
CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

Lab: Thread

Introduction
The purpose of this lab is to get you some hands-on experience with Thread. This will come in a
couple of different forms:

● Create a network of thread devices
● Send data over IP between devices in a network
● Write an application using UDP

Goals
● Understand steps to create a Thread network and join it
● Explore UDP communication over a Thread link
● Consider the topology of a mesh network
● Write embedded applications that use traditional UDP communication

Equipment
● Computer
● nRF52840DK + USB cable (3 total for the group)

Github Classroom
● https://classroom.github.com/a/pmIDgPAV

Partners
● This lab should be done with your group of three

Submission
● Write your answers up for each task and submit a PDF to Gradescope.

Remember: I’m not looking for a formal lab report. Just your answers in any format that
makes sense. The goal is to prove that you did the lab and spent some time thinking
about it.

Page 1 of 12

https://classroom.github.com/a/pmIDgPAV
https://www.gradescope.com/


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

Table of Contents

Introduction
Table of Contents
List of Tasks
Lab Setup

1. VSCode and nRF Connect
2. Create Your Lab Git Repo

Create a Thread Network
3. Upload the Thread CLI Application
4. Building the Network

My Thread Network
5. Investigate My Network
6. Communicate with UDP Servers

Thread Application
7. LED Control Application

List of Tasks
● Section 4.1: Show your Thread network details

● Section 5.1: Show my Thread network details
● Section 5.2: Draw the topology of the mesh network

● Section 6.1: Get data from the UDP servers.
● Section 6.2: Which UDP server is the child node?

● Section 7.1: Write up what you did to make this work
● Section 7.2: Commit your application code and provide a link

Page 2 of 12



CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

Lab Setup

1. VSCode and nRF Connect
We’re using the same tools as the BLE lab, so they should already be good. If something about
your setup needs to be re-done, see the instructions for the BLE lab.

TASK: None. Continue to the next section.

2. Create Your Lab Git Repo
I’ll want to look at the code you wrote, so I need to give you somewhere to put it. Github
classroom makes private repos for each student team so you can get the starter code and
upload your own modifications. I can access all student repos, but you can only access your
own.

● There is a github classroom link on the first page of this document. Click it!

● Pick a team name
○ Unless someone else already started it, in which case, join their team name

● Generally, do what github classroom says

● At the end, it should create a new private repo that you have access to for your code
○ Be sure to commit your code to this repo often during class!

● The repo link might 404. If so, you first have to go to https://github.com/nu-ce346-student
and join the organization

○ I’m reusing the CE346 org for student repos for this class. Don’t worry about it

● Clone the repo locally on your computer
○ If you’re on Windows: git BASH does a good job https://gitforwindows.org/

■ Make sure there are no space characters in the entire path to the repo.
Probably put it somewhere like “C:/nrf_apps/REPONAME” if you have a
space in your username.

○ If you’re on MacOS or Linux, you can clone the repo from command line
○ We’ll be using VSCode for everything, and it has a mechanism for working with

git too, so you could use that:
https://code.visualstudio.com/docs/sourcecontrol/overview#_cloning-a-repository

TASK: None. Continue to the next section.
However, make sure to commit your code as you go, as I’ll want to see the final results.

Page 3 of 12

https://docs.google.com/document/d/1jDuK-LR_YfO965XjYnIjEl2jTmCOymYJ7t4sCXgmIIU/edit?usp=sharing
https://github.com/nu-ce346-student
https://gitforwindows.org/
https://code.visualstudio.com/docs/sourcecontrol/overview#_cloning-a-repository


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

Create a Thread Network

3. Upload the Thread CLI Application

Tell them which app to use and how to open with VSCode
Remind them about Build Configuration setup
Upload the code to the board
Open a serial terminal so you can interact with the board

We’ll start by uploading the Thread CLI (Command Line Interface) application. It provides a
text-based interface for sending commands that manage and introspect a Thread network. We’ll
have this same command-line interface available on all of our applications for this lab.

● Open the “commissioner-cli” application in VSCode using “Open an existing application”

● Add a build configuration for it, same as before:
○ Board as nrf52840dk_nrf52840
○ Configuration as prj.conf

● Build the code, Flash it to the nRF52840DK

● Monitor board output
○ To view board print statements, you’ll need to open a serial terminal. In the

application panel on the left, under “CONNECTED DEVICES”, you should see a
serial number for your board, then in a dropdown from that, one or more serial
devices. The little “plug” icon when you hover over one of the serial devices
should open up a serial port to it.

○ If it asks you for settings: 115200, 8n1, and rtscts:off are correct (115200
baudrate, 8 data bits with no parity bits and one stop bit, and no
request-to-send/clear-to-send)

Page 4 of 12



CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

○ Hit the reset button to see print output.

● Interact with the CLI
○ Either hit the enter key a few times, or hit the reset button on the board to see a

prompt
○ Type help to see all commands
○ Type ot help to see all commands relevant to OpenThread

TASK: None. Continue to the next section.

Page 5 of 12



CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

4. Building the Network

Once you have at least two boards with the Thread CLI loaded onto them, you can build your
own network.

I recommend connecting to each board on a separate computer. That’ll make it easier to
remember which console is which board and will allow you to add some physical distance
between the boards.

We’re going to be using the Commissioning process, which requires that a board be
authenticated and authorized to become part of the network. One of your boards will have at
least three roles: Thread Leader, Commissioner, and Router. The other board will either be a
Router or an End Device, depending on your configuration. Commissioning in Thread is
described here (we’ll be doing “on-mesh” commissioning without a Border Router):
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.5.2/nrf/ug_thread_commissioning.html

● Here is a guide to the CLI commands:
https://github.com/openthread/openthread/blob/main/src/cli/README.md

A warning, not all commands will work. Depending on the configurations used in the
prj.conf file, different options are enabled on the board and it will be able to respond
to different commands.

You’ll need to look through a bunch of those, as they’ll be very important. All of them are
behind the “ot” command to start with, even though they don’t show it in the examples.
So something like “ot scan”, not just “scan”.

● Generally, to get started, you should follow major steps 2 (“Disabling the Thread
Network”) through 4 (“Adding the Joiner”) here:
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.5.2/nrf/ug_thread_commissi
oning.html#configuring-on-mesh-thread-commissioning

A couple of notes for problems I ran into:
a. The commissioner step will fail until your device is a thread leader. If it doesn’t

work, give it a minute or so. You can check the thread state with the ot state
command.

b. When running “ot commissioner joiner add…”, the goal is to allow a specific
device to join the network if it has the key passphrase. So the address there is
the EUI64 from the device that is joining the network. Also, you can use your own
passphrase, but it has to follow the passphrase creation rules (At least six
characters, no I, O, Q, or Z.)

Page 6 of 12

https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.5.2/nrf/ug_thread_commissioning.html
https://github.com/openthread/openthread/blob/main/src/cli/README.md
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.5.2/nrf/ug_thread_commissioning.html#configuring-on-mesh-thread-commissioning
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.5.2/nrf/ug_thread_commissioning.html#configuring-on-mesh-thread-commissioning
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.5.2/nrf/ug_thread_commissioning.html#thread-ot-commissioning-roles-authentication


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

c. When you actually join with the secondary device, it should work the first time. I
ran into an issue though where it totally failed the second time I tried it though. It
turns out the device caches the PAN ID from the last network it connected to. You
can set the PAN ID to 0xffff to overwrite this and get joining working again (after
stopping thread and doing an ot ifconfig down)

■ Alternatively, you can “Erase and Flash” the device by clicking the little
chip icon that appears next to the Flash command in VSCode. That’ll
clear the Thread network config from Flash and give you a fresh board.

d. Once you add the joiner to the commissioner you have about two minutes to then
commission the new device before it times out. You can change this with an
additional timeout argument to ot commissioner joiner add

■ 15000000 (fifteen million) worked well for me

e. Generally, it just takes a bit for everything to start up. After connecting the joiner
successfully, it still takes up to 30 seconds for it to actually be a functional
network member (as checked with the ot state command). And then another
minute or so before it decides to upgrade itself to a router.

f. If you’re having problems with devices not seeming to join the network correctly,
make sure that thread is started on the board ot thread start

● Get all three of your boards connected together into a single network.

● Make one of the three boards into a child device.

All boards by default act as routers. Not right away as the join: remember that all thread
devices join as the child of an existing router. But they quickly (10-60 seconds) upgrade
to be routers.

You can make a board become and stay and End Device (child) though. To do so, take a
look at the ot routereligible and the ot state commands.

1. TASK: Show me details of the network you created
a. The network Dataset (on the commissioner)
b. The IP addresses of all three devices
c. The Router Table on the commissioner

i. Should be two routers (one is the leader/commissioner)
d. The Child Table on the commissioner

i. Should be one child

Page 7 of 12

https://github.com/openthread/openthread/issues/4342


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

My Thread Network

5. Investigate My Network
For some more interesting insights, we’d need a larger network. Good news! I have a network of
eight devices set up in the area around my office: Tech L368. You should be able to connect to
the network and determine things about how it works.

● To connect, you’ll use the same CLI application we’ve been using previously. Here’s that
guide again: https://github.com/openthread/openthread/blob/main/src/cli/README.md

● I have already set up a commissioner, with the password: NUCS397
○ So you’ll do the ot joiner start NUCS397 command on your board

■ Make sure that your network interface is up first

○ Make sure to either Erase-and-Flash it to clear the prior network’s credentials, or
you’ll have to manually set the PAN ID to 0xFFFF with ot panid 0xffff
to clear the credentials

○ It’ll still take a few seconds, but you should be able to connect to the network. If
you’re having serious issues, let me know. There’s a small chance that the
network crashes and you can’t join anymore, although I’ve kept it stably running
for several days straight without issue so far.

● Once you’ve joined, snoop around the network a little to figure out how it connects.
○ A particularly useful tool for doing so is the ot meshdiag family of commands.

There are several subcommands there that let you inspect topology, router
tables, and children for any node on the network.

○ These commands only work on commissioner-cli out of the box. To enable
them for other apps, add CONFIG_OPENTHREAD_MESH_DIAG=y to prj.conf

1. TASK: Show me details of my network
a. The network Dataset
b. How many devices are routers and how many are children
c. IP addresses for all of the routers AND children

2. TASK: Draw the topology of the mesh network
a. Show which routers connect to which other routers
b. Show which routers are parents to which children
c. Show which device is your own connected device
d. Draw in any clean and readable way you like: hand-drawn, diagramming

software, powerpoint, MS paint, etc.

Page 8 of 12

https://www.mccormick.northwestern.edu/contact/tech-room-finder-map.php?id=L368&room-floor=3&room-id=1454&room-ingress=L364
https://github.com/openthread/openthread/blob/main/src/cli/README.md


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

6. Communicate with UDP Servers
In addition to just existing, two of my devices are running IPv6 UDP servers. You can send data
to them with a CLI command and get responses back.
➔ UDP Server 1: fdc3:c425:b8f0:a6df:d636:192d:1530:69c3
➔ UDP Server 2: fdc3:c425:b8f0:a6df:e848:24fc:a217:252c
➔ Port: 6060 (for both)

● To send UDP messages, you can use the ot udp family of commands.
○ Be careful not to mess up the IPv6 address. You should be able to copy-paste it.

○ The UDP servers accept a number of commands. If it’s not a valid command, it
should respond with the list of commands. So just start by sending whatever data
you want.

○ One of the UDP servers is a child node, with a polling period of 10 seconds. So it
will respond with up to 10 seconds of latency.

1. TASK: Get data from the UDP servers. For each server, determine what the list of
commands are and get me the data from each command.

a. Make sure you’ve gotten all the responses from both servers.

2. TASK:Which UDP server is the child node? (identify it by IP address)

Page 9 of 12



CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

Thread Application

7. LED Control Application
If you haven’t realized yet, this class is going to be a big adventure in using buttons to blink
LEDs via much too complicated of methods. So, let’s do it with thread and UDP.

The overall goal is that you will have three devices. One commissioner/leader/router with no
special code, one child which is also a UDP server, and one router which sends UDP packets.
Whenever a button is pressed on the router, it should send a UDP packet to the server
informing it that a button was pushed and which button it was. When the server receives a UDP
packet, it should toggle the corresponding LED on or off (whatever the opposite of the current
state is). So each time you press a button, the corresponding LED should turn either on or off.

● The commissioner/leader can be set up as you’ve done previously with the thread-cli
app.

● There is starter code for the two applications named router-base and
child-udpserver

○ The relevant bits are the code in main.c and the prj.conf settings.

○ Note that these applications also have the Thread CLI installed, so you can
configure their Thread network settings via that.

○ For the child, you can configure the polling period in the prj.conf file. This will
determine the latency of its responses. Here’s where you can look up information
on prj.conf settings:
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.6.0/kconfig/

● First, you should figure out how to write an IPv6 UDP server that works on a regular
computer (before trying to get it working on an embedded device).

○ If you’ve never used the socket interface in C before, slides 49-66 here explain
some of the details: lecture18_networks.pdf

○ Here’s a pretty good example of how to write a UDP server and client:
https://www.tack.ch/unix/network/sockets/udpv6.shtml

■ However, you should hard-code a Port number rather than let it choose.
And the getsockname() call isn’t all that helpful.

■ You’ll also want to modify it to run forever by putting recvfrom() in a
while loop.

Page 10 of 12

https://drive.google.com/file/d/1VU2YM26pm22JGWbZatZlOBMkzfekC7y_/view?usp=drive_link
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/2.6.0/kconfig/
https://www.tack.ch/unix/network/sockets/udpv6.shtml


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

○ Try this locally first!! If you’ve got a Linux or MacOS machine you can run it. You
could also go onto Moore and run it. You can test the server side alone with the
Netcat command: nc -6 -u ::1 PORT (then type a message and hit enter)

● Next, you’ll want to port that server to your child application. The POSIX socket function
calls should just work as-is without changing them. (Which is a pretty darn cool feature of
Zephyr.)

○ The initialize_server() function will hold the server startup code.

○ The run_server() function will hold the while loop and your recvfrom() call.

○ The k_work mechanism that’s already set up runs a function in a dedicated
thread. That way it can run indefinitely in parallel to whatever the other code is
doing (in this case, keeping Thread running).
https://docs.zephyrproject.org/latest/kernel/services/threads/workqueue.html

○ You can test your child UDP server with the ot udp family of commands from
your commissioner, just like you did in the prior step with the UDP servers on my
Thread network.

● Finally, you’ll want to port the UDP client to your router application. Again, the code
should “just work” (easier said than done).

○ Since the UDP client implementation doesn’t need to block forever, you can call
those functions directly from the button callback and don’t need any special
mechanism for it.

○ For the Router, you’ll need an IP address for the child. You should boot the child
first, figure out what its IP address is, and then hardcode that IP address in the
router code.

● Remember how buttons and LEDs work from your BLE implementation to wrap up the
whole thing.

1. TASK:Write a few sentences on what you had to do to make this work. Particularly note
anything that was especially challenging to get working.

2. TASK: include your new code for BOTH child and router in Github and give me a link.

a. If you changed anything in the commisioner-cli app, note that too. But you
probably didn’t.

Page 11 of 12

https://docs.zephyrproject.org/latest/kernel/services/threads/workqueue.html


CS397/497 Wireless Protocols for the Internet of Things
Spring 2024

Page 12 of 12


