Lecture 06 802.15.4

CS397/497 – Wireless Protocols for IoT Branden Ghena – Spring 2024

Materials in collaboration with Pat Pannuto (UCSD) and Brad Campbell (UVA)

Assignment Schedule

- Hw: BLE Packets
 - Due Thursday

- Lab: BLE
 - Due next week Tuesday
 - Get started on this!

Lab: Thread and Hw: Matter should be out next week

Today's Goals

• Introduction to 802.15.4

Overview of physical layer details

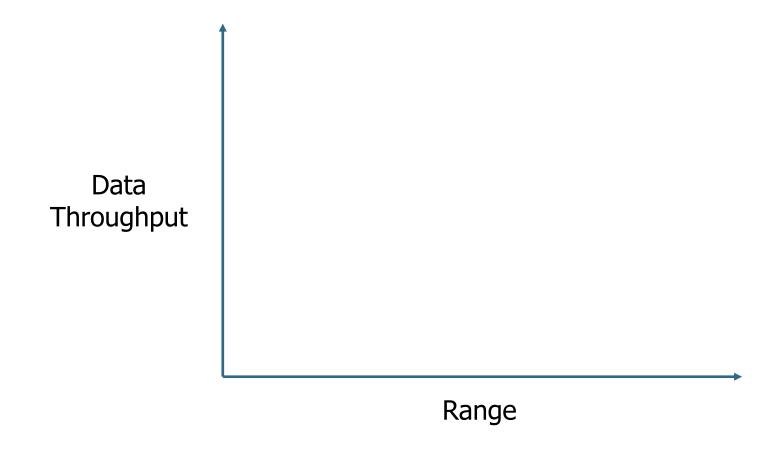
- Exploration of link layer
 - Network topologies
 - Communication structure
 - Access control
 - Packet structure

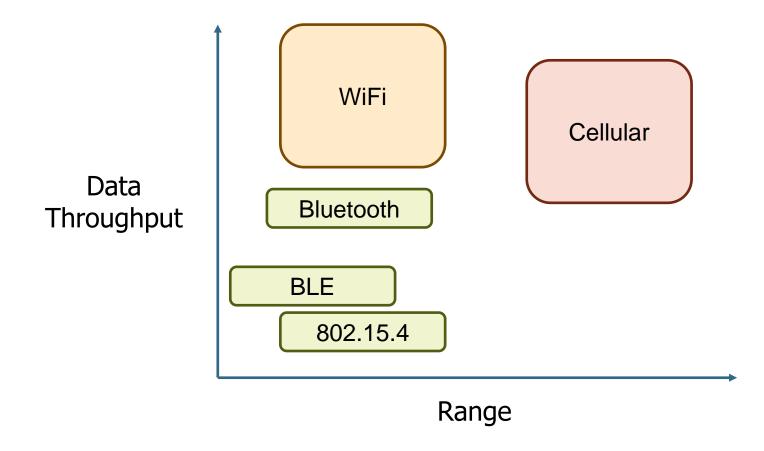
References

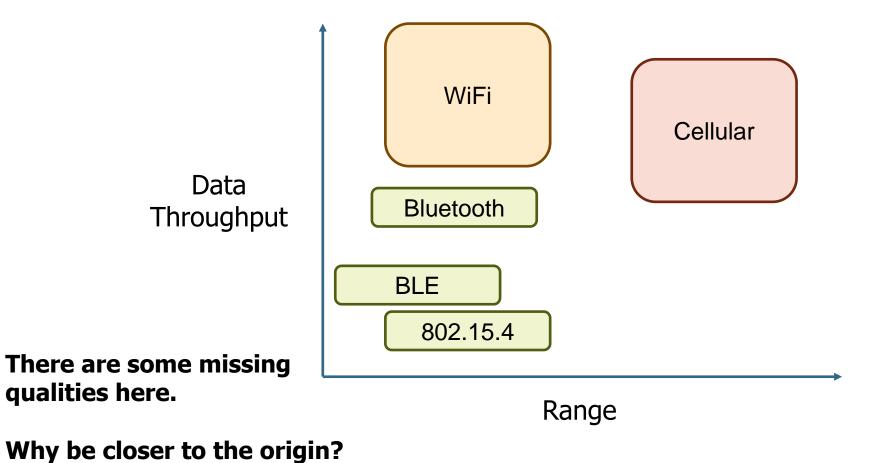
- 802.15.4 Specification [2006]
 - "Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)"

Other helpful references:

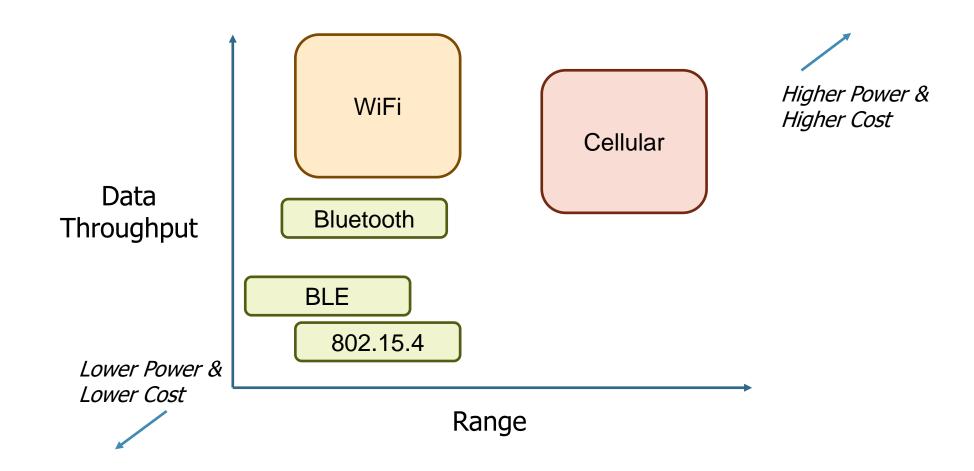
- Paper introducing the 802.15.4 draft
- NXP 802.15.4 Stack User Guide
- 2005 presentation on 802.15.4

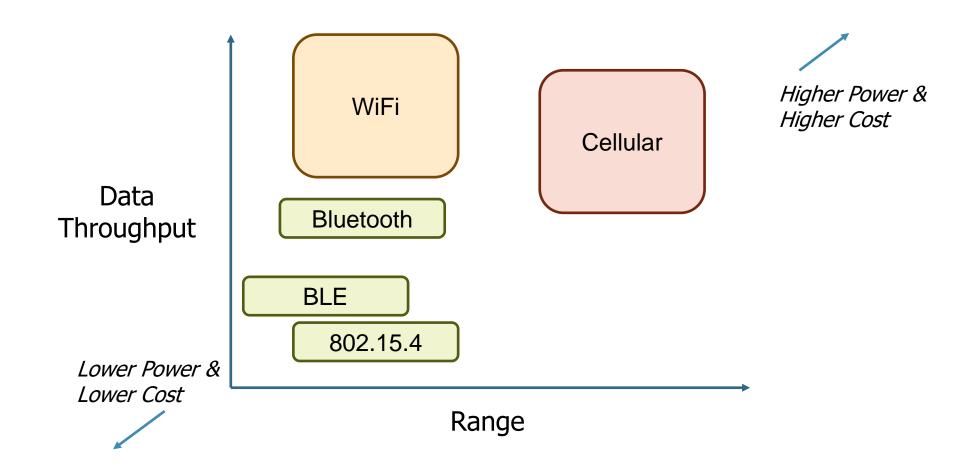

Outline


Overview


Physical Layer

Link Layer


Packet Structure



8

IEEE 802

- Network standards for variable-sized packets
 - Ethernet
 - WiFi
 - WPANs
- E.g. **not** networks that send periodic constant-sized packets
- Specifies PHY and Link layers
- Another example standard:
 - IEEE 754: Floating Point

Name	Description	Status
IEEE 802.1	Higher Layer LAN Protocols Working Group	Active
IEEE 802.2	LLC	Disbanded
IEEE 802.3	Ethernet	Active
IEEE 802.4	Token bus	Disbanded
IEEE 802.5	Token Ring MAC layer	Disbanded
IEEE 802.6	MANs (DQDB)	Disbanded
IEEE 802.7	Broadband LAN using Coaxial Cable	Disbanded
IEEE 802.8	Fiber Optic TAG	Disbanded
IEEE 802.9	Integrated Services LAN (ISLAN or isoEthernet)	Disbanded
IEEE 802.10	Interoperable LAN Security	Disbanded
IEEE 802.11	Wireless LAN (WLAN) & Mesh (Wi-Fi certification)	Active
IEEE 802.12	100BaseVG	Disbanded
IEEE 802.13	Unused ^[2]	reserved for Fast Ethernet development ^[3]
IEEE 802.14	Cable modems	Disbanded
IEEE 802.15	Wireless PAN	Active
IEEE 802.16	Broadband Wireless Access (WiMAX certification)	hibernating
IEEE 802.17	Resilient packet ring	Disbanded
IEEE 802.18	Radio Regulatory TAG	?
IEEE 802.19	Wireless Coexistence Working Group	?
IEEE 802.20	Mobile Broadband Wireless Access	Disbanded
IEEE 802.21	Media Independent Handoff	hibernating
IEEE 802.22	Wireless Regional Area Network	hibernating
IEEE 802.23	Emergency Services Working Group	Disbanded
IEEE 802.24	Vertical Applications TAG	?

IEEE 802.15

- Wireless Personal-Area Networks (WPAN)
 - All the things within the workspace of a person
 - Conceptually smaller domain that the Local Area Network
 - Realistically about the same thing as a LAN
- Formerly included a Bluetooth spec
 - Bluetooth SIG took over governance

Name	Description	Status
IEEE 802.15.1	Bluetooth certification	Disbanded
IEEE 802.15.2	IEEE 802.15 and IEEE 802.11 coexistence	Hibernating ^[4]
IEEE 802.15.3	High-Rate wireless PAN (e.g., UWB, etc.)	?
IEEE 802.15.4	Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.)	Active
IEEE 802.15.5	Mesh networking for WPAN	?
IEEE 802.15.6	Body area network	Active
IEEE 802.15.7	Visible light communications	?

802.15.4 (LR-WPANs) Overview "Low-Rate Wireless Personal Area Networks"

Goals

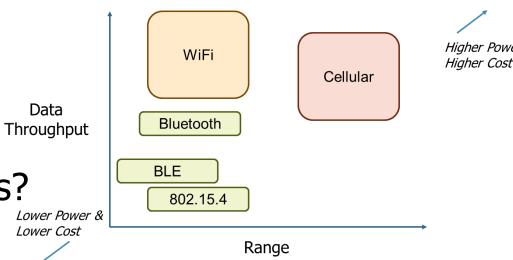
• "The IEEE 802.15 TG4 was chartered to investigate a low data rate solution with multi-month to multi-year battery life and very low complexity." [TG4]

Applications

- "Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation." [TG4]
- Ultimately home automation, industrial control/monitoring, vehicular sensing, agriculture; really most machine-to-machine (M2M) sensor applications

Other contemporary technologies

- WiFi 802.11b and Bluetooth Classic
 - Too complex in specification and overachieving in capability


IEEE 802.15.4

- Low-Rate Wireless PAN
 - 250 kbps, ~100 m range
 - Radio hardware available with low-power and low-cost

- Specification: 2003
 - Also 2006, 2011, 2015, and 2020 revisions
 - Mostly various added capabilities such as extra PHY layers
 - Also define optional security, scheduling, and larger frame sizes
- We'll mostly work off of the <u>2006 version</u>
 - Thread is based on 2006 version
 - Zigbee is based on the original 2003 version
 - Roughly 200 pages of meaningful specification (100 of appendices)
 - Compare to 3000 pages of Bluetooth/BLE

Break + Open Question

• Given 802.15.4's placement in terms of throughput, range, power, and cost: what are use-case constraints?

Break + Open Question

• Given 802.15.4's placement in terms of throughput, range, power, and cost: what are use-case constraints?

WiFi Cellular Bluetooth Throughput BLE 802.15.4 Lower Power & Lower Cost Range

Data

- Not human-centric communication
 - Would need higher throughput
- Still lower-energy and low-cost (similar to BLE)
 - Plausible for battery-operated devices
- Range is focused on local-area (household-ish)
- Bonus: long-term network, rather than ad-hoc point-to-point like BLE

Outline

Overview

Physical Layer

Link Layer

Packet Structure

802.15.4 Physical Layers

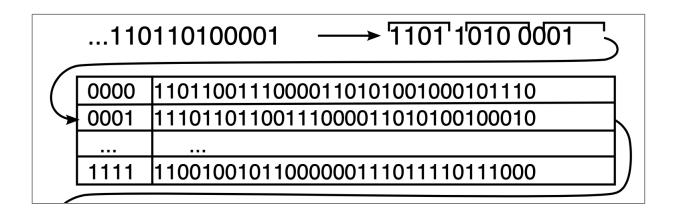
- Multiple options of physical layers are supported
 - We'll focus on 2.4 GHz (2400 MHz)

Table 1—Frequency bands and data rates

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters			
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
0.40/015	868-868.6	300	BPSK	20	20	Binary	
868/915	902-928	600	BPSK	40	40	Binary	
868/915	868-868.6	400	ASK	250	12.5	20-bit PSSS	
(optional)	902-928	1600	ASK	250	50	5-bit PSSS	
868/915	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal	
(optional)	902-928	1000	O-QPSK	250	62.5	16-ary Orthogonal	
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal	

Physical Layer

- O-QPSK modulation
 - Offset Quadrature Phase-Shift Keying
 - 4 bits per symbol
 - Twice the data rate of BPSK for same Bit-Error Rate
 - Cost: more complicated design of receivers
 - Which is pretty minimal with all the transistors we've got
 - Plus the ability to reuse previous designs
- Symbols versus bits
 - A symbol is the unit of data transfer for a modulated signal
 - Does not necessarily correspond 1:1 with bits
 - The rate of symbols per second is a baudrate
 - 62.5 kBaud = 62500 symbols/second = 250000 bits/second = 250 kbps

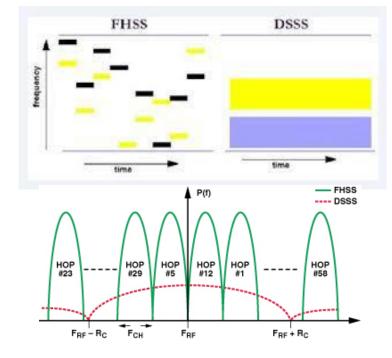

15.4 has multiple PHY layer choices

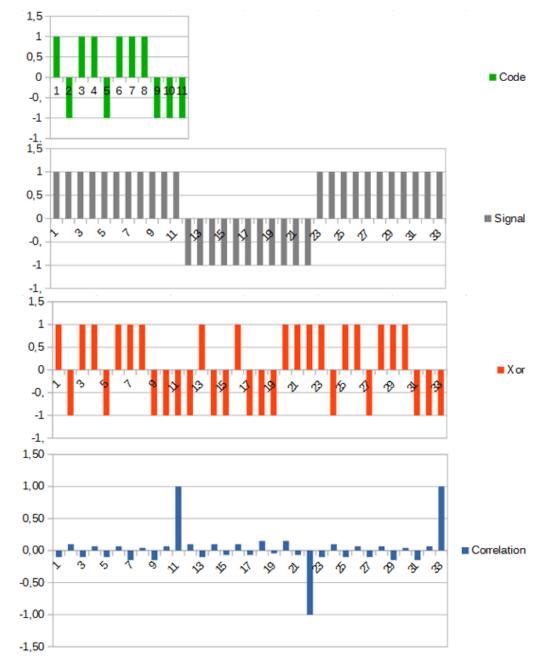
• We focus on the 2.4 GHz one, that uses DSSS

PHY	Frequency	Spreadir	ng Parameters	Data Pa	Channel		
(MHz)	Band (MHz)	Chip Rate (kchips/s)	Modulation	Bit Rate (kb/s)	Symbol Rate (ksymbol/s)	Spacing (MHz)	
868/915	868–868.6 (Europe)	300/400/400	BPSK/ASK/O-QPSK	20/250/100	20/12.5/25	_	
	902–928 (N. America)	600/1600/1000	BPSK/ASK/O-QPSK	40/250/25	40/50/62.5	2	
2450 DSSS	2400–2483.5 (Global)	2000	O-QPSK	250	62.5	5	

802.15.4 actually sends way more data than symbols

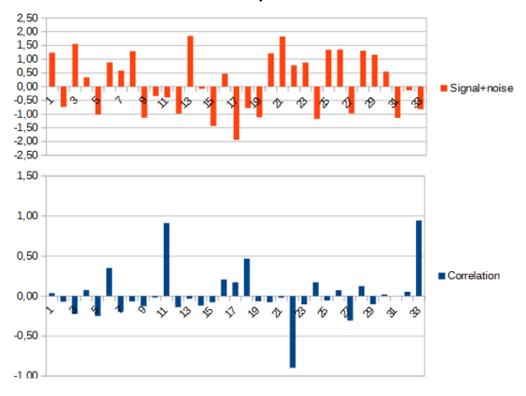
- For every 4 bits we want to send (one symbol)
 - 802.15.4 sends 32 bits of data instead
- There's a mapping from bit pattern to "chip pattern"
 - One mapping that all 802.15.4 PHY layers must use
 - This idea is called "Direct Sequence Spread Spectrum" (DSSS)

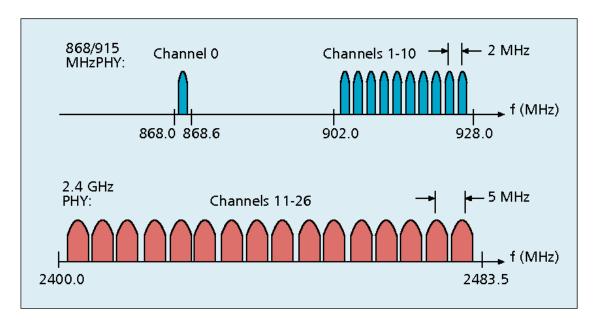


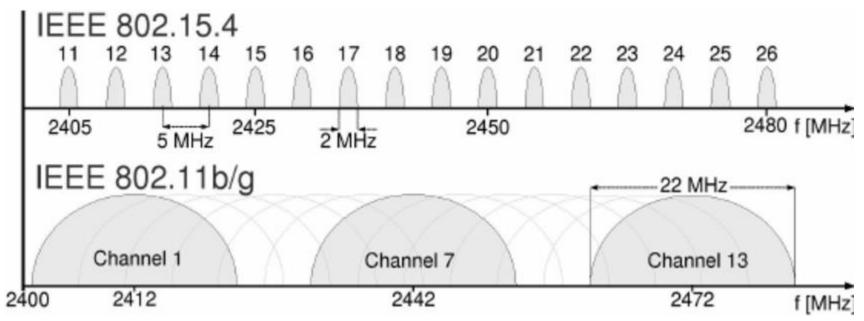

Direct Sequence Spread Spectrum (DSSS)

- Increases the <u>signal</u> bandwidth of a transmission beyond <u>information</u> bandwidth
 - Send sequences of chips, which are a translation of one symbol to a pattern of many bits
 - Chips are transmitted much faster than symbols, essentially increasing the data rate
- Enables better interference avoidance
 - Received bits are correlated against codes to see which is most likely
 - 802.15.4 tolerates 13-15 bit flips (almost half!)

Table 1. Zigbee symbol to chip mapping.


Chip Values (c ₀ c ₁ c ₃₀ c ₃₁)			
11011001110000110101001000101110			
11101101100111000011010100100010			
00101110110110011100000110101010			
00100010111011011001110000110101			
01010010001011101101100111000011			
00110101001000101110110110011100			
11000011010100100010111011011001			
10011000011010100100010111011101			


DSSS example


- Data sent is **101**
 - Code is longer than data, so we replicate bits
 - Data is recoverable, even with noise

802.15.4 RF channels

- 27 channels across three bands
- 5 MHz channel separation at 2.4 GHz
 - Compare to 2 MHz for BLE

Regional bands

 Different RF bands have different regional availability

Also have different rules

• 915 MHz: 400 ms dwell time

• 868 MHz: 1% duty cycle

	Channel	Center Frequency (MHz)	Availability
868 MHz Band	0	868.3	Europe
	1	906	
	2	908	a.=
	3	910	
	4	912	
915 MHz	5	914	7.
Band	6	916	*
	7	918	
	8	920	<i>,</i>
	9	922	Americas
	10	924	Americas
	11	2405	
	12	2410	
	13	2415	
	14	2420	
	15	2425	
	16	2430	
	17	2435	120
2.4 GHz	18	2440	A 6
Band	19	2445	C TOTAL
	20	2450	
	21	2455	₽ • •
	22	2460	
	23	2465	
	24	2470	
	25	2475	World Wide
	26	2480	

Signal strength

- Transmit power
 - Typical: 0 dBm (remember: 0 dBm equals 1 mW)
- Receiver sensitivity
 - nRF52840 802.15.4: -100 dBm
 - Compare to BLE sensitivity of -95 dBm

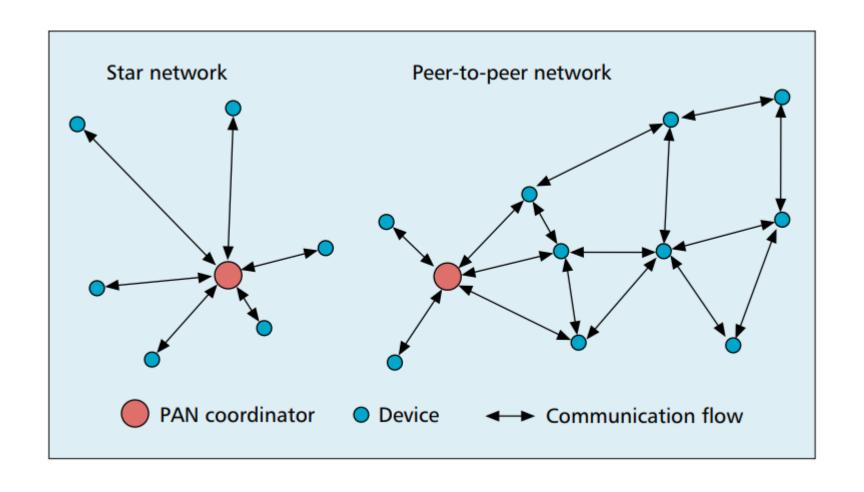
Which has longer range, 802.15.4 or BLE? Why?

Signal strength

- Transmit power
 - Typical: 0 dBm (remember: 0 dBm equals 1 mW)
- Receiver sensitivity
 - nRF52840 802.15.4: -100 dBm
 - Compare to BLE sensitivity of -95 dBm
 - All radios have to be at least as good as (per spec): -85 dBm
 - Circa-2006 radios (CC2420): -95 dBm
- Which has longer range, 802.15.4 or BLE? Why?
 - 802.15.4 with +5 dBm more margin;
 - lower bit rate plays into this, as does increased bandwidth

Outline

Overview


Physical Layer

Link Layer

Packet Structure

802.15.4 network topologies

Only specifies PHY and MAC, but has use cases in mind

Star and Tree topologies

- PAN Coordinator
 - Receives and relays all messages
 - Most capable and power-intensive
- Coordinators (a.k.a. Routers)
 - Control "clusters"
 - Receives and relays to its children
 - Communicates up to parent coordinator
- End Devices
 - Only communicate with single parent coordinator
 - Least capable and power intensive

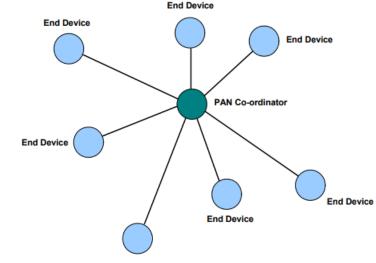
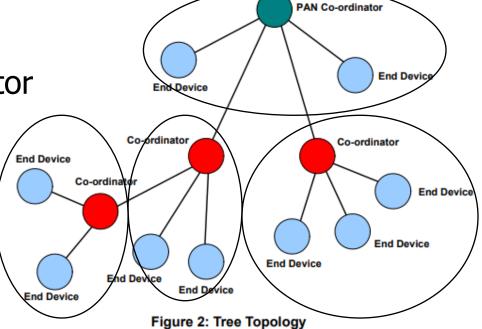



Figure 1: Star Topology

Break + Mesh networks

 Most devices are capable of communicating with multiple neighbors

What are advantages of mesh?

What are disadvantages of mesh?

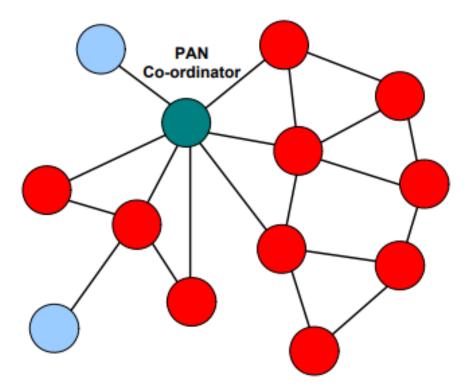


Figure 4: Mesh Topology

Break + Mesh networks

 Most devices are capable of communicating with multiple neighbors

What are advantages of mesh?

- Devices can communicate over longer distances
- Device failures less likely to collapse the entire network

What are disadvantages of mesh?

- Some nodes have to spend more energy communicating
- Network protocol becomes more complicated to manage routing

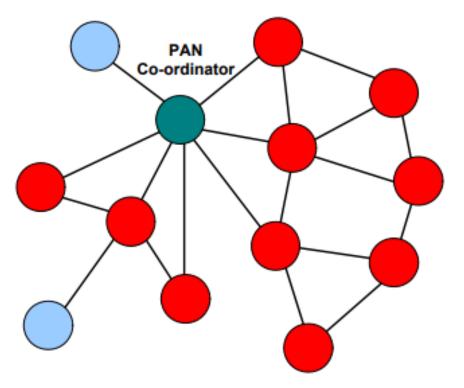


Figure 4: Mesh Topology

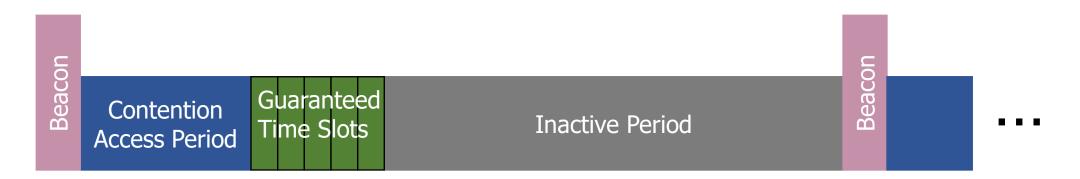
Reminder: CSMA/CA — Carrier Sense Multiple Access with Collision Avoidance

- 1. First, wait a random amount (collision avoidance part)
- 2. Then, listen for a duration and determine if anyone is transmitting (carrier sense part)
 - If idle, you can transmit
 - If busy, repeat step 1 (often increasing maximum wait time)

- Can be combined with notion of slotting
 - Synchronize to slots (smaller than transmit times)
 - Wait for a number of slots
 - Listen for idle slots

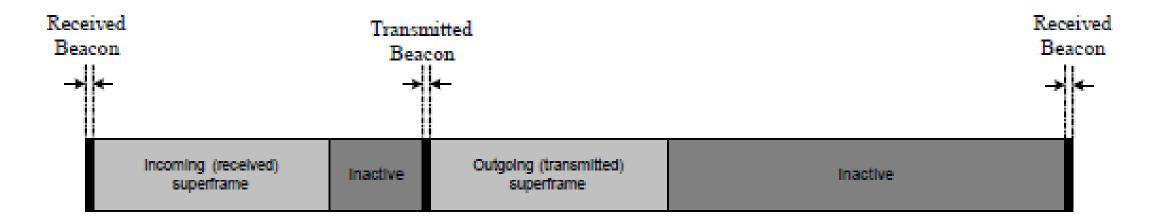
Modes of operation

- Beacon-enabled PAN
 - Slotted CSMA/CA
 - Structured communication patterns
 - Optionally with some TDMA scheduled slots


- Non-beacon-enabled PAN
 - Unslotted CSMA/CA
 - No particular structure for communication
 - Could be defined by other specifications, like Thread or Zigbee

Beacon-enabled superframe structure

- Beacons occur periodically [15 ms 245 seconds]
 - Devices must listen to each beacon
- Contention Access Period
 - Slotted CSMA/CA synchronized by beacon start time
- Inactive Period
 - No communication occurring. Assumes sleepy devices


Guaranteed Time Slots (GTS)

- PAN Coordinator may create a Contention Free Period with Guaranteed Time Slots
 - TDMA schedule assigned to specific devices
 - Slots eat up part of the Contention Access Period
 - No CSMA/CA within a guaranteed time slot

Handling tree-based topologies

- All coordinators listen to beacon from PAN coordinator
 - And can participate in that contention period
- Send their own beacons to child devices during inactive period
 - Children participate in that contention period

Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here

Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here
 - Could BLE mechanism of listen-after-send apply?

Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - · Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here
 - Could BLE mechanism of listen-after-send apply?
 - Only if sending to a high-power device, not among equals

Receiving messages

- 1. Listen during entire contention period
 - Can receive direct messages from any other device
 - Can immediately respond to messages as well

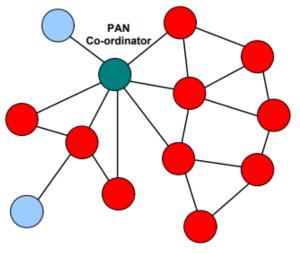


Figure 4: Mesh Topology

- 2. Request messages from Coordinator
 - Make all communication go through Coordinator
 - Send a request-for-data packet to coordinator to get information
 - Coordinator can include list of devices with pending data in beacon
- More complicated listening algorithms are possible
 - See B-MAC, X-MAC, A-MAC, etc.

Clear Channel Assessment (CCA)

- The "listen" part of CSMA/CA
- Variety of implementations are acceptable
 - 1. Energy above threshold
 - Energy for 8 symbol durations above threshold (RSSI)
 - 2. Carrier sense
 - Valid 802.15.4 carrier signal
 - 3. Energy AND/OR Carrier

Slotted CSMA/CA operation

- Have data to send
- Wait for next backoff slot (synchronized from beacon)
- Wait for 0-7 backoff slots (slot is 20 symbol durations: 320 us)
- Listen for two empty slots
 - Idle: Transmit
 - Occupied: wait 0-15 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat (upper limit configurable)
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Timeout

Unslotted CSMA/CA operation

- Have data to send
- Wait for next backoff slot (synchronized from beacon)
- Wait for 0-7 backoff slots (slot is 20 symbol durations: 320 us)
- Listen for two empty slots
 - Idle: Transmit
 - Occupied: wait 0-15 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat (upper limit configurable)
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Timeout

Break + Question

What are benefits/costs of using or not using beacons?

Beacons

No beacons

Break + Question

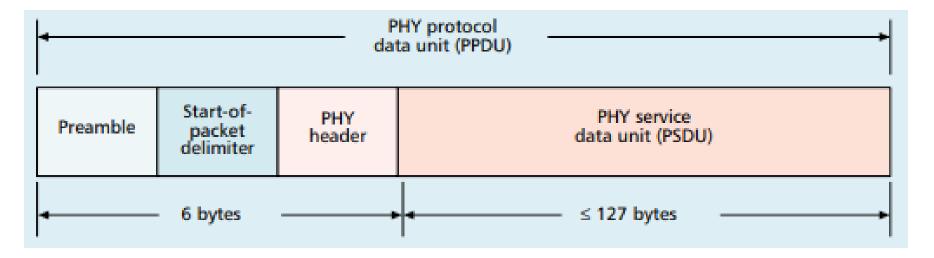
What are benefits/costs of using or not using beacons?

Beacons

- Enable energy savings by designating period with radios off
- Enable structured communication like Guaranteed Slots
- Require some central coordinator within range of all devices
- Tradeoff in inactive period:
 - communication latency vs beacon-listening costs
- No beacons
 - Enable all devices to be identical (no coordinator needed)
 - Require custom communication scheme
 - Could be better or worse for various qualities... (always-on radios?)

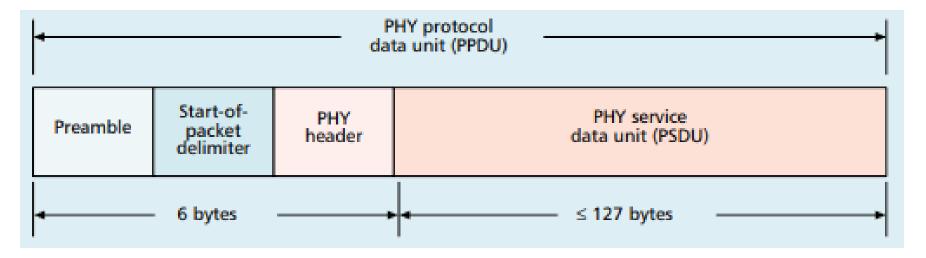
Outline

Overview


Physical Layer

Link Layer

Packet Structure


Base packet format

- Synchronization
 - Preamble: four bytes of zeros
 - Start-of-Packet: 0xA7
- PHY Header
 - One field: length 0-127
 - Why still 8 bits?

Base packet format

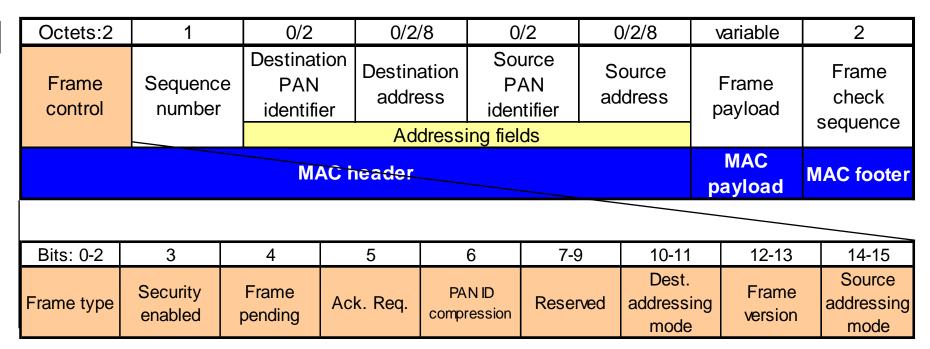
- Synchronization
 - Preamble: four bytes of zeros
 - Start-of-Packet: 0xA7
- PHY Header
 - One field: length 0-127
 - Why still 8 bits? Because computers depend on bytes

Frame control

Header

MAC header							MAC footer
		Addressing fields					sequence
Frame control	Sequence number	Destination PAN identifier	Destination address	Source PAN identifier	Source address	Frame payload	Frame check
Octets:2	1	0/2	0/2/8	0/2	0/2/8	variable	2
			B by (es —	<u> </u>	27 bytes ———	
			delim				

Start-of-

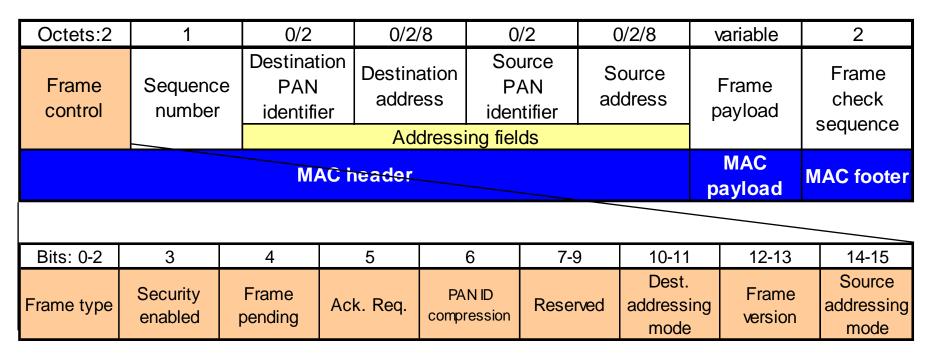

PHY

PHY service

- Sequence number
 - 8-bit monotonically increasing
- Addressing fields
 - PAN and addresses
 - Varies based on frame type

- Frame payload
 - Depends on frame type
- Frame check sequence
 - 16-bit CRC

Frame control



- Frame type
 - Type of payload included
 - Beacon, Data, Control, Ack
- Security enabled
 - Packet is encrypted
 - (extra 0-14 byte header)
- Frame pending
 - Fragmented packet

- Acknowledgement required
- PAN ID compression
 - No PAN ID if intra-network
- Addressing modes
 - Which fields to expect

Why no length field?

Frame control

- Frame type
 - Type of payload included
 - Beacon, Data, Control, Ack
- Security enabled
 - Packet is encrypted
 - (extra 0-14 byte header)
- Frame pending
 - Fragmented packet

- Acknowledgement required
- PAN ID compression
 - No PAN ID if intra-network
- Addressing modes
 - Which fields to expect

Why no length field?

Already in prior header

Frame types - Beacon

Beacon

Information about the communication structure of this network

2	variable	variable	variable			
Superframe Specification	GTS fields (Figure 45)	Pending address fields (Figure 46)	Beacon Payload			
MAC Payload						

- Sent in response to requests from scanning devices
- Sent periodically at start of Superframes (if in use)
 - Sent without CSMA/CA
- MAC Header configuration
 - Source address only, broadcast to everyone
- Packet contents
 - Superframe details, including Guaranteed Time Slots (if any)
 - Pending addresses lists devices for which Coordinator has data

Frame types - Data

- Data
 - Data from higher-layer protocols

- MAC Header configuration
 - Source and/or Destination addresses as necessary
- Packet Contents
 - Whatever bytes are desired (122 bytes address sizes)
 - May be fragmented across packets

Frame types – MAC Command (i.e., control)

- MAC Command
 - Various commands for supporting link layer
 - Join/leave network
 - Change coordinator within network
 - Request data from coordinator
 - Request Guaranteed Time Slot
- MAC Header configuration
 - Source and/or Destination addresses as necessary

1	variable
Command Frame Identifier	Command Payload
MAC Payload	

Frame types - Acknowledgement

- Acknowledgement
 - Acknowledges a Data or MAC Command packet
 - Not beacons or other acknowledgements
 - With acknowledgement, packet will automatically be transmitted again
- MAC Header
 - Repeats Sequence Number of acknowledged packet
 - No Source or Destination addresses
- Sent T_{IFS} after the packet it is acknowledging (immediately)

Analysis: maximum goodput

- Assume best possible case for data transmission
 - 122 Bytes per packet
 - At 250 kbps -> 3.904 ms
 - Plus Inter-frame spacing of 40 symbols
 - At 62.5 kBaud -> 0.640 ms
 - 122 Bytes / 4.544 ms -> 214 kbps
 - Compare to BLE advertisements: 9.92 kbps
 - Compare to BLE connections: 520 kbps

Outline

Overview

Physical Layer

Link Layer

Packet Structure