spring 2024

Materials in collaboration with Pat Pannuto (UCSD) and Brad Campbell (UVA)

Administrivia

- Assignments
 - Hw: Cellular due Thursday
 - Lab: LoRa next week Wednesday
 - Final Design Project due early exam week
- Office Hours
 - Need to cancel Friday 1-3 (out-of-town) and Monday (Memorial Day)
 - Liam (PM) is still hosting Friday 3-5 pm
- Guest lecture on Thursday!!
 - Be here for it!

Today's Goals

- Discuss ideas in localization
 - Uses wireless signals for the process
 - Important for the Internet of Things

Describe background on GPS

- Overview of indoor localization techniques
 - Fingerprinting, Ultra-wideband, etc.

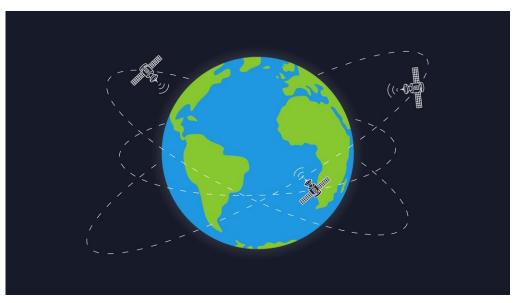
Why care about localization?

- My opinion: location information is critical to the IoT
 - Interpreting sensed data relies on real-world location
 - Indoor: where is the motion sensed or temperature measured
 - City-scale: how do measurements change over geographical space

- IoT applications use location context
 - "When I get home do X"
 - "Turn on all the lights in room X"

Outline

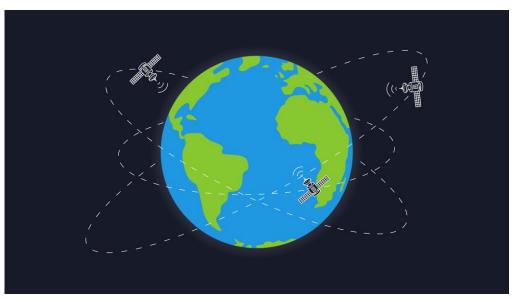
Localization Background


• GPS

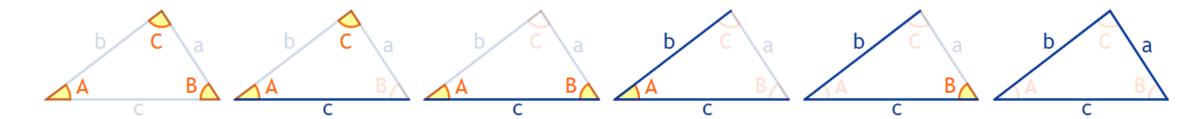
- Indoor Localization
 - Overview
 - Fingerprinting
 - Ultra-wideband
 - Other techniques

Background knowledge?

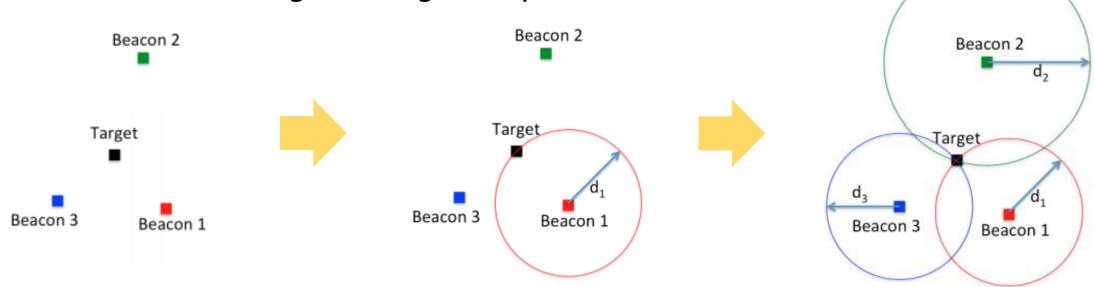
How does GPS work anyways?



Background knowledge?


How does GPS work anyways?

- Know the position of all satellites
- Receive signals from multiple satellites
- Determine distance from each satellite
- Trilateration


Background: trigonometry

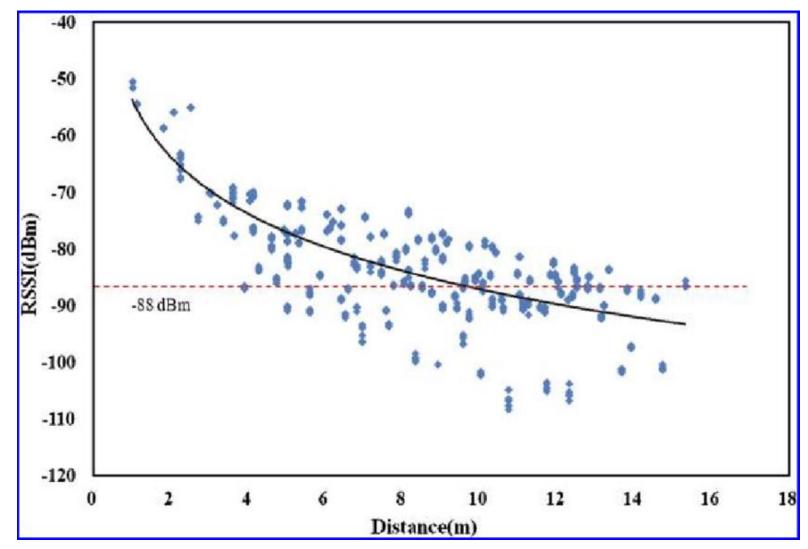
- A triangle can be solved by knowing 3 features
 - Three sides
 - Two sides and any angle
 - Two angles and any side
- Three angles gets the type of the triangle, but not the size
 - Need at least one side to determine size

Trilateration

- Determine distance from each beacon, then find position
 - Apply trigonometry to solve triangle with beacons. Requires:
 - 3 lengths (or some angles and lengths...)
 - Solve two triangles and get 3D position

Most common and accurate localization approach

Determining distance


Making trilateration work requires distance measurements

- Techniques
 - RSSI
 - Time of Flight
 - Time of Arrival

Reminder: problem with RSSI-based distance – not accurate

Pathloss is NOT only due to distance

 RSSI is way worse at this than you hope it would be

Citation: literally everyone has made this figure at some point

Time of flight (also known as time of arrival, ToA)

- Determine distance by knowing:
 - Exact position of infrastructure
 - Transmit time
 - Receive time
 - Signal velocity (i.e. speed of light)
- Infrastructure transmits and device listens
 - Can happen all the time, but devices only listen when they want a position
- Requires time synchronization between infrastructure and device
 - Synchronization must be **very** good: $1 \mu s = 300$ meters

Time difference of arrival (TDoA)

- Device transmits and infrastructure receives transmission
 - Multiple infrastructure nodes receive at different times based on distance
- Determine distance by knowing
 - Exact position of infrastructure
 - Time of arrival at two different locations
 - Signal velocity (i.e. speed of light)
- Doesn't require synchronization with infrastructure!
 - Still requires synchronization between infrastructure nodes
 - Does require device to transmit loud enough for infrastructure to hear it...

How many anchors are needed?

- 3 anchors gets a 2D location
 - Two possible 3D locations are valid
- 4 anchors gets a 3D location

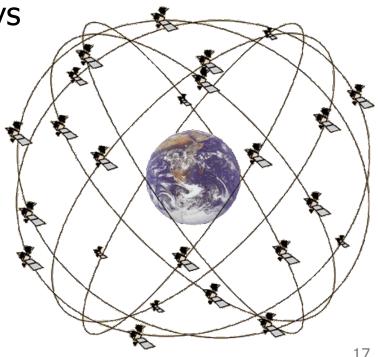
- Shortcut: if the alignment is right, 3 anchors can guess 3D
 - 3 anchors result in two possible points that satisfy equations
 - One will be on the ground, the other somewhere mid-air or underground

Real-world complication: accuracy

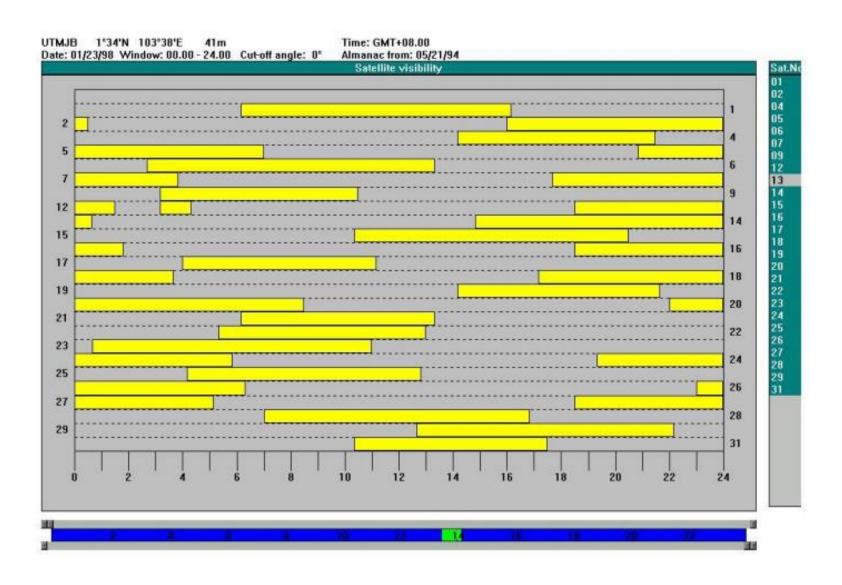
No distance measurement will be perfect

- Which means trilateration will not be perfect either
 - Need to solve equations in a fuzzy manner looking for least error

Outline

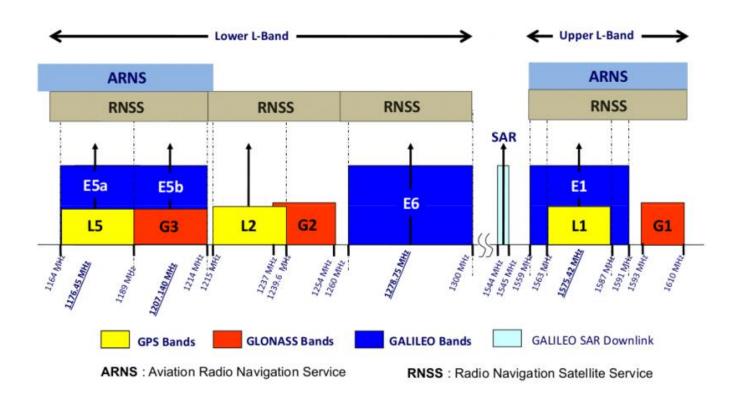

Localization Background

GPS


- Indoor Localization
 - Overview
 - Fingerprinting
 - Ultra-wideband
 - Other techniques

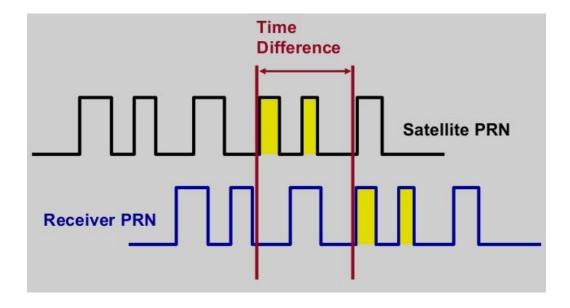
GPS overview

- Trilateration using Time of Flight from at least 4 satellites
 - Satellites in well-known orbits with VERY stable clocks
- Satellites placed in Medium Earth Orbit (20,000 KM)
 - Orbit earth twice per day
 - Placed such that 4 are in view everywhere, always
 - 31 operational satellites as of February 2023
 - Most recent launch January 18th 2023
- Comparisons
 - LEO 200-2000 km, ISS at 340 km
 - GEO 35,000 km


Satellite visibility overhead

GPS PHY

- GPS frequency
 - 1.2 GHz and 1.5 GHz
 - 10-15 MHz bandwidth


BPSK modulation

- Signal has to travel 20,000 km, but most of that is through space
 - Tx power 25 Watts (44 dBm)
 - Rx sensitivity -140 dBm to -160 dBm (50 bps data rate)
 - ~200 dBm total link budget

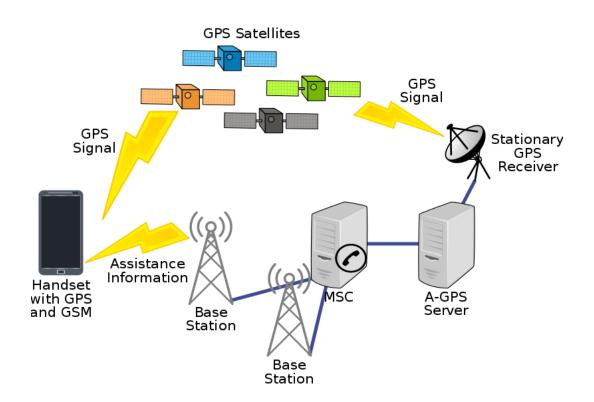
GPS transmissions

- Each satellite sends a unique pseudo-random number sequence
 - Sequence repeats in time (over minutes) and is well-known
 - Position in signal is used to calculate time of flight (if you know precise time)
 - Why pseudo-random?
 - Sequence is layered on top of actual data and needs to not affect it

GPS requires signals from multiple satellites

- 4 satellites are needed to determine location and time
 - 3 for 2D location (assume on ground) and 1 for time offset
 - Solve for both as a single equation
- Steps to finding location
 - Initialize time to whatever you heard from a satellite (~100 ms sync)
 - Get time of arrival from four satellites
 - Four variables
 - x, y, z, and time offset

Additional GPS data


- Receiver needs to know additional information
 - Current time
 - Position of each satellite
- GPS transmission has this data layered on top (50 bps)
 - Listening for (up to) 30 seconds gets time and this satellite's position
 - Known as ephemeris
 - Valid for up to 4 hours
 - Listening for 12.5 minutes gets all satellites' positions
 - Known as almanac
 - Valid for up to two weeks
- Cold-start for an embedded device takes significant time

Break + Question

- How would you make a system connect to GPS faster?
 - Cell phones don't take 12.5 minutes to get a fix after booting

Assisted GPS

- How is cell phone GPS so quick?
 - Download almanac from the internet (only 1.8 kB)
- Bootstrap location information
 - Cell towers can give coarse position
 - Enables device to know which satellites are overhead

Original GPS had a built-in accuracy limitation

- Selective Availability
 - Pseudorandom adjustment to the signals to reduce accuracy
 - Could be recovered if you know the specific pseudorandom key
- Public use (no key)
 - 50 m accuracy horizontally
 - 100 m accuracy vertically
- Original GPS was intended for military only
 - With limited GPS for everyone else (i.e., other nations)
 - In 2000, was removed from GPS, leading to about 5 m accuracy

Other GPS implementations

- Global Navigation Satellite System (GNSS)
 - Formal name for a global localization system

• US: GPS

Russia: GLONASS

China: BeiDou

• EU: Galileo

- India and Japan have regional systems
- Lunar system in design!
- Modern GNSS hardware can use multiple at once for better accuracy

Using GPS in the real-world

```
$GPGGA,210230,3855.4487,N,09446.0071,W,1,07,1.1,370.5,M,-29.5,M,,*7A
```

GPS sentence type

```
$GPGGA,210230,3855.4487,N,09446.0071,W,1,07,1.1,370.5,M,-29.5,M,,*7A
```

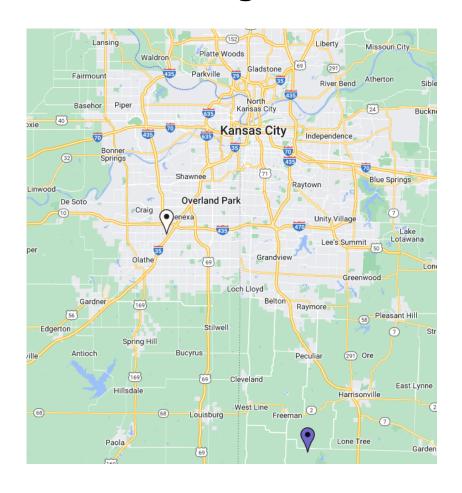
- Format of data
 - GGA = "Global Positioning System Fix Data"
 - Specifies what the other comma-separated fields will be

Time in a GPS sentence

```
$GPGGA, 210230, 3855.4487, N, 09446.0071, W, 1, 07, 1.1, 370.5, M, -29.5, M, , *7A
```

- Current time in UTC
 - HHMMSS format

Lat/Lon in a GPS sentence


```
$GPGGA,210230,3855.4487,N,09446.0071,W,1,07,1.1,370.5,M,-29.5,M,,*7A
```

- Latitude (blue) and Longitude (red)
 - DDMM.MMMM format (degrees and minutes [60th of a degree])
 - Warning: normal GPS coordinates are in DDD.DDDDD format
 - Need to translate by dividing minutes by 60

Make sure you use the correct GPS coordinates

- 38 degrees, 55.4487 minutes N -> 38.924145 degrees
- 94 degrees, 46.0071 minutes W -> -94.766785 degrees
 - About 49 km apart

Other GPS "sentence" parameters

```
$GPGGA,210230,3855.4487,N,09446.0071,W,1,07,1.1,370.5,M,-29.5,M,,*7A
```

- Number of Satellites seen (red)
- Altitude in meters (blue)
 - More satellites can give you true 3D positioning

Break + xkcd

WHAT THE NUMBER OF DIGITS IN YOUR COORDINATES MEANS

LAT/LON PRECISION	MEANING
28°N, 80°W	YOU'RE PROBABLY DOING SOMETHING SPACE-RELATED
28.5°N, 80.6°W	YOU'RE POINTING OUT A SPECIFIC CITY
28.52°N, 80.68°W	YOU'RE POINTING OUT A NEIGHBORHOOD
28.523°N, 80.683°W	YOU'RE POINTING OUT A SPECIFIC SUBURBAN CUL-DE-SAC
28.5234°N, 80.6830°W	YOU'RE POINTING TO A PARTICULAR CORNER OF A HOUSE
28.52345°N, 80.68309°W	YOU'RE POINTING TO A SPECIFIC PERSON IN A ROOM, BUT SINCE YOU DIDN'T INCLUDE DATUM INFORMATION, WE CAN'T TELL WHO
28.5234571°N, 80.6830941°W	YOU'RE POINTING TO WALDO ON A PAGE
28.523457182°N 80.683094159°W	"HEY, CHECK OUT THIS SPECIFIC SAND GRAIN!"
28.523457182818284°N, 80.683094159265358°W	EITHER YOU'RE HANDING OUT RAW FLOATING POINT VARIABLES, OR YOU'VE BUILT A DATABASE TO TRACK INDIVIDUAL ATOMS. IN EITHER CASE, PLEASE STOP.

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

Clearing something up

The goal is NOT directing people through a building

 Just because that's what GPS is used for outdoors doesn't mean we need that application indoors

Goal of indoor localization

- The goal is positioning things within a building
 - Where can I find object X?
 - X: where am I located?
 - X and Y: are we near each other?

- Robotic navigation is also important
 - Although there are many approaches here

Localization classes

- Absolute location
 - X, Y, Z position based on already known infrastructure locations
 - Like GPS does
 - Installed localization hardware known as anchors
- Relative location
 - Position relative to some other device
 - Technically absolute location is a version of this
 - Might only need a few devices
 - How far is the smartphone from the computer?

Localization knowledge

- What kind of a result is actually useful?
 - You are at {15, 27.5, 1}
 - You are in Room 224
 - Depends on the application

 Additional systems on top of the localization method can translate between location representations

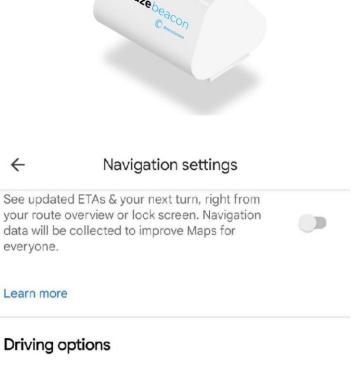
Barrier problem

"I'm here to pick up fish"



 Walls are very contextually important, but difficult for localization systems to detect

GPS version of barrier problem: overlapping roads


- GPS can't always tell which road you're on if multiple overlap
 - And you might not get GPS at all in a tunnel

- Chicago example: Wacker Drive
 - Upper for local traffic
 - Lower for express route

GPS barrier solution

- Add BLE beacons
 - Short range such that they can only be detected if you're actually on the road near them
- Navigation apps can use BLE beacons to determine your real location
 - Deployed in Chicago right now!
 - Google Maps added the feature in early 2024
 - It was off on my phone, go into Settings and then "Navigation Settings" to enable it.

Bluetooth tunnel beacons

location accuracy in tunnels

Scan for Bluetooth tunnel beacons to improve

https://chicago.curbed.com/2018/9/7/17786634/waze-beacons-wacker-drive-chicago-signal https://www.theverge.com/2024/1/16/24039896/google-maps-android-tunnels-bluetooth-beacons

Accuracy notation

- "40 cm median accuracy"
 - Majority of measurements are within 40 cm of reality!
 - What about the other half?
- 90th percentile error is often more important for real-world use

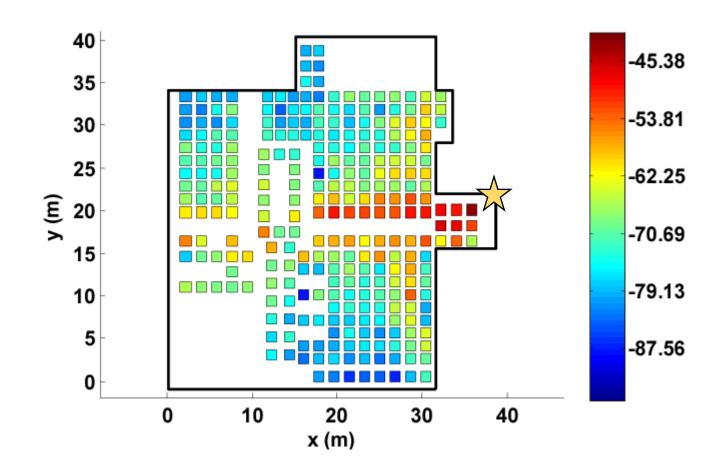
- My least favorite aspect of localization
 - Be wise to these tricks

Outline

Localization Background

• GPS

Indoor Localization


- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

Mapping existing infrastructure

- Can we repurpose existing infrastructure for localization?
 - For example: WiFi access points
 - Benefit: localization works with unmodified hardware
- Mapping instead of trilateration
 - Make a map of infrastructure and use that to locate device
 - Coarse example: existence of WiFi network SSIDs
 - Fine-grained example: signal strength to each Access Point
 - Known as fingerprinting

Fingerprinting overview

- At setup time, for many locations throughout building
 - Measure signal strength to Access Point
 - Record measurement in a database with location
- At run time, for the device that wants a location
 - Measure signal strength to Access Point
 - Look up measurement in database to get location

Fingerprinting improvements

- Measurements can use several Access Points simultaneously
 - Improves accuracy quite a bit
- Doesn't have to be WiFi based at all
 - Cellular networks can do fingerprinting
 - Deploy your own BLE beacons throughout environment
- Apply techniques for minimizing error in signal strength
 - Measurement won't match record exactly
 - But minimizing error should approach the same location

Fingerprinting challenges

- Effort to create database in the first place
 - Manually take measurements at every location
- Environment is not stable
 - Signal strength changes as chairs, doors, and people move
 - Need ability to periodically re-measure
 - Update database with most recent recording while in use
- Measurements vary between devices
 - Differ based on antennas, cases, how you hold it, etc.

Fingerprinting accuracy

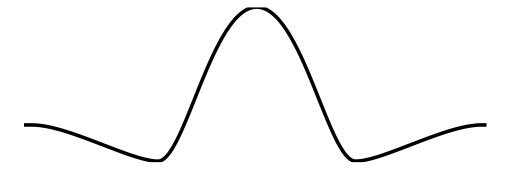
- State-of-the-art: median accuracy of 0.5-1.5 meters
 - Not bad depending on the application!
 - Likely places you in the right room, or at least nearby
 - Long tail can be large, but more access points helps this
- Barrier problem capability depends on walls
 - Some materials attenuate signal strength more than others

Break + Open Question

• WiFi is only one example of a signal you could fingerprint. What else could you use?

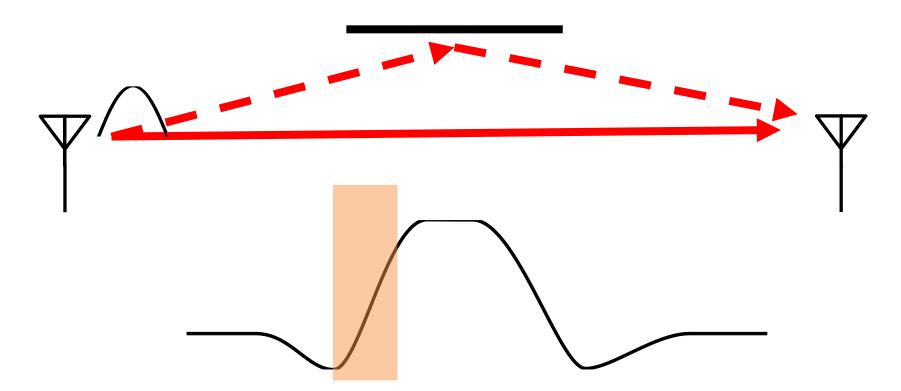
Outline

Localization Background

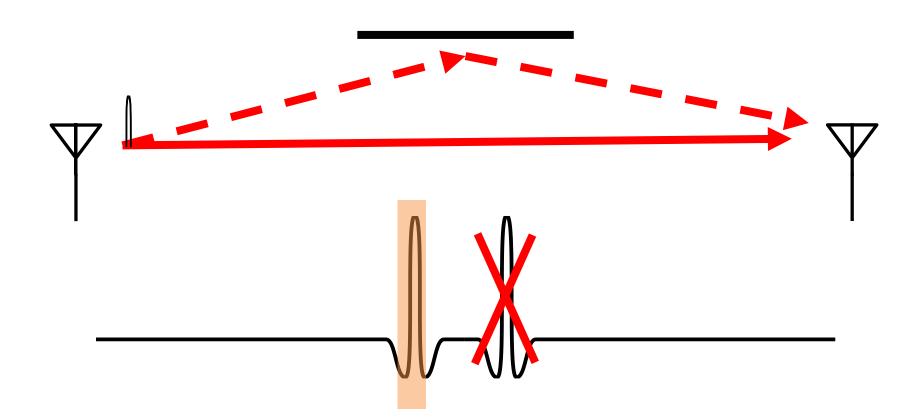

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques


Improving accuracy

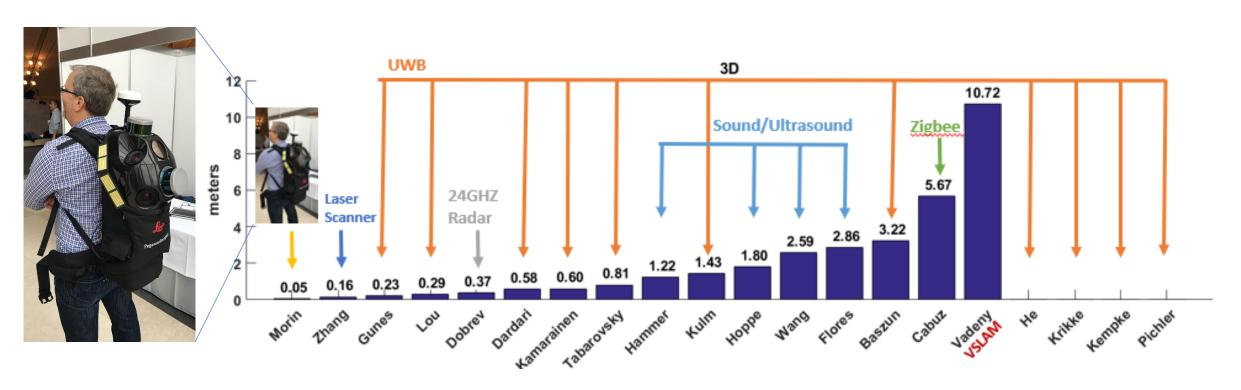
- To get really good accuracy, let's return to trilateration
- Plan: Send an RF signal from one device and time how long it takes to reach another
 - Brief transmissions rather than continuous like GPS
- Problem: When does this signal arrive?
 - Need to pick somewhere in rise as the "arrival time"


Multipath problem

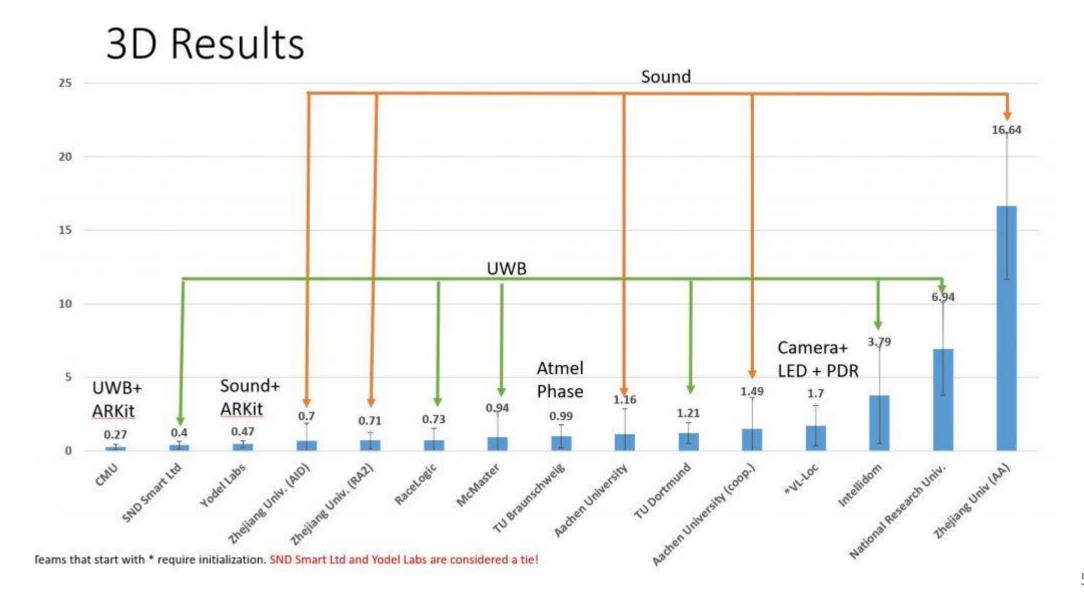
- Real-world signals bounce off of things in the environment
 - Multiple, time-delayed versions of signal arrive at antenna
 - Result smears out the arrival of energy in time
 - More reflections mean more peak energy, but longer rise time
 - This isn't predictable. Depends on the exact environment configuration

Why does ultra-wideband yield better localization performance?

- Wider bandwidth makes the RF pulse narrower in time
 - Make it narrow enough, and multipath becomes entirely separate


Ultra-wideband localization system

Narrow ultra-wideband pulses makes arrival timing work


- The rest is a copy of well-known techniques
 - Deploy anchors in the environment with known positions
 - Measure distance between anchors and device
 - Time of Flight (if anchors transmit)
 - Time Difference of Arrival (if devices transmit)
 - Trilateration to find position

Localization state-of-the art

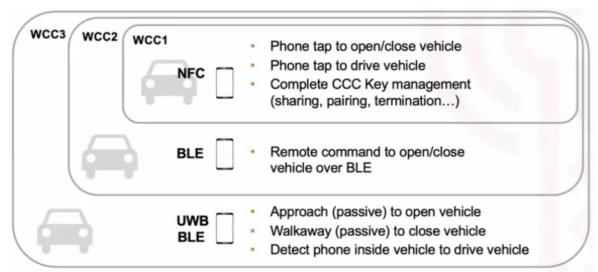
- Microsoft indoor localization competition, 2016
 - Teams are given a day to measure and deploy their systems in a space
 - Provide {x, y, z} coordinates using up to 5 anchors in large open room

2019 results (Microsoft indoor localization competition)

Improvements to ultra-wideband

- Improve results with multiple, diverse measurements
 - Sources of diversity
 - Send on multiple channels
 - Send with multiple antennas
 - Receive with multiple antennas
 - Measure each combination of these and average to get better results
- Combine with backscatter approaches
 - Result is very slow (minutes to locate device) but very low power (<1µW)
 - Most inventory doesn't move!

Bringing UWB to the real world


- Ultra-wideband radios were previously specialized
 - Needed to build special hardware to use them

Modern smartphones are now including UWB radios!!!

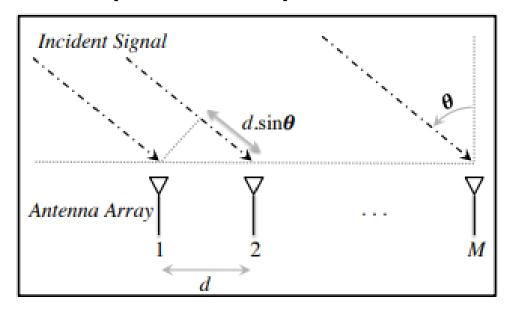
Apple, Google, and Samsung

- Opens a big area of development
- Use cases are still a little unclear
 - Smartphone as a car key

https://www.theverge.com/23970875/digital-car-key-iphone-unlock-start-ccc-standard

Outline

Localization Background


• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

Angle of arrival (AoA)

- Trilateration doesn't only require distances, angles work
 - You still need at least one distance to form triangle
- Antenna arrays can be used to determine the angle of an incoming signal
 - Allows the use of normal RF communication (WiFi or BLE)
- BLE 5.1 includes AoA localization

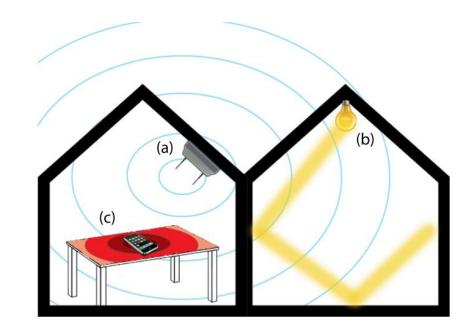
Ultrasound

- Advantages
 - Solves the barrier problem
 - Human spaces already designed to contain sound
 - Easier to get high-accuracy results
 - Sound is $\sim 1,000,000x$ slower than light
 - Less synchronization is needed to get same accuracy
- Disadvantages
 - More energy to transmit
 - Slower update rate (still sub-second)
 - Limited range
 - Pets can hear it...

Inertial navigation

- If you know acceleration, you can get position, just integrate!
 - With quite a bit of error
- Accurate over short distances with filtering approaches
 - Can be used to augment other systems
 - Get a fix every few seconds from localization system
 - Use inertial navigation to interpolate between measurements

- IMUs (Inertial Measurement Units) available in all smartphones
 - Accelerometer, Gyroscope, Magnetometer


ARKit (and other AR techniques)

- Leverage smartphone cameras for positioning
 - Pictures of a user's surroundings can be compared to floorplan
 - Related to SLAM techniques (Simultaneous Localization And Mapping)
- Can build an incredibly accurate system
 - With a bit of bootstrapping
 - Probably applies most to robotics use cases

Vibrations

- Determine shared context of a table
 - Vibratory motors and IMUs are common
 - Signaling demonstrates nearby devices

(a) Establishing a first-time Bluetooth connection

(b) Desktop detection for pre-connected devices

(c) Connecting with hidden table-level services

(d) Establishing a desktop area network

Outline

Localization Background

• GPS

- Indoor Localization
 - Overview
 - Fingerprinting
 - Ultra-wideband
 - Other techniques