
Lecture 16:
Security

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Tyler Bletsch (NC State), Berkeley CS61C

Administrivia

• No Monday Office Hours
• Memorial Day holiday

• Paging Lab due next week Thursday (May 30)
• If you haven’t yet, start putting some serious work into it

2

Today’s Goals

• Introduce OS security considerations.

• Describe memory-based attacks and defenses.

• Explore speculative execution attacks and ramifications.

3

Why is computer security so important?

• Most public security happens at least in
some portion on the honor system
• Pretty easy to break a window

• Keyed locks are easy to pick

• Master keys can be determined and
manufactured (Matt Blaze attack)

• Laws apply after you’ve done it

4

https://www.mattblaze.org/masterkey.html

Early computers didn’t have any security either

• Simple machines for doing computation do not
have private files or contention

• Timeslicing machines meant there were multiple
users, but all were employees of the same
company
• Permissions needed to be as secure as a file in a

locked drawer on a desk

“The act of breaking into a computer system has to
have the same social stigma as breaking into a
neighbor's house. It should not matter that the
neighbor's door is unlocked.”
- Ken Thompson, Turing Award Lecture, 1984

5

Connectivity of computers makes security a top concern

• Importantly, physical item security is dependent on the fact that
one person can only steal one thing at a time
• And it’s usually obvious when theft occurs

• The internet changed all of this for computers
• Usually not people breaking into computers manually, one at a time

• Instead it is computers breaking into computers by means of scripting

• And you can access a computer from anywhere on Earth

• Breaking into or controlling one car is a crime
• Controlling 100,000 cars remotely is a problem for the manufacturer

6

Mirai botnet (2016)

• Takes control of up to 600,000 insecure connected devices
• IP-attached cameras, DVRs, routers, printers

7

Botnets can be directed towards denial-of-service attacks

• Mirai is used for
DDOS attacks on
various websites
• Krebs on

Security blog
gets 623 Gbps of
traffic during one
attack

8

DDOS attacks targeting Krebs on Security

9

• Design for security

• Memory attacks and defenses
• Buffer Overflows

• Return-Oriented Programming

• Speculative execution attacks
• Meltdown

• Spectre

Outline

Trusted Computing Base (TCB)

• Trusted Computing Base is everything the OS relies on to enforce
security
• If everything outside of the TCB is “evil”, the TCB can still be trusted

• Important to be a clear, minimum set of components

• TCB includes
• Scheduler, Memory Management, Parts of file system, Parts of device

drivers

• Anything else must be assumed malicious
• Processes memory accesses, System call arguments, Received packets

10

Modern code bases are enormous

Program/Use Case Millions of Lines
of Code

Unix v1.0 0.01

Average iPhone app 0.04

Space Shuttle 0.4

Windows 3.1 2.5

Mars Curiosity Rover 5

Firefox (2015) 9.7

F-35 Fighter jet 24

Microsoft Office 2001 25

Windows 7 40

Facebook (2015) 62

Debian 5.0 codebase 68

11

• For many projects, no one
person has read and
understood all of it

• TCB needs to be agreed upon
by everyone working on the
project
• And needs to enforced by

everyone in the project

https://www.informationisbeautiful.net/
visualizations/million-lines-of-code/

Can we even trust the Trusted Computing Base?

• Can you trust the OS with your password? (or anything, really)
• How do you know that the OS you’re running hasn’t already been taken

over or modified in some way?

• Particularly large concern for server operators
• Thousands of computers
• All operated remotely without explicit users
• Need to ensure that they aren’t taken over

• Really malicious code might modify the OS if it has access
• That way even if the computer reboots, the malicious part remains
• Or modify the boot software (UEFI) to compromise everything

12

Hardware Root-of-Trust

• Idea: software can be tampered with, but hardware is MUCH more
difficult
• Requires physical access, at which point all bets are off anyways…

• When a server starts:
1. Root-of-Trust chip boots first and hardware automatically checks the

authentication of its code before starting it

2. Root-of-Trust code checks authentication of OS code before booting the
OS on the actual CPU

3. OS actually starts running on the CPU

• Now the code running on the server can be trusted to be authentic

13

Writing auditable code

• Code style and semantics really do matter!!
• If you want code to be secure, it needs to be read AND understood by

many people

• This is why I focus so much on semantics in Intro to C/C++

• Bad code style/semantics builds up cognitive load of the reader
making them less likely to notice when something is wrong
• 0 versus NULL

• &buf[0] versus &(buf[0])

• int x, y, z; versus int x; int y; int z;

14

Apple “goto fail” SSL bug

...

 if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

 if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

...
15

Spacing intentional. This code mixes tabs and
spaces and has random extra line breaks.

It is actually decently commented overall,
just not in this particular section.

Apple “goto fail” SSL bug

...

 if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

 if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

...
16

Spacing intentional. This code mixes tabs and
spaces and has random extra line breaks.

It is actually decently commented overall,
just not in this particular section.

Apple “goto fail” SSL bug

...

 if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

 if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

...
17

Outside of IF statement!! Always runs.

Spacing intentional. This code mixes tabs and
spaces and has random extra line breaks.

It is actually decently commented overall,
just not in this particular section.

Sandboxing approach to untrusted code

• What if you don’t know if you can trust some running code?
• Or you know you actively don’t trust it, but still want to run it

• Example, PDF interpretation is actually a Turing-complete language

• Lots of possibly buggy or abusable things going on in there

• But we do still want to interpret PDFs!

• Sandboxing: running code with restricted access to other parts of
the system
• Reduces the possible attacks the code might make on your system

18

iOS “BlastDoor” Sandbox

• iOS uses BlastDoor to sandbox arriving iMessage data
• Anyone can send anything over iMessage

• Data needs to be decompressed and interpreted with various image file
types supported

• LOTS of attack surface: various targeted “zero-click attacks”

• BlastDoor limits possible interactions
• No file system access

• No network access

• No interaction with other processes

• On a crash, restarts with exponential delay

19

Principle of Least Privilege

• Only provide access to resources that are necessary for a
legitimate purpose

• That way malicious behavior, that you aren’t even aware of yet,
has a limited amount of damage it can inflict

20

Security properties OS should enforce

• Confidentiality
• Private information should remain private

• Example: processes can’t read memory in another process

• Integrity
• Mechanisms should not be modified without permission

• Example: OS data structures can’t be modified by processes

• Availability
• Resources on the computer should be able to be fairly accessed

• Example: network access is shared among processes

21

OS security concerns

• Processor access
• Integrity: User versus kernel mode

• Availability: Timeslicing

• Memory access
• Confidentiality and Integrity: Virtual memory (and permissions)

• Availability: Swapping

• File access
• Confidentiality: Permissions (user and group)

• Integrity: only accessible through system calls

22

What about devices?

• Device access
• Confidentiality: User permissions… sort of?

• This gets complicated
• Should any app I run be able to activate my webcam or microphone?

• When should Uber be able to access my location?

• Still figuring this one out
• Smartphones are at the forefront

23

Android access control model

• Ask the user to approve
• Either at install time or at runtime

24

Authentication

• Act of proving some information, such as the identity of a
computer system user
• Often the responsibility of the kernel as a trusted entity

• Many actions are limited based on identity
• File access privileges

• Ability to install new programs

• Access to certain hardware devices or mechanisms

• Kernel versus user process is one identity separation
• Servers might have many different users

25

Identifying users

• Three overarching methods:
1. Authentication based on “what you know”

• Passwords, Security questions

2. Authentication based on “what you have”

• Security key, Cell phone

3. Authentication based on “what you are”

• Biometrics: fingerprint, face ID, retinal scan

• Multi-Factor Authentication (MFA) requires multiple different
categories from the above

26

Break + xkcd

27https://xkcd.com/538/

28

• Design for security

• Memory attacks and defenses
• Buffer Overflows

• Return-Oriented Programming

• Speculative execution attacks
• Meltdown

• Spectre

Outline

What’s wrong with this code?

#include <stdlib.h>

#include <stdio.h>

int main() {

 char name[1024];

 printf("What is your name? ");

 scanf("%s", name);

 printf("%s is cool.\n", name);

 return 0;

}

29

Buffer overflow potential with “nice” input

30

Buffer overflow potential with “evil” input

31

Buffer Overflow

• Arrays (buffers) in C are not bounds checked
• Can keep writing past the end of the array

• Overwrites either data section or stack section

• Still an incredibly common problem in C

• Key problem
• Trusting input from an untrustworthy source

• Users are not part of the trusted computing base

• Certainly not arbitrary inputs they can make

32

Heartbleed attack

• Vulnerability in OpenSSL
• 2014

• Started the trend of
vulnerabilities with cool
names and logos

33

Heartbleed attack

• Vulnerability in OpenSSL
• 2014

• Started the trend of
vulnerabilities with cool
names and logos

34

Return addresses constantly live on the stack

• Recall: When a function is called…
• parameters are pushed on stack

• return address pushed on stack

• called function puts local variables on the stack

• Memory layout

• C’s calling convention means arbitrary execution could happen
anywhere!

38

arbitrarystuffX

What do you do with arbitrary
execution?

• Open a shell that can run anything…

• Top: C code

• Middle: position-independent x86
assembly

• Bottom: machine code hex

39

Morris Worm

• November 02, 1988
• Roughly 88,000 computers on

internet at the time

• Worm
• Invading program that installs

itself on additional computers

• Infected several thousand
computers, taking down
internet for several days

40

How the worm entered computers: three methods

1. Debug vulnerability in sendmail – an email sending service
• Connect, enter debug mode, send arbitrary code to execute

2. Buffer overflow in finger – a command to list user details
• Send request with more than 512 bytes of arguments

• Execute /bin/sh

3. Guess passwords
• Get list of users for the machine worm is already running in

• Guess username, reverse username, 400 “popular” words, entire dictionary

41

Effects of Morris Worm

• Morris Worm created too many copies of itself
• Checked if there was already a worm on the computer before running

• 1 out of 7 of the executables just ran anyways (too high a default)

• Computers ended up with many processes running
• Check your understanding: How are too many processes harmful?

42

Effects of Morris Worm

• Morris Worm created too many copies of itself
• Checked if there was already a worm on the computer before running
• 1 out of 7 of the executables just ran anyways (too high a default)

• Computers ended up with many processes running
• Long response time due to so many processes
• Thrashing due to too much memory pressure
• Slowed computers to a halt

• Outcomes:
• Invaded ~6000 computers in hours (10% of the Internet at the time)
• CERT was created to manage software security
• First Computer Fraud and Abuse Act (CFAA) prosecution

43

Stopping malicious code by disabling execution

• The OS can allow a region to be written or executed
• But not both!

• NX bit in x86-64 (no-execute)

44

Overcoming no-execute

• Do we need malicious code to have malicious behavior? No

45

argument 2

argument 1

RA

frame pointer

locals

buffer
Attack code

(launch a shell)

Address of attack code

Code injection

argument 2

argument 1

RA

frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code reuse (!)

"Return-into-libc" attack

argument 2

argument 1

RA

frame pointer

locals

buffer

Default Stack

Return-oriented programming

• More general process to enable
arbitrary execution without code
rewrite

• Look through assembly instructions
followed by a return
• Known as “gadgets”

• Chain these gadget together to make
working code
• By placing addresses on stack

46

Gadgets can create a Turing-complete programming environment

47

• Loading constants

• Arithmetic

• Control flow

•Memory

add eax, ebx ; ret

stack
pointer

pop eax ; ret

stack
pointer

0x55555555

pop esp ; ret

stack
pointer

mov ebx, [eax] ; ret

stack pointer

0x8070abcd
(address)

pop eax ; ret

...

Address-space layout randomization (ASLR)

• Randomize memory region
locations in virtual memory
• Already spread throughout

physical memory

• Move locations of libraries and
code relative to each other
• Arbitrary address for attacker to

send code to gets harder to
predict!

• Implemented 2005-2007
• Linux, MacOS, and Windows
• 2011 for Android and iOS

48

Running a process again re-randomizes its layout

Overcoming ASLR

• ASLR is a probabilistic approach, merely increases attacker’s
expected work
• Each failed attempt results in crash; at restart, randomization is different

• Counters:
• Information leakage

• Program reveals a pointer? Game over.
• De-randomization attack

• Just keep trying! (carefully)
• 32-bit ASLR defeated in 216 seconds
• BlastDoor sandbox has delay after crash for exactly this scenario

• Under certain scenarios is less effective
• Poor source of randomness

49

Break + Question

• The Common Vulnerabilities and Exposures (CVE) system
documents publicly released software vulnerabilities.

• How long has it been since the last CVE due to a buffer overflow?

50https://www.cvedetails.com/vulnerability-list.php

https://www.cvedetails.com/vulnerability-list.php

Break + Question

• The Common Vulnerabilities and Exposures (CVE) system
documents publicly released software vulnerabilities.

• How long has it been since the last CVE due to a buffer overflow?
• Today is Thursday (May 23rd, 2024)

51https://www.cvedetails.com/vulnerability-list.php

Discovered Wednesday, May 22nd

https://www.cvedetails.com/vulnerability-list.php

Break + Question

• The Common Vulnerabilities and Exposures (CVE) system
documents publicly released software vulnerabilities.

• How long has it been since the last CVE due to a buffer overflow?

52https://www.cvedetails.com/vulnerability-list.php

Last MAJOR overflow vulnerability: Tuesday, May 21st

https://www.cvedetails.com/vulnerability-list.php

53

• Design for security

• Memory attacks and defenses
• Buffer Overflows

• Return-Oriented Programming

• Speculative execution attacks
• Meltdown

• Spectre

Outline

First, some background knowledge

• To understand Speculative Execution Attacks you really need to
understand low-level software and hardware

• A few pieces of background knowledge will be useful:
• Timing Side Channels

• Speculative Execution

• Keeping the kernel in Virtual Memory

54

Background: Side channel attacks

• Important for understanding speculative execution attacks

• Many physical systems have properties that may leak information
about internal state
• Determine RSA key bits based on power use during a decrypt operation

• Determine length of password by how long it takes to check it

55

Timing attacks are one side channel

• Timing attacks can be overcome with constant-time algorithms
which always take as long as the worst-case execution time
• But this means reducing performance

• Caches are essentially one big timing attack
• Speeds up access to data if it is present in the cache

• This was the goal!!

• An attack can know which data was accessed recently

• But that seems harmless, right?

56

Background: Speculative Execution

Modern processors want to always be doing something

• What if we’re going to branch based on a memory load?

• What if we just guess what the result will be and start executing
early!!

So they are often “speculatively executing” instructions

• Perform the operation and throw out the result if we shouldn’t
actually do it

• For example, branch prediction

57

Optimization: Kernel Mapped in Virtual Memory

Page tables map virtual memory to physical
memory for a process

But actually, we often leave the OS memory
in the page table too…

• Each page is marked as no-read, no-write
• Faster to switch back to the OS

• No need to TLB flush or page table swap if
the OS intends to go right back to process

• Also allows the kernel to swap out parts
of its own memory if necessary
• Such as page tables themselves

58

Process
Memory

Empty

OS
Memory

Empty

Virtual
Memory

0x00000000

0xFFFFFFFF

Meltdown

Security vulnerability in all modern processors

that allows arbitrary reads from memory

Disclosed in January 2018 by: (told Intel in June 2017)
● Jann Horn (Google Project Zero),
● Werner Haas, Thomas Prescher (Cyberus Technology),
● Daniel Gruss, Moritz Lipp, Stefan Mangard, Michael Schwarz (Graz University of

Technology)

Details:

• https://hackernoon.com/a-simplified-explanation-of-the-meltdown-cpu-vulnerability-ad316cd0f0de

• https://meltdownattack.com/meltdown.pdf

59

https://twitter.com/tehjh
https://googleprojectzero.blogspot.com/
https://www.cyberus-technology.de/
https://gruss.cc/
https://mlq.me/
https://www.iaik.tugraz.at/content/about_iaik/people/mangard_stefan/
https://misc0110.net/
https://www.iaik.tugraz.at/
https://www.iaik.tugraz.at/
https://hackernoon.com/a-simplified-explanation-of-the-meltdown-cpu-vulnerability-ad316cd0f0de
https://meltdownattack.com/meltdown.pdf

Step 1: Read from a kernel address

mov $KERNEL_ADDRESS_OF_SECRET, %r12

 mov (%r12), %eax

%eax now holds a byte of memory that we shouldn’t able to access

• This will be an invalid page fault!
• Once the instruction actually hits the end of the pipeline...

• For now, it loads that value into %r12 right away and continues
executing speculatively

60

Step 2: Read based on secret

mov $KERNEL_ADDRESS_OF_SECRET, %r12

 mov (%r12), %eax

 mov MY_ARRAY(%eax), %edx

%edx is a valid read from our own memory

• This is never going to finish either because the process will have
an exception from the prior instruction, but it will start
executing...

• MY_ARRAY here is a 256-byte array which is not in the cache

61

Step 3: Handle the Exception

mov $KERNEL_ADDRESS_OF_SECRET, %r12

 mov (%r12), %eax

 mov MY_ARRAY(%eax), %edx

The processor realizes you tried to read from memory you didn’t
have access to and generates an exception

• You can catch these and recover
• The invalid instruction and ones after it are rolled back as if they

never happened

62

Everything’s still safe right?

The processor never saved any results from the invalid accesses to
memory in registers

• So there’s no problem, right?

63

We forgot about the cache

The load affected the cache!!!

mov $KERNEL_ADDRESS_OF_SECRET, %r12

 mov (%r12), %eax

 mov MY_ARRAY(%eax), %edx

The value at address MY_ARRAY+%eax was saved in our cache

64

Step 4: Time loads from memory

for (int i=0; i<255; i++){

 start_time = time();

 int temp = MY_ARRAY[i*CACHE_BLOCKSIZE];

 stop_time = time();

 if ((stop_time-start_time) <= SHORT_TIME){

 secret = i;

 }

}

65

The cache speeds up the access to the one memory
address that was cached due to speculative execution

Step 5: Repeat and Profit

• Now we know the value of a single byte

• But we can repeat this process over and over to read arbitrary
memory
• Read from memory at ~500 kbps

• Incredible part is how relatively simple this attack is
• Does require systems knowledge of multiple domains

• Computer architecture, OS, and security

66

How do we fix this?

1. Stop speculatively executing
• Already in the hardware
• Would slow all computers down a lot

2. Stop caching speculative loads
• Already in the hardware
• Would slow all computers down a lot

3. Stop leaving OS memory in the page table
• Would slow all computers down somewhat
• Kernel Page Table Isolation

• Estimated 5-30% performance loss
• Improved by use of PCID bit in TLB

67

Sidebar: how long were we vulnerable to Meltdown

• From the authors, every Intel processor implementing out-of-order
execution is potentially affected
• Which is roughly every processor from 1995-2018 (20+ years)

• Some non-Intel processors are affected as well around the same time
range

• New processors can be designed to avoid the vulnerability

68

Spectre

• Speculative execution targeting branch
prediction

• Disclosed in January 2018 by

• Jann Horn (Google Project Zero) and

• Paul Kocher in collaboration with, in alphabetical
order, Daniel Genkin (University of
Pennsylvania and University of Maryland), Mike
Hamburg (Rambus), Moritz Lipp (Graz University of
Technology), and Yuval Yarom (University of
Adelaide and Data61)

69

https://twitter.com/tehjh
https://googleprojectzero.blogspot.com/
https://paulkocher.com/
https://www.cis.upenn.edu/~danielg3/
https://www.upenn.edu/
https://www.upenn.edu/
https://www.umd.edu/
https://www.shiftleft.org/
https://www.shiftleft.org/
https://www.rambus.com/
https://mlq.me/
https://www.iaik.tugraz.at/
https://www.iaik.tugraz.at/
https://cs.adelaide.edu.au/~yval
https://www.adelaide.edu.au/
https://www.adelaide.edu.au/
https://www.data61.csiro.au/

Background: Branch Prediction

70

Incredibly
accurate in
modern day
computers
>95%

Spectre v1

• Repeat meltdown-style attack using conditional branches
• Conditional branches are especially prevalent for bounds checks in

software virtual machines (like the Javascript runtime)

1. Train conditional branch predictor that bounds check branch
always succeeds

2. Make an invalid bounds-checked read, affecting cache state

3. Use cache timing analysis to determine value of read byte

71

Spectre v2

• Combine indirect branch prediction and in-kernel ROP gadgets
• Indirect branch predictors try loading a guessed address

1. Train indirect branch predictor to go to a particular address

2. Make a system call requesting something

3. Within the system call, a branch mis-prediction then runs the
targeted gadget, affecting cache state
• Note: the gadget runs with kernel permission on physical memory

4. Use cache timing attack to determine result

72

Spectre fallout

• Spectre allows code inside a process to access all memory of the
process
• Bypassing any security mechanisms or containerization

• Example: Javascript running inside a web browser

• Led to increased push for “one website per process”

• Spectre is harder to fix too. Can’t just change page tables
• No one simple thing can fix all of these problems

• Stopping branch prediction helps, but we don’t want to stop it everywhere

• Active research on targeted branch prediction disabling

73

Ramifications of speculative execution attacks

• Particularly big deals in the era of cloud computing
• Anyone can run a program on an AWS server

• And now can maybe read data from the other running programs…

• Speculative execution attacks are a new era for computer security
• Hardware is still being actively developed to address attacks

• Websites can be fixed in hours, Programs in days, OSes in weeks, and
Hardware takes years

• Attacks are still being developed

• Role of the OS: mitigate hardware issues as best possible

74

Security is an arms race

• There is no single fix for system security
• New attacks are constantly being discovered

• New solutions are constantly being applied

1. Find a vulnerability and how it can be exploited

2. Fix vulnerability

3. Go back to 1

• But if the OS is designed with security in mind, it’s hopefully
harder to find vulnerabilities in the first place

75

76

• Design for security

• Memory attacks and defenses
• Buffer Overflows

• Return-Oriented Programming

• Speculative execution attacks
• Meltdown

• Spectre

Outline

	Default Section
	Slide 1: Lecture 16: Security

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Why is computer security so important?
	Slide 5: Early computers didn’t have any security either
	Slide 6: Connectivity of computers makes security a top concern
	Slide 7: Mirai botnet (2016)
	Slide 8: Botnets can be directed towards denial-of-service attacks

	Design for Security
	Slide 9: Outline
	Slide 10: Trusted Computing Base (TCB)
	Slide 11: Modern code bases are enormous
	Slide 12: Can we even trust the Trusted Computing Base?
	Slide 13: Hardware Root-of-Trust
	Slide 14: Writing auditable code
	Slide 15: Apple “goto fail” SSL bug
	Slide 16: Apple “goto fail” SSL bug
	Slide 17: Apple “goto fail” SSL bug
	Slide 18: Sandboxing approach to untrusted code
	Slide 19: iOS “BlastDoor” Sandbox
	Slide 20: Principle of Least Privilege
	Slide 21: Security properties OS should enforce
	Slide 22: OS security concerns
	Slide 23: What about devices?
	Slide 24: Android access control model
	Slide 25: Authentication
	Slide 26: Identifying users
	Slide 27: Break + xkcd

	Memory Attacks
	Slide 28: Outline
	Slide 29: What’s wrong with this code?
	Slide 30: Buffer overflow potential with “nice” input
	Slide 31: Buffer overflow potential with “evil” input
	Slide 32: Buffer Overflow
	Slide 33: Heartbleed attack
	Slide 34: Heartbleed attack
	Slide 38: Return addresses constantly live on the stack
	Slide 39: What do you do with arbitrary execution?
	Slide 40: Morris Worm
	Slide 41: How the worm entered computers: three methods
	Slide 42: Effects of Morris Worm
	Slide 43: Effects of Morris Worm
	Slide 44: Stopping malicious code by disabling execution
	Slide 45: Overcoming no-execute
	Slide 46: Return-oriented programming
	Slide 47: Gadgets can create a Turing-complete programming environment
	Slide 48: Address-space layout randomization (ASLR)
	Slide 49: Overcoming ASLR
	Slide 50: Break + Question
	Slide 51: Break + Question
	Slide 52: Break + Question

	Speculative Execution Attacks
	Slide 53: Outline
	Slide 54: First, some background knowledge
	Slide 55: Background: Side channel attacks
	Slide 56: Timing attacks are one side channel
	Slide 57: Background: Speculative Execution
	Slide 58: Optimization: Kernel Mapped in Virtual Memory
	Slide 59: Meltdown
	Slide 60: Step 1: Read from a kernel address
	Slide 61: Step 2: Read based on secret
	Slide 62: Step 3: Handle the Exception
	Slide 63: Everything’s still safe right?
	Slide 64: The load affected the cache!!!
	Slide 65: Step 4: Time loads from memory
	Slide 66: Step 5: Repeat and Profit
	Slide 67: How do we fix this?
	Slide 68: Sidebar: how long were we vulnerable to Meltdown
	Slide 69: Spectre
	Slide 70: Background: Branch Prediction
	Slide 71: Spectre v1
	Slide 72: Spectre v2
	Slide 73: Spectre fallout
	Slide 74: Ramifications of speculative execution attacks

	Wrapup
	Slide 75: Security is an arms race
	Slide 76: Outline

