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Today’s Goals

* Discuss challenges faced by LPWANs and possible solutions

 Describe RFID communication and backscatter
« Explore how backscatter techniques can be used for sensor networks



Outline

- LPWAN Challenges
 Bit flux
- Capacity problems
« Coexistence problems

 RFID Overview

» Backscatter for Sensors




Do novel networks meet application needs?

« How do we compare varied requirements and capabilities?
« Networks have throughput per gateway and range of gateway.
 Applications have throughput per device and deployment area.

« Each gateway must support throughput for all devices in its
coverage area.
« Deployment areas are often wider than a single gateway’s range.

» Solution: compare the density of communication.
« Data communication rate per unit area.



New metric for wide-area communication.

Our proposed metric: bit flux

network throughput

o Dbit flux =

coverage area

« Units: bit per hour / m?

o First suggested by Mark Weilser

Branden Ghena, et al. "Challenge: Unlicensed LPWANSs Are Not
Yet the Path to Ubiquitous Connectivity." MobiCom’19



Bit flux can measure application needs.

For an application:

each device's uplink
bit Flux = = P

deployment area

e Assumes a relatively homogeneous
distribution.



Bit flux can measure network capabilities.

For a network:

gateway goodput

bit flux =
gateway coverage area

e Assumes a non-overlapping deployment of
gateways.

e Note that bit flux alone ignores the total number
of gateways required.



Bit flux accounts for spatial reuse.

e Reducing coverage area and deploying
additional gateways improves capacity.

gateway goodput

e bit flux T =

coverage areal




Bit flux measurement for LoRaWAN.
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Networks differ in capability by orders of magnitude.
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Range reduction results in a bit flux curve for each network.
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Let's compare network capabilities to a real-world application.

Smart household electric meters.
« ~250 bytes of data every 4 hours
» ~370000 electric customers in San Francisco

250 bytes :
" hoitlrs * 370000 devices 51000 bps _ bph

~ ~ 1.5
120 km? 120 km? ma
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All networks are capable of meeting the data needs of electricity metering.
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Unlicensed LPWANSs lag behind Cellular IoT in ability to support applications.
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Sigfox requires range reduction to meet application needs.
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Capacity Problem
« Throughput capability of Sigfox is
insufficient to support application needs

[t can only support the application with
reduced range and additional gateways
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Capacity solutions are relatively straightforward.

» Better access control mechanisms (OFDMA?).
« Recover simultaneous transmissions (Choir and Charm).
 Increase bandwidth (TV white spaces).

« All likely come at the cost of increased energy usage...
« Results in a protocol that looks pretty similar to cellular...

Adwait Dongare, et al. "Charm: exploiting geographical diversity through coherent combining in low-power wide-area networks." /PSN’18
Rashad Eletreby, et al. "Empowering low-power wide area networks in urban settings." SIGCOMM’17

Abusayeed Saifullah, et al. "SNOW: Sensor network over white spaces." SenSys’16
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LoRaWAN devotes most of its network capacity to a single application.
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Coexistence Problem
« LoRaWAN can meet application needs

« But only by using 50% of the 915 MHz
unlicensed-band spectrum
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Coexistence Is inevitable in urban areas.

e Urban environments and long range lead
to many overlapping deployed networks.

o Capacity problems worsen coexistence by
devoting more bandwidth to one
application.

e It's not just electricity metering...




Coexistence in unlicensed bands is a more difficult problem.

« No methods for inter-network negotiation so far.

« Without buy-in from most deployments, all access control becomes
uncoordinated.

 Cellular IoT does not have this problem

19



Cellular may dominate future deployments.

e LTE-M and NB-IoT are now deployed in the US (and
worldwide).

e Licensed bandwidth avoids the coexistence
problem.

e Cellular may solve many applications but is not a
perfect solution.

o  Still has higher energy and monetary costs for use.
o Also limited to where service is already available.
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Unlicensed LPWANSs are still useful for some scenarios.

 Controlled or unoccupied regions have reduced coexistence concerns.
 Industrial factories, farms, parks and forests.

 Unlicensed networks are very exciting for research.
« Anyone can deploy a network wherever they want.
« Much easier to explore protocol modifications and new technologies.

» Research suffers without real-world applications.
« Problem areas are strong recommendations for new research.
« New research is only useful if they will have real-world impacts.

21



Implications — Low-Power Wide-Area Networks.

» Existing unlicensed LPWANSs face significant challenges in
supporting urban applications.

 Best suited for industrial or agricultural uses in controlled environments.

* Research directions for unlicensed LPWANSs:
 improve network capacity,
* and enable coexistence.

* Cellular IoT networks (LTE-M and NB-IoT) are positioned to solve
the needs of city-scale sensing.

« If the money and energy costs are there.
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Radio Frequency ID

« Cheap, low-power ubiquitous communication
« RFID tags on (or in) products
« NFC communication to/from smartphone

* Requirements
* Need to transmit small amount of data (ID)
* Need to operate with little or no energy
« Most do not have batteries
 Short interaction time (fast enough bit rate)
« Range can be extremely limited
« Meters to centimeters (or millimeters)

S
S ]
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Making ultra-low power radios

 How do we make a radio that's lower power?

« What is the most costly part of the radio?

« Carrier-frequency generation
« Modulating bits is comparatively lower energy

» Solution: do not generate carrier
 Instead, use existing RF signal transmitted nearby
« Common case: sent from nearby higher capability device
« Dream case: use ambient RF signals to communicate

« Bonus: can harvest energy from the signal being sent

« Two versions in practice: backscatter and inductive coupling
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Backscatter theory of operation

 VVary between absorbing or reflecting signal to modulate data

« Wireless transmissions at mircowatts of power draw
* Frequency bands: 400 MHz, 900 MHz, 2.4 GHz
« These are the really really cheap tags (~$0.15 each)

RF |7 Modulating Signal (Digital)
Switch L

Backscatter tag Reader/ Receiver
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Inductive coupling theory of operation

* A shared magnetic field is
created between the two
devices

» Change in current through one
device induces current change
through the other

 Device can vary load to transmit
data

Reader

Reader

Antenna

* Very low frequency bands
(135 KHz, 13.56 MHz)

° Tra nsmit th rough materia IS Power at tag Ptag o 1/dé Preader d = tag - reader distance
including skin

« Sensitive to metal
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RFID challenges

» Essentially free communication!
» What's the cost (besides having a higher-capability device)

« Difficult to reflect energy when it is already so low
 Essentially double the path loss (there and back)

« Range is very limited (or transmit power needs to be high)
« Meters of range, maximum
» Centimeters for inductive coupling

« Alternatively, could decouple signal generation from reception
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Classes of RFID devices

 Passive RFID
« No battery, harvests energy from RF signals

» Active RFID

 Contains a battery used to operate
« Still reflects RF signal to communicate
 Enables long battery lifetime
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Car RFID systems

 Two mounted antennas

* One broadcasts energy,
activating the RFID device

 The other receives the
reflected data

» Devices are battery
powered for longer-range
operation

« Don't have to energize
themselves with signal

« Batteries last a decade




MAC layer for RFID tags

» Cards are limited in capability so we can’t do anything fancy
 But tags are frequently co-located, so some solution is necessary

 Option 1: Aloha with pseudo-random backoff
« Reader sends out initialization, tags randomly respond back

 Option 2: Adaptive binary tree
« Reader sends out initialization, along with first bit of ID
« All cards matching that ID respond
« Reader sends out a second bit of ID
« Repeat until CRC is valid, then go back and choose other branches
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What data should a card send?

» Let’s think about security for a minute

« Is just sending ID bits sufficient?
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What data should a card send?

» Let’s think about security for a minute

« Is just sending ID bits sufficient?
 Simple identification, maybe. (e.g. products in a store)
 For authentication, no. Need to avoid replay attacks.

* Include some kind of challenge and response
 Probably also encrypted

« May also read/write from an arbitrary memory in the card
« Up to several hundred bits of storage

33



Electronic Product Code (EPC)

* Format created by GS1
 Not-for-profit org that created and standardized barcodes

 12-byte identifier for products for RFID use

Header

EPC Manager

Object Class

Serial Number

8 bits

28 bits

24 bits

36 bits

(version number)

(Company ID)

(Product type SKU)

(Unigue per instance of product)
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Near Field Communication (NFC)

« Same Inductive Coupling concept (13.56 MHz)
 But attached to a powered and capable device (smartphone)

« Can act as a tag or as a reader
 Allows smartphone to power a tag if needed
« Alternatively, smartphone could act like a card and respond to a reader
« Two smartphones can communicate without power transfer

 Data rate 100-400 kbps!
« NRF52840 capable of 100 kbps communication with attached antenna
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“Embedded” sensors

« How do you change batteries in a device that’s inside a wall or
inside someone’s body?
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Backscatter for sensor networks

Conventional "*‘ ’WVWVV\ LC:

Transceiver
(a)
Backscatter A\ WA WWWE |
Transmissions Ambient Wireless fe Backscatter Tag fc+Af Receiver
Sgna Source

» Backscatter allows transmissions at up to 10000x lower power
than conventional radios
« Makes it very attractive for low-energy sensing devices
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RFID sensors

» First iterations were literally RFID sensors
 Limited by cost and range of RFID readers (only a few meters)

Moo 1.0
- WISPS.0 University of
University of Washington Massachusetts
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Backscatter + LPWAN = usable?

* Idea:
 Backscatter is about low energy operation
« LPWANSs are about long-range operation
« Can we combine them for low energy and medium-long range?

 LoRea: long-range transmissions at pW
 (Next few slides stolen from Ambuj'’s talks)

Varshney et al. "LoRea: A Backscatter architecture that achieves a long communication range” SenSys 2017
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Design element #1: LoRea decouples the
carrier signal generation and reception

* Bi-static setup spatially separates carrier generation from the receiver

a

Receiver

Can rier Tag
T

Commodity
Radio

Bi-static configuration

Monostatic configuration

e Use devices that surround us for providing the necessary carrier signal

Self-interference reduced due to path loss suffered by carrier signal



Design element #2: LoRea backscatters at a
frequency offset from the carrier signal

e Backscatter is a mixing process

Carrig r Tag
v

Commodity
Radio

=)

Receiver

* Transceivers attenuate interference at adjacent frequency channels
* Frequency separation reduces interference from carrier to backscatter signal

No complex self-interference mechanisms required at reader



We ran out of space while performing experiments

 State-of-art few meters. We achieved kilometers, was difficult to anticipate
* Initial experiments conducted near the university and a river in Uppsala
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Experiment Setup Receiving transmissions 1km away

_ from the setup
ambujv@berkeley.edu 43



LoRea outperforms state-

LoRea — 868 MHz (SENSYS 2017)
LoRea — 2.4 GHz (SENSYS 2017)
RFID
BackFi (SIGCOMM 2015)
Passive WiFi (NSDI 2016)
HitchHike (SENSYS 2016)
Interscatter (SIGCOMM 2016)
LoRa Backscatter (UBICOMP 2017)

of-the-art systems

3400 m
225 m
<18 m
5m
30 m
54 m
30 m
2800 m

Range reported are line of sight, with backscatter tag co-located with carrier source



Future research directions for Backscatter

« Improve capabilities for “ambient” backscatter
» Reuse existing RF signals rather than relying on carrier generation

« MAC layers for backscatter
* Need ability to communicate with very low power
« How do you manage access to the medium?

* Real-world usable backscatter stacks and hardware
« Needs to be deployable and usable by non-experts
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