Lecture 15 LPWAN Wrap-up and RFID

CS397/497 – Wireless Protocols for IoT Branden Ghena – Winter 2021

Some slides borrowed from Ambuj Varshney Uppsala / UC Berkeley

Today's Goals

Discuss challenges faced by LPWANs and possible solutions

- Describe RFID communication and backscatter
 - Explore how backscatter techniques can be used for sensor networks

Outline

- LPWAN Challenges
 - Bit flux
 - Capacity problems
 - Coexistence problems
- RFID Overview

Backscatter for Sensors

Do novel networks meet application needs?

- How do we compare varied requirements and capabilities?
 - Networks have throughput per gateway and range of gateway.
 - Applications have throughput per device and deployment area.
- Each gateway must support throughput for all devices in its coverage area.
 - Deployment areas are often wider than a single gateway's range.
- Solution: compare the density of communication.
 - Data communication rate per unit area.

PRESIDIO OF

New metric for wide-area communication.

Our proposed metric: bit flux

•
$$bit flux = \frac{network throughput}{coverage area}$$

• Units: bit per hour / m²

First suggested by Mark Weiser

Branden Ghena, et al. "Challenge: Unlicensed LPWANs Are Not Yet the Path to Ubiquitous Connectivity." *MobiCom'19*

PRESIDIO OF

Bit flux can measure application needs.

For an application:

$$bit flux = \frac{\sum each \ device's \ uplink}{deployment \ area}$$

Assumes a relatively homogeneous distribution.

PRESIDIO OF

Bit flux can measure network capabilities.

For a network:

$$bit flux = \frac{gateway \ goodput}{gateway \ coverage \ area}$$

- Assumes a non-overlapping deployment of gateways.
- Note that bit flux alone ignores the total number of gateways required.

Bit flux accounts for spatial reuse.

 Reducing coverage area and deploying additional gateways improves capacity.

• $bit flux \uparrow = \frac{gateway goodput}{coverage area \downarrow}$

Bit flux measurement for LoRaWAN.

Networks differ in capability by orders of magnitude.

Range reduction results in a bit flux curve for each network.

Let's compare network capabilities to a real-world application.

Smart household electric meters.

- ~250 bytes of data every 4 hours
- ~370000 electric customers in San Francisco

$$\frac{250 \text{ bytes}}{4 \text{ hours}} * 370000 \text{ devices} \approx \frac{51000 \text{ bps}}{120 \text{ km}^2} \approx 1.5 \frac{bph}{m^2}$$

All networks are capable of meeting the data needs of electricity metering.

Unlicensed LPWANs lag behind Cellular IoT in ability to support applications.

2G < 0.03% utilized4

Sigfox requires range reduction to meet application needs.

Capacity solutions are relatively straightforward.

- Better access control mechanisms (OFDMA?).
- Recover simultaneous transmissions (Choir and Charm).
- Increase bandwidth (TV white spaces).
- All likely come at the cost of increased energy usage...
 - Results in a protocol that looks pretty similar to cellular...

Adwait Dongare, et al. "Charm: exploiting geographical diversity through coherent combining in low-power wide-area networks." *IPSN'18*Rashad Eletreby, et al. "Empowering low-power wide area networks in urban settings." *SIGCOMM'17*

Abusayeed Saifullah, et al. "SNOW: Sensor network over white spaces." SenSys'16

LoRaWAN devotes most of its network capacity to a single application.

Coexistence is inevitable in urban areas.

- Urban environments and long range lead to many overlapping deployed networks.
- Capacity problems worsen coexistence by devoting more bandwidth to one application.
- It's not just electricity metering...

Coexistence in unlicensed bands is a more difficult problem.

- No methods for inter-network negotiation so far.
- Without buy-in from most deployments, all access control becomes uncoordinated.

Cellular IoT does not have this problem

Cellular may dominate future deployments.

 LTE-M and NB-IoT are now deployed in the US (and worldwide).

- Licensed bandwidth avoids the coexistence problem.
- Cellular may solve many applications but is not a perfect solution.
 - Still has higher energy and monetary costs for use.
 - Also limited to where service is already available.

Unlicensed LPWANs are still useful for some scenarios.

- Controlled or unoccupied regions have reduced coexistence concerns.
 - Industrial factories, farms, parks and forests.

- Unlicensed networks are very exciting for research.
 - Anyone can deploy a network wherever they want.
 - Much easier to explore protocol modifications and new technologies.
- Research suffers without real-world applications.
 - Problem areas are strong recommendations for new research.
 - New research is only useful if they will have real-world impacts.

Implications – Low-Power Wide-Area Networks.

- Existing unlicensed LPWANs face significant challenges in supporting urban applications.
 - · Best suited for industrial or agricultural uses in controlled environments.

- Research directions for unlicensed LPWANs:
 - improve network capacity,
 - and enable coexistence.

- Cellular IoT networks (LTE-M and NB-IoT) are positioned to solve the needs of city-scale sensing.
 - If the money and energy costs are there.

Outline

- LPWAN Challenges
 - Bit flux
 - Capacity problems
 - Coexistence problems

RFID Overview

Backscatter for Sensors

Radio Frequency ID

- Cheap, low-power ubiquitous communication
 - RFID tags on (or in) products
 - NFC communication to/from smartphone

- Need to transmit small amount of data (ID)
- Need to operate with little or no energy
 - Most do not have batteries
- Short interaction time (fast enough bit rate)
- Range can be extremely limited
 - Meters to centimeters (or millimeters)

Making ultra-low power radios

- How do we make a radio that's lower power?
- What is the most costly part of the radio?
 - Carrier-frequency generation
 - Modulating bits is comparatively lower energy
- Solution: do not generate carrier
 - Instead, use existing RF signal transmitted nearby
 - Common case: sent from nearby higher capability device
 - Dream case: use ambient RF signals to communicate
 - Bonus: can harvest energy from the signal being sent
- Two versions in practice: backscatter and inductive coupling

Backscatter theory of operation

- Vary between absorbing or reflecting signal to modulate data
 - Wireless transmissions at mircowatts of power draw
 - Frequency bands: 400 MHz, 900 MHz, 2.4 GHz
 - These are the really really cheap tags (~\$0.15 each)

Inductive coupling theory of operation

- A shared magnetic field is created between the two devices
 - Change in current through one device induces current change through the other
 - Device can vary load to transmit data
- Very low frequency bands (135 KHz, 13.56 MHz)
 - Transmit through materials including skin
 - Sensitive to metal

Power at tag Ptag α 1/d6 Preader

d = tag - reader distance

RFID challenges

- Essentially free communication!
 - What's the cost (besides having a higher-capability device)
- Difficult to reflect energy when it is already so low
 - Essentially double the path loss (there and back)
- Range is very limited (or transmit power needs to be high)
 - Meters of range, maximum
 - Centimeters for inductive coupling
 - Alternatively, could decouple signal generation from reception

Classes of RFID devices

- Passive RFID
 - No battery, harvests energy from RF signals
- Active RFID
 - Contains a battery used to operate
 - Still reflects RF signal to communicate
 - Enables long battery lifetime

Car RFID systems

- Two mounted antennas
 - One broadcasts energy, activating the RFID device
 - The other receives the reflected data
- Devices are battery powered for longer-range operation
 - Don't have to energize themselves with signal
 - Batteries last a decade

MAC layer for RFID tags

- Cards are limited in capability so we can't do anything fancy
 - But tags are frequently co-located, so some solution is necessary
- Option 1: Aloha with pseudo-random backoff
 - Reader sends out initialization, tags randomly respond back
- Option 2: Adaptive binary tree
 - Reader sends out initialization, along with first bit of ID
 - All cards matching that ID respond
 - Reader sends out a second bit of ID
 - Repeat until CRC is valid, then go back and choose other branches

What data should a card send?

Let's think about security for a minute

Is just sending ID bits sufficient?

What data should a card send?

Let's think about security for a minute

Is just sending ID bits sufficient?

- Simple identification, maybe. (e.g. products in a store)
- For authentication, no. Need to avoid replay attacks.
- Include some kind of challenge and response
 - Probably also encrypted
- May also read/write from an arbitrary memory in the card
 - Up to several hundred bits of storage

Electronic Product Code (EPC)

- Format created by GS1
 - Not-for-profit org that created and standardized barcodes

12-byte identifier for products for RFID use

Header	EPC Manager	Object Class	Serial Number
8 bits	28 bits	24 bits	36 bits
(version number)	(Company ID)	(Product type SKU)	(Unique per instance of product)

Near Field Communication (NFC)

- Same Inductive Coupling concept (13.56 MHz)
 - But attached to a powered and capable device (smartphone)
- Can act as a tag or as a reader
 - Allows smartphone to power a tag if needed
 - Alternatively, smartphone could act like a card and respond to a reader
 - Two smartphones can communicate without power transfer
- Data rate 100-400 kbps!
 - nRF52840 capable of 100 kbps communication with attached antenna

Outline

- LPWAN Challenges
 - Bit flux
 - Capacity problems
 - Coexistence problems

RFID Overview

Backscatter for Sensors

"Embedded" sensors

 How do you change batteries in a device that's inside a wall or inside someone's body?

Backscatter for sensor networks

- Backscatter allows transmissions at up to 10000x lower power than conventional radios
 - Makes it very attractive for low-energy sensing devices

RFID sensors

- First iterations were literally RFID sensors
 - Limited by cost and range of RFID readers (only a few meters)

WISP 5.0 University of Washington

Moo 1.0 University of Massachusetts

Backscatter + LPWAN = usable?

- Idea:
 - Backscatter is about low energy operation
 - LPWANs are about long-range operation
 - Can we combine them for low energy and medium-long range?

- LoRea: long-range transmissions at μW
 - (Next few slides stolen from Ambuj's talks)

Design element #1: LoRea decouples the carrier signal generation and reception

• Bi-static setup spatially separates carrier generation from the receiver

Use devices that surround us for providing the necessary carrier signal

Self-interference reduced due to path loss suffered by carrier signal

Design element #2: LoRea backscatters at a frequency offset from the carrier signal

Backscatter is a mixing process

- Transceivers attenuate interference at adjacent frequency channels
- Frequency separation reduces interference from carrier to backscatter signal

No complex self-interference mechanisms required at reader

We ran out of space while performing experiments

- State-of-art few meters. We achieved kilometers, was difficult to anticipate
- Initial experiments conducted near the university and a river in Uppsala

Experiment Setup

Receiving transmissions 1km away from the setup ambujv@berkeley.edu

LoRea outperforms state-of-the-art systems

System name	Communication range	
LoRea – 868 MHz (SENSYS 2017)	3400 m	
LoRea – 2.4 GHz (SENSYS 2017)	225 m	
RFID	< 18 m	
BackFi (SIGCOMM 2015)	5 m	
Passive WiFi (NSDI 2016)	30 m	
HitchHike (SENSYS 2016)	54 m	
Interscatter (SIGCOMM 2016)	30 m	
LoRa Backscatter (UBICOMP 2017)	2800 m	

Range reported are line of sight, with backscatter tag co-located with carrier source

Future research directions for Backscatter

- Improve capabilities for "ambient" backscatter
 - Reuse existing RF signals rather than relying on carrier generation
- MAC layers for backscatter
 - Need ability to communicate with very low power
 - How do you manage access to the medium?
- Real-world usable backscatter stacks and hardware
 - Needs to be deployable and usable by non-experts

Outline

- LPWAN Challenges
 - Bit flux
 - Capacity problems
 - Coexistence problems

RFID Overview

Backscatter for Sensors