Lecture 16 Localization

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2021

Northwestern

Today's Goals

- Discuss ideas in localization
 - Uses wireless signals for the process
 - Important for the Internet of Things

• Describe background on GPS

- Overview of indoor localization techniques
 - Fingerprinting, Ultra-wideband, etc.

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

Background knowledge?

• How does GPS work anyways?

Background knowledge?

• How does GPS work anyways?

- Know the position of all satellites
- Receive signals from multiple satellites
- Determine distance from each satellite
- Trilateration

Trilateration

- Determine distance from each beacon, then find position
 - Apply trigonometry to solve triangle with beacons. Requires:
 - 3 lengths (or some angles and lengths...)
 - Solve two triangles and get 3D position

Most common and accurate localization approach

Determining distance

• Making trilateration work requires distance measurements

- Techniques
 - RSSI
 - Time of Flight
 - Time of Arrival

Reminder: problem with RSSI-based distance – not accurate

 Pathloss is NOT only due to distance

 RSSI is way worse at this than you hope it would be

Citation: literally everyone has made this figure at some point

Time of flight (also known as time of arrival, ToA)

- Determine distance by knowing:
 - Exact position of infrastructure
 - Transmit time
 - Receive time
 - Signal velocity (i.e. speed of light)
- Infrastructure transmits and device listens
 - Can happen all the time, but devices only listen when they want a position
- Requires time synchronization between infrastructure and device
 - Synchronization must be good: $1 \ \mu s = 300 \ meters$

Time difference of arrival (TDoA)

- Device transmits and infrastructure receives transmission
 - Multiple infrastructure nodes receive at different times based on distance
- Determine distance by knowing
 - Exact position of infrastructure
 - Time of arrival at two different locations
 - Signal velocity (i.e. speed of light)
- Doesn't require synchronization with infrastructure!
 - Still requires synchronization between infrastructure nodes
 - Does require device to transmit loud enough for infrastructure to hear it...

How many anchors are needed?

- 3 anchors gets a 2D location
- 4 anchors gets a 3D location
- Shortcut: if the alignment is right, 3 anchors can do 3D
 - 3 anchors result in two possible points that satisfy equations
 - One will be on the ground, the other somewhere mid-air or underground

Real-world complication: accuracy

• No distance measurement will be perfect

- Which means trilateration will not be perfect either
 - Need to solve equations in a fuzzy manner looking for least error

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

GPS overview

- Trilateration using Time of Flight from at least 4 satellites
 - Satellites in well-known orbits with VERY stable clocks
- Satellites placed in Medium Earth Orbit (20,000 KM)
 - Orbit earth twice per day
 - Placed such that 4 are in view everywhere, always
 - 31 total in orbit as of November 2020
 - Most recent launch November 5th 2020
- Comparisons
 - LEO 200-2000 km, ISS at 340 km
 - GEO 35,000 km

Satellite visibility overhead

GPS PHY

- GPS frequency
 - 1.2 GHz and 1.5 GHz
 - 10-15 MHz bandwidth
- BPSK modulation

- Signal has to travel 20,000 km, but most of that is through space
 - Tx power 25 Watts (44 dBm)
 - Rx sensitivity -140 dBm to -160 dBm (50 bps data rate)
 - ~200 dBm total link budget

GPS transmissions

- Each satellite sends a unique pseudo-random number sequence
 - Sequence repeats in time (over minutes) and is well-known
 - Position in signal is used to calculate time of flight

GPS requires signals from multiple satellites

- 4 satellites are needed to determine location and time
 - 3 for 2D location (assume on ground) and 1 for time offset
 - Solve for both as a single equation
- Steps to finding location
 - Initialize time to whatever you heard from a satellite (~100 ms sync)
 - Get time of arrival from four satellites
 - Four variables
 - x, y, z, and time offset

Additional GPS data

- Receiver needs to know additional information
 - Current time
 - Position of each satellite
- GPS transmission has this data layered on top (50 bps)
 - Listening for (up to) 30 seconds gets time and this satellite's position
 - Known as ephemeris
 - Valid for up to 4 hours
 - Listening for 12.5 minutes gets all satellites' positions
 - Known as almanac
 - Valid for up to two weeks
- Cold-start for an embedded device takes significant time

Assisted GPS

- How is cell phone GPS so quick?
 - Download almanac from the internet (only 1.8 kB)
- Bootstrap location information
 - Cell towers can give coarse position
 - Enables device to know which satellites are overhead

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

Clearing something up

• The goal is **NOT** directing people through a building

 Just because that's what GPS is used for outdoors doesn't mean we need that application indoors

Goal of indoor localization

- The goal is positioning *things* within a building
 - Where can I find **X**?
 - X: where am I located?
 - X and Y: are we near each other?

- Robotic navigation is also important
 - Although there are many approaches here

Localization classes

- Absolute location
 - X, Y, Z position based on already known infrastructure locations
 - Like GPS does
 - Installed localization hardware known as *anchors*
- Relative location
 - Position relative to some other device
 - Technically absolute location is a version of this
 - Might only need a few devices
 - How far is the smartphone from the computer?

Localization knowledge

- What kind of a result is actually useful?
 - You are at {15, 27.5, 1}
 - You are at Room 224
 - Depends on the application

• Additional systems on top of the localization method can translate between location representations

Barrier problem

• "I'm here to pick up fish"

 Walls are very contextually important, but difficult for localization systems to detect

Accuracy notation

- "40 cm median accuracy"
 - Majority of devices are 40 cm or better!
 - What about the other half?
- 90th percentile error is often more important for real-world use

- My least favorite aspect of localization
 - Be wise to these tricks

Outline

Localization Background

• GPS

Indoor Localization

• Overview

• Fingerprinting

- Ultra-wideband
- Other techniques

Mapping existing infrastructure

- Can we repurpose existing infrastructure for localization?
 - For example: WiFi access points
 - Benefit: localization works with unmodified hardware
- Mapping instead of trilateration
 - Make a map of infrastructure and use that to locate device
 - Coarse example: existence of WiFi network SSIDs
 - Fine-grained example: signal strength to each Access Point
 - Known as fingerprinting

Fingerprinting overview

- At setup time, for many locations throughout building
 - Measure signal strength to Access Point
 - Record measurement in a database with location
- At run time, for the device that wants a location
 - Measure signal strength to Access Point
 - Look up measurement in database to get location

Fingerprinting improvements

- Measurements can use several Access Points simultaneously
 - Improves accuracy quite a bit
- Doesn't have to be WiFi based at all
 - Cellular networks can do fingerprinting
 - Deploy your own BLE beacons throughout environment
- Apply techniques for minimizing error in signal strength
 - Measurement won't match record exactly
 - But minimizing error should approach the same location

Fingerprinting challenges

- Effort to create database in the first place
 - Manually take measurements at every location
- Environment is not stable
 - Signal strength changes as chairs, doors, and people move
 - Need ability to periodically re-measure
 - Update database with most recent recording while in use
- Measurements vary between devices
 - Differ based on antennas, cases, how you hold it, etc.

Fingerprinting accuracy

- State-of-the-art: median accuracy of 0.5-1.5 meters
 - Not bad depending on the application!
 - Likely places you in the right room, or at least nearby
 - Long tail can be large, but more access points helps this
- Barrier problem capability depends on walls
 - Some materials attenuate signal strength more than others

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques

Improving accuracy

- To get really good accuracy, let's return to trilateration
- Plan: Send an RF signal from one device and time how long it takes to reach another
 - Brief transmissions rather than continuous like GPS
- Problem: When does this signal arrive?
 - Need to pick somewhere in rise as the "arrival time"

Multipath problem

- Real-world signals bounce off of things in the environment
 - Multiple, time-delayed versions of signal arrive at antenna
 - Result smears out the arrival of energy in time
 - More reflections mean more peak energy, but longer rise time
 - This isn't predictable. Depends on the exact environment configuration

Why does ultra-wideband yield better localization performance?

- Wider bandwidth makes the RF pulse narrower in time
 - Make it narrow enough, and multipath becomes entirely separate

Ultra-wideband localization system

• Narrow ultra-wideband pulses makes arrival timing work

- The rest is a copy of well-known techniques
 - Deploy anchors in the environment with known positions
 - Measure distance between anchors and device
 - Time of Flight (if anchors transmit)
 - Time Difference of Arrival (if devices transmit)
 - Trilateration to find position

Localization state-of-the art

- Microsoft indoor localization competition, 2016
 - Teams are given a day to measure and deploy their systems in a space
 - Provide {x, y, z} coordinates using up to 5 anchors in large open room

2019 results (Microsoft indoor localization competition)

Improvements to ultra-wideband

- Improve results with multiple, diverse measurements
 - Sources of diversity
 - Send on multiple channels
 - Send with multiple antennas
 - Receive with multiple antennas
 - Measure each combination of these and average to get better results
- Combine with backscatter approaches
 - Result is very slow (minutes to locate device) but very low power (<1 μ W)
 - Most inventory doesn't move!

Bringing UWB to the real world

- Ultra-wideband radios have been fairly specialized
 - Needed to build special hardware to use them

- iPhone 11 and 12 have UWB radios!!!
 - Use cases are still a little unclear
 - Opens a big area of development

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- \cdot Other techniques

Ultrasound

- Advantages
 - Solves the barrier problem
 - Human spaces already designed to contain sound
 - Easier to get high-accuracy results
 - Sound is \sim 1,000,000x slower than light
 - Less synchronization is needed to get same accuracy
- Disadvantages
 - More energy to transmit
 - Slower update rate (still sub-second)
 - Limited range
 - Pets can hear it...

Inertial navigation

- If you know acceleration, you can get position, just integrate!
 - With quite a bit of error
- Accurate over short distances with filtering approaches
 - Can be used to augment other systems
 - Get a fix every few seconds from localization system
 - Use inertial navigation to interpolate between measurements

- IMUs (Inertial Measurement Units) available in all smartphones
 - Accelerometer, Gyroscope, Magnetometer

ARKit (and other AR techniques)

- Leverage smartphone cameras for positioning
 - Pictures of a user's surroundings can be compared to floorplan
 - Related to SLAM techniques (Simultaneous Localization And Mapping)
- Can build an incredibly accurate system
 - With a bit of bootstrapping
 - Probably applies most to robotics use cases

Vibrations

- Determine shared context of a table
 - Vibratory motors and IMUs are common
 - Signaling demonstrates nearby devices

(a) Establishing a first-time Bluetooth connection

(b) Desktop detection for pre-connected devices

(c) Connecting with hidden table-level services

(d) Establishing a desktop area network

Angle of arrival (AoA)

• Trilateration doesn't only require distances, angles work

- Antenna arrays can be used to determine the angle of an incoming signal
 - Allows the use of normal RF communication (WiFi or BLE)
- BLE 5.1 includes AoA localization

Outline

Localization Background

• GPS

Indoor Localization

- Overview
- Fingerprinting
- Ultra-wideband
- Other techniques