
Lecture 13:
Swapping + RAID

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Administrivia

• Driver Lab due Thursday!
• Be sure to write your own test code that checks various edge cases

• There are lots of little edge cases in graphics

• We’re grading tests on the metric “did they try at all”

• Reminder that you can use your slip days

• They will also be usable on Paging Lab, but that will cut into your study
time

2

Today’s Goals

• Introduce swapping as a mechanism for enabling more virtual
memory than physical memory.

• Understand several page replacement policies that control
swapping.

• Explore topic of RAID – redundancy in disks.

3

CPU

Process A

Process B

VPN PPN Valid?

0 2 1

1 X 0

2 X 0

3 6 1

4 X 0

5 X 0

6 X 0

7 4 1

8 X 0

Process B Page Table

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

The OS view on memory

• Managed through virtual memory translation
• Paging (or Segmentation) that we talked about last time

• OS chooses which portions of processes go in RAM
• Lazy loading: don’t put stuff in RAM until it’s needed

• If memory overfills, some portions of memory get “swapped” to disk

• Writeable memory (stack, heap, global data) must be preserved

• Read-only memory (code) can be reloaded from original location

5

6

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline

7

CPU

Process A

Process B

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Process B

Process B

Process B

Process B

DISK

Motivation for swapping

• Processes should be independent of the amount of physical
memory
• Should be correct, even if not performant

• OS goal: support processes when not enough physical memory
• Multiple processes combining to more than physical memory
• Single process with very large address space

• Video games: Red Dead Redemption 2 – 150 GB
• Large-scale data processing: Compiling Android – 64 GB

• Google uses 72-core machines with 64 GB of RAM for a 40-minute build

• OS provides illusion of more physical memory by using disk

8

Locality of reference

• If disk is involved with memory, won’t this be ridiculously slow?

• Leverage locality of reference within process
• Spatial: memory addresses near referenced address likely to be next
• Temporal: referenced addresses likely to be referenced again
• Processes spend majority of time in a small portion of code

• Estimate: 90% of time spent in 10% of code (loops)

• Implication
• Process only uses small amount of address space at any moment
• Only small amount of address space needs to be in physical memory
• RAM acts as a sort of cache for program memory

9

How swapping works

• OS moves some pages from RAM to disk

• Processes can still run when not all pages are in physical memory

• OS and hardware cooperate to make memory available when
needed
• Same behavior as if all of address space always was in memory
• Except in terms of time, but processes don’t know about time…

• Requirements
• OS needs mechanism to identify location of address space pages on disk

and move them into RAM when necessary
• OS needs policy to determine which pages go in RAM or disk

10

Combination of swapping and paging

• Processes have memory pages, which are distributed among RAM
and Disk

• Example:
• Processes 0, 1, and 2 are partially in RAM

• Process 3 is entirely in “swap space” on disk

11

Paging on Windows

• Windows lets you see and even set
the size of swap space on disk

• This is only space for temporary storage
of physical memory pages (from RAM)

• After it runs out, other processes can’t
be loaded!

• This is separate from leaving some
parts of a process on disk on unloaded

12

Mechanisms to support swapping

• Each page in virtual address space lives in a location
1. Physical memory
2. Disk
3. Nowhere

• Use one of the bits in each page table entry to track this – Present bit
• Physical Page Number, Permissions, Valid, Present

• Page in memory: valid and present

• Page on disk: valid but not present
• Page Table Entry points to block on disk instead!
• Trap to OS on attempted access
• Maybe never loaded before, or maybe moved to swap space (works the same either way)

• Invalid page: not valid and not present
• Trap to OS on attempted access

13

Other bits in a page table entry

• Page Base Address can be
reused to hold disk block

• Dirty bit

• Whether page has been
modified

• If page needs to be swapped
out, only preserve if modified

• 64-bit version is mostly a
bigger Page Base Address

• Plus some reserved bits

• And most-significant bit is
“Execute Disable”

14

Short Break + Question

• What are the possible reasons for a Page Fault?
(when the MMU calls the OS)

15

Short Break + Question

• What are the possible reasons for a Page Fault?
(when the MMU calls the OS)

1. Invalid permissions

2. Page actually on disk

• Because the OS never actually loaded it! (lazy loading)

• Because the OS swapped it to disk (when low on RAM)

3. Page isn’t valid at all

16

Types of page faults

• Minor/soft: Page is loaded in memory, but PTE is not configured:
• Memory could be a shared library already in memory from another process.
• OS could be tracking accesses to this page. (hardware without a dirty bit)
Response: update the PTE.

• Major/hard: A disk access will be needed:
• Anonymous page (process data) may have been swapped out.
• Lazy-loading program executable. (this is the more common reason)
Response: load the page from disk

• Invalid: User program misbehaved:
• Dereference null or invalid pointer.
• Write to page that is read-only.
• Execute code on a page that is not executable (for security).
Response: terminate the process.

17

Steps to a memory access with swapping

1. Hardware checks TLB for virtual address
• If Hit, address translation complete AND page in physical memory

2. Hardware (or OS) walks page tables
• If valid and present, then page in physical memory

3. Trap into OS (a.k.a. Page Fault!)
• If invalid or bad permissions, fault process (segmentation fault)
• If valid but not present

• If memory is full, select a victim page in memory to replace
• If modified (dirty), write to disk

• Invalidate TLB entry for that page

• OS reads referenced page from disk into memory
• Page table is updated, present bit is set
• Resume process execution

18

19

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline

Policies to determine swapping evictions

• Goal: minimize the number of hard page faults
• Hard page faults need to read/write from disk and are very slow

• So the OS can take plenty of time to make a good decision

• OS has two decisions
1. Page Selection

• When should a page be brought into memory?

2. Page Replacement

• When should a page be swapped into disk?

• Which page should be swapped out of physical memory?

20

When do we load in pages? (page selection)

• Demand paging: Load page only when page fault occurs (lazy)
• Intuition: Wait until page must absolutely be in memory
• When process starts: No pages are loaded in memory
• Problems: Pay cost of page fault for every newly accessed page

• Pre-paging (prefetching): Load page before referenced (eager)
• OS predicts future accesses and brings pages into memory early
• Works well for some access patterns (e.g., sequential)

• Hints: Combine above with user-supplied hints about page references
• User specifies: “may need page in future”, “don’t need this page for a while”, or

“sequential access pattern”, ...
• Example: madvise() in POSIX – gives the OS advice about use of memory

21

madvise() hints

22https://man7.org/linux/man-pages/man2/madvise.2.html

When do we swap out pages? (page replacement)

• Demand swapping: whenever the page fault actually occurs
• Simplest method

• Swap actually occurs asynchronously

• Start the disk I/O and block the process that faulted

• Background swapping: preemptively when RAM is getting full
• Background service in kernel periodically runs (kswapd)

• If number of free physical pages < “low water mark”, evict a bunch

• Writing many pages to disk in one operation is way more efficient

23

Thrashing

• Thrashing: when swapping happens frequently
• Policy could be bad (working set keeps getting swapped to disk)

• More likely RAM is too small

• Frequent swapping slows down the whole computer to a crawl
• Constantly waiting on disk I/O!

• Solution for thrashing
• Kill processes until it stops (relieves memory pressure)

• Install more RAM in the computer

24

25

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline

Which page should be evicted?

• Page replacement policy determines page to evict

• Very similar process as cache eviction or TLB eviction
• Misses are expensive, so make sure you evict the right page

• Difference: hard page faults are extremely long and handled in software

• So a sophisticated policy is possible

26

Optimal page replacement policy

• Optimal page replacement
• Evict page that will be accessed furthest in the future

• Advantages
• Guaranteed to minimize the number of page faults

• Disadvantages
• Requires the OS to predict the future
• Doesn’t actually exist

• This is a performance “upper bound”
• This is the best anything can do, so it is useful to compare against
• Easy enough to calculate after memory accesses have finished
• Still has misses due to cold-start and capacity

27

First-In-First-Out replacement policy

• FIFO replacement
• Evict page that has been in memory the longest

• Advantages
• Fair as all pages have equal residency

• Easy to implement

• Disadvantages
• Some pages of memory are always needed (stack)

• Memory doesn’t really need “fairness” like processes did

28

Least Recently Used replacement policy

• LRU replacement
• Replace page not accessed for longest time

• Using the past to predict the future (temporal locality)

• Advantages
• With locality, LRU approximates Optimal

• Disadvantages
• Harder to implement as we need to track when pages are accessed

• Cyclical patterns can make LRU fail (bigger concern for cache than RAM)

29

Practice – simple replacement policies

30

D

D

B

B

A

C

B

D

B

D

D

D

B

B

A

C

B

D

B

D

D

D

B

B

A

C

B

D

B

D

time

Optimal FIFO LRU
Page
Requested

Practice – simple replacement policies

31

D

D

B

B

A

C

B

D

B

D

D

D

B

B

A

C

B

D

B

D

time

Optimal FIFO LRU
Page
Requested

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

Practice – simple replacement policies

32

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

time

Optimal FIFO LRU
Page
Requested

These are only replacement policies.
So they don’t matter until RAM is full!

Practice – simple replacement policies

33

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

time

Optimal FIFO LRU
Page
Requested

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C D B C Miss

B D B C Hit

D D B C Hit

B D B C Hit

D D B C Hit

For Optimal, which page do we replace?

Practice – simple replacement policies

34

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C D B C Miss

B D B C Hit

D D B C Hit

B D B C Hit

D D B C Hit

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

time

Optimal FIFO LRU
Page
Requested

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C D A Miss

B C D B Miss

D C D B Hit

For FIFO, which pages do we replace?

Practice – simple replacement policies

35

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C D B C Miss

B D B C Hit

D D B C Hit

B D B C Hit

D D B C Hit

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C D A Miss

B C D B Miss

D C D B Hit

time

Optimal FIFO LRU
Page
Requested

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C B D Miss

B C B D Hit

D C B D Hit

For LRU, which pages do we replace?

Practice – simple replacement policies

36

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C D B C Miss

B D B C Hit

D D B C Hit

B D B C Hit

D D B C Hit

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C D A Miss

B C D B Miss

D C D B Hit

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C B D Miss

B C B D Hit

D C B D Hit

time

Optimal FIFO LRU
Page
Requested

Miss rate = 40% Miss rate = 60% Miss rate = 50%

For each, what are the final miss rates?

Break + Open Question

• Come up with a scenario where LRU does worse than FIFO

37

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

?

?

?

?

Break + Open Question

• Come up with a scenario where LRU does worse than FIFO

38

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

C Miss

?

?

?

Needs to start with a
miss to evict something

Break + Open Question

• Come up with a scenario where LRU does worse than FIFO

39

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

C Miss

B

D

A

Repeat prior
access pattern

LRU assumes you won’t use the least recent data.
So patterns that always use the least recent data are BAD!

Break + Open Question

• Come up with a scenario where LRU does worse than FIFO

40

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

C D C A Miss

B B C A Miss

D B C D Miss

A B A D Miss

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C D A Miss

A C D A Hit

FIFO LRU

41

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline

Implementing LRU

• Implementing perfect LRU is difficult in practice

• Software perfect LRU
• OS maintains an ordered list of physical pages by reference time

• When page is referenced: move to end of list
• When swap is needed: evict front of list

• Tradeoff: slow on memory reference, fast on replacement (unacceptable)

• Hardware perfect LRU
• Associate a timestamp with each physical page

• When page is referenced: hardware updates timestamp for page
• When swap is needed: OS searches through all pages for oldest

• Tradeoff: fast on memory reference, extremely slow on replacement and needs
special hardware

42

Clock algorithm

• LRU approximates Optimal anyways, so approximate a little more
• Goal: find an old page, not necessarily the oldest page

• Real memory has many pages, so there are likely many similarly old pages

• Clock algorithm
• One “accessed” bit added to each page

• When page is referenced: accessed bit is set to one (hardware)

• When swap is needed:
• Cycle through pages looking for one with accessed bit zero

• Update accessed bit to zero after checking a page

• Continue from where you left off when next swap is needed

• Essentially looks for page that hasn’t been referenced this “cycle”

43

Clock algorithm example

A, 0

B, 0

C, 0

D, 0

E, 0

F, 0

44

• Initial setup
• 6 pages total fit in memory

• Accessed starts as zero

• “clock hand” points at first page

(Page Name, Accessed Bit)

Clock algorithm example

A, 1

B, 1

C, 0

D, 0

E, 1

F, 0

45

• After running a little while
• Pages A, B, E are accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 1

B, 1

C, 0

D, 0

E, 1

F, 0

46

• OS needs to swap pages
• Algorithm starts

• A is recently accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 1

C, 0

D, 0

E, 1

F, 0

47

• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

C, 0

D, 0

E, 1

F, 0

48

• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

• C has not been recently
accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 0

D, 0

E, 1

F, 0

49

• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

• C has not been recently
accessed
• So swap it

• And advance hand once more

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 1

E, 1

F, 1

50

• Programs continue running for
a while
• Pages G, D, F are accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 1

E, 1

F, 1

51

• OS needs to swap again
• Algorithm begins again

• But with hand starting
somewhere new

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 1

F, 1

52

• OS needs to swap again
• Algorithm begins again

• But with hand starting
somewhere new

• D recently accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 1

53

• OS needs to swap again
• Algorithm begins again

• But with hand starting
somewhere new

• D recently accessed

• E recently accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0

54

• OS needs to swap again
• Algorithm begins again

• But with hand starting
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0

55

• OS needs to swap again
• Algorithm begins again

• But with hand starting
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

• A gets swapped!

(Page Name, Accessed Bit)

Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0

56

• OS needs to swap again
• Algorithm begins again

• But with hand starting
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

• A gets swapped
• Was A or B the actual LRU?

• Probably doesn’t matter

(Page Name, Accessed Bit)

Clock algorithm is actually used in real computers

• Modern OSes often use some variation on Clock Algorithm

• x86 hardware supports an accessed bit in page table entries

• Clock algorithm could be built without hardware support too
• Mark all pages as valid but not present initially (soft page fault)

• On OS fault, update accessed bit for page, mark as present

• Only fault on first access per clock-hand-cycle

• Reset page to not present whenever accessed is reset to zero

57

Accessed bit on x86

• Accessed bit
• Set to 1 automatically by

the hardware

• Must be cleared manually
by software

• Enables Clock algorithm

58

Improving clock algorithm access notion

• Add multiple “accessed” bits to create accessed counter
• Increment or decrement bits on use or clock-hand-pass respectively

• Only remove pages with 0 accessed (or less than some minimum)

• Combine with timestamp notion to ensure page is “old” (WSClock)
• Keep a timestamp in addition to accessed bit

• Only remove pages with 0 accessed and older than some amount

• Still not necessarily oldest, but definitely old

59

Improving clock algorithm evictions

• Keep track of number of times a page re-enters memory (Clock-PRO)
• Give eviction preference to pages that haven’t been brought back a bunch

• Bringing it back implies it was important, even if it was old

• Keep track of which pages are dirty
• Give eviction preference to clean pages (also to read-only pages)

• Means no write to disk is necessary!

• Evict several pages at once each time it is required
• Find first N with accessed bit of zero

• Takes advantage of disk I/O properties

60

Break + Nerdy Computer Science Sayings

Source: these are things my advisor (Prabal Dutta) likes to say

• “I’m going to have to page that back in.”
• Translation: It’s been a while since I used that information and it’s going to

take me a bit to remember it.

• “I’m thrashing right now.”
• Translation: I’m working on many tasks and switching between them frequently

causing me to be inefficient.

• “What’s the high-order bit of this idea?”
• (i.e., most-significant bit)
• Translation: What’s the part of this idea that has the most impact

61

62

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline

Traditional hard disk drives (HDDs) use magnetic regions

63

Solid state drives (SSDs) use flash memory

• Still non-volatile

• Significantly faster
• 0.1 ms to access

(10 ms for disk)

• More limited lifetime
than disk
• Limited writes

64

NMOS transistor with an additional conductor
between gate and source/drain which “traps”
electrons. The presence/absence is a 1 or 0

Failure rates for disks are a serious problem

• Problem: disks fail
• HDDs have physical actuators that wear out

• SSDs have limited numbers of writes

• Big problem: servers have many disks
• Assume rate of failure per year of disk is 1%

• And failures aren’t correlated

• And a server has 264 disks

• What are the odds that a disk will fail this year?

• 1 – (1 – 0.01)264 = 93% odds that at least one disk will fail

65

Database server at Northwestern

• 264 fast (10k RPM) magnetic disks
(for production)

• 56 slow (7200 RPM) magnetic disks
(for backup)

• ~150 TB storage capacity

• Comprised of 6 physical chassis (boxes) in one big
cabinet, about the size of a coat closet.

66

Redundant Array of Independent Disks (RAID)

• Observation in 1988 (Patterson, Gibson, Katz)
• Servers could use a high-quality mainframe disk drive

 OR for the same cost

• Servers could use several redundant low-quality consumer disk drives

• Using an array of cheap disks actually improves multiple things
• Reduce impact of a failure by storing data redundantly on multiple disks.

• Increase capacity by making multiple disks available to store data.

• Increase throughput by accessing data in parallel on multiple disks.

67

Basic idea of RAID

• Combine many disks to create one superior virtual disk.

• The RAID array provides the same interface as a single disk.

Computer thinks it’s dealing
with this:

Sector r/w
requests

But it’s just an illusion. The reality is:

Sector r/w
requests

RAID virtual
disk

How does RAID fit into the OS?

• RAID can be implemented in software or hardware

• Software RAID means that the OS is responsible for assembling
multiple disks into a RAID.
• Implements a generic block device.

• Hardware RAID requires a specialized controller card that
coordinates the multiple disks, presenting interface of one disk.
• OS just needs a driver for the RAID controller, like any other disk

controller.

69

RAID levels

• RAID 0 – Striping:
• Distribute data across 2 disks for twice the peak throughput.

• RAID 1 – Mirroring:
• Copy data onto 2 disks to tolerate failure of one.

• RAID 4/5/6 – Parity:
• Keep parity bits around for each block to check for errors and rebuild.

• Typically involves 3+ disks.

70

RAID 0 – Striping (for throughput and capacity)

• Divide the logical disk into chunks
(A1, A2, A3 …) 1 or more blocks in size

• Distribute the chunks regularly over two or
more (N) physical disks.

• (+) Throughput for both random and
sequential access scales with N.

TRAID0 = N * Tdisk

• (+) Capacity also scales by N.

• (+) Cost per byte is identical

• (–) But Mean Time To Failure is worse
because failure of a single disk is
catastrophic:

MTTFRAID0 = MTTFdisk/N

71

RAID 1 – Mirroring (for fault tolerance)

• Duplicate each chunk on each of N
physical disks.

• (+) It is impossible to lose data unless all
disks fail simultaneously.
• i.e., failure window is reduced to the time it

takes to replace a broken disk.

• (–) Write throughput is not improved

• (–) Capacity is the same as a single disk

• (–) Cost per byte is greater
$RAID1 = N * $disk

72

Check your understanding – RAID 1

• (–) Write throughput is not improved

• Is write throughput reduced in RAID 1?
Or is it the same as a single disk?

• What about read throughput?

73

Check your understanding – RAID 1

• (–) Write throughput is not improved

• Is write throughput reduced in RAID 1?
Or is it the same as a single disk?
• Same as a single disk

• Write can go to both disks in parallel

• What about read throughput?
• Better than a single disk

• Can read two different blocks at once!

74

RAID 4 – Parity (for fault tolerance, capacity & throughput)

Redundant data

• Distribute the chunks across the
first (N-1) disks.

• On the Nth disk, store a
corresponding parity chunk.
• Parity block is redundant data

about a set of chunk (a stripe)

• Can tolerate loss of any one
disk

• Parity disk becomes bottleneck
for writes limiting throughput

75

How does parity work?

• Even parity – add a 0 or 1 such that the total number of 1’s is
even.
• There also exists odd parity which makes the total number of 1’s odd

• Examples (Even Parity):
• 0b0000_0000 – zero ones -> parity bit = 0

• 0b1111_1111 – eight ones -> parity bit = 0

• 0b0110_1101 – five ones -> parity bit = 1

• If a single bit is lost, the parity bit allows us to infer the value of
the lost bit

76

Check your understanding – Parity Recovery

• What are the values of the missing bits?
• Even Parity: make the total number of 1s even

• [0, 0, 1, 0, ?, 0, 1, 1] – Even Parity with value: 1

• [0, ?, 1, 1, 1, 0, 0, 0] – Even Parity with value: 0

77

Check your understanding – Parity Recovery

• What are the values of the missing bits?
• Even Parity: make the total number of 1s even

• [0, 0, 1, 0, ?, 0, 1, 1] – Even Parity with value: 1
• Value must be a 0

• Because parity plus ones is already even

• [0, ?, 1, 1, 1, 0, 0, 0] – Even Parity with value: 0
• Value must be a 1

• Because parity plus ones is not currently even

78

Parity can only fix a single error

• What if two bits are missing?

• [?, 0, 1, 0, ?, 0, 1, 1] – Even Parity: 1
• Could both be zeros

• Could both be ones

• Impossible to tell which

• More advanced “error correcting codes” are possible to detect/fix
two or more errors
• Hamming Code (single error correcting, double error detecting)

79

Parity chunk in RAID

• Parity is computed bit-wise across corresponding chunks.

• Chunks are one or more blocks (multiple of 4 kB) in size

• Writing a small file will involve one disk plus the parity disk.
• (parity disk can become a bottleneck)

• Writing a large file will involve all the disks.

Disk 0 Disk 1 Disk 2 Disk 3 (parity)
0001 0010 1100 1100 0000 1111 0000 1111 1101 1111 0011 0001 1100 0010 1111 0010

1111 1111 1111 1111 0001 0001 0001 0001 1101 1001 0110 0110 0011 0111 1000 1000

0000 0000 0000 0000 1101 1011 0011 0011 1111 0011 0011 1000 0010 1000 0000 1011

Useful storage capacity Redundancy overhead

80

Rebuilding an array after failure

• If a disk fails, then we remove it and replace it with a working disk.

• Then scan through the entire array to compute and write missing data.
• This is called “rebuilding” the array

• We cannot tolerate another disk failure until rebuild completes.

• Reads/writes can continue while array is rebuilding!

Disk 0 Disk 1 Disk 2 Disk 3 (parity)
0001 0010 1100 1100 1101 1111 0011 0001 1100 0010 1111 0010

1111 1111 1111 1111 1101 1001 0110 0110 0011 0111 1000 1000

0000 0000 0000 0000 1111 0011 0011 1000 0010 1000 0000 1011

Disk failed!

81

RAID 5 – Distributed Parity (the winner in practice)

• Distribute parity chunks across
the disks, to avoid a small-write
bottleneck

• (+) Failure of one disk is OK

• (+) Throughput is good

TRAID5 = (N-1) * Tdisk

• (+) Cost per byte is good
$RAID1 = N/(N-1) * $disk

• (–) High overhead for small N

• (–) Failure risk is high for large N

• N is typically 3 to 8

RAID 6 – Double Parity (for large arrays)

• Add another disk and keep two
parity chunks per stripe
• 2nd parity is computed differently

• (+) Failure of two disks is OK

• (~) Throughput is less:

TRAID5 = (N-2) * Tdisk

• (~) Cost per byte is higher:
$RAID1 = N/(N-2) * $disk

• Makes sense for larger N (>8)

84

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline

	Default Section
	Slide 1: Lecture 13: Swapping + RAID

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4
	Slide 5: The OS view on memory

	Swapping
	Slide 6: Outline
	Slide 7
	Slide 8: Motivation for swapping
	Slide 9: Locality of reference
	Slide 10: How swapping works
	Slide 11: Combination of swapping and paging
	Slide 12: Paging on Windows
	Slide 13: Mechanisms to support swapping
	Slide 14: Other bits in a page table entry
	Slide 15: Short Break + Question
	Slide 16: Short Break + Question
	Slide 17: Types of page faults
	Slide 18: Steps to a memory access with swapping

	When to Swap
	Slide 19: Outline
	Slide 20: Policies to determine swapping evictions
	Slide 21: When do we load in pages? (page selection)
	Slide 22: madvise() hints
	Slide 23: When do we swap out pages? (page replacement)
	Slide 24: Thrashing

	Page Replacement Policies
	Slide 25: Outline
	Slide 26: Which page should be evicted?
	Slide 27: Optimal page replacement policy
	Slide 28: First-In-First-Out replacement policy
	Slide 29: Least Recently Used replacement policy
	Slide 30: Practice – simple replacement policies
	Slide 31: Practice – simple replacement policies
	Slide 32: Practice – simple replacement policies
	Slide 33: Practice – simple replacement policies
	Slide 34: Practice – simple replacement policies
	Slide 35: Practice – simple replacement policies
	Slide 36: Practice – simple replacement policies
	Slide 37: Break + Open Question
	Slide 38: Break + Open Question
	Slide 39: Break + Open Question
	Slide 40: Break + Open Question

	Implementing LRU
	Slide 41: Outline
	Slide 42: Implementing LRU
	Slide 43: Clock algorithm
	Slide 44: Clock algorithm example
	Slide 45: Clock algorithm example
	Slide 46: Clock algorithm example
	Slide 47: Clock algorithm example
	Slide 48: Clock algorithm example
	Slide 49: Clock algorithm example
	Slide 50: Clock algorithm example
	Slide 51: Clock algorithm example
	Slide 52: Clock algorithm example
	Slide 53: Clock algorithm example
	Slide 54: Clock algorithm example
	Slide 55: Clock algorithm example
	Slide 56: Clock algorithm example
	Slide 57: Clock algorithm is actually used in real computers
	Slide 58: Accessed bit on x86
	Slide 59: Improving clock algorithm access notion
	Slide 60: Improving clock algorithm evictions
	Slide 61: Break + Nerdy Computer Science Sayings

	RAID
	Slide 62: Outline
	Slide 63: Traditional hard disk drives (HDDs) use magnetic regions
	Slide 64: Solid state drives (SSDs) use flash memory
	Slide 65: Failure rates for disks are a serious problem
	Slide 66: Database server at Northwestern
	Slide 67: Redundant Array of Independent Disks (RAID)
	Slide 68: Basic idea of RAID
	Slide 69: How does RAID fit into the OS?
	Slide 70: RAID levels
	Slide 71: RAID 0 – Striping (for throughput and capacity)
	Slide 72: RAID 1 – Mirroring (for fault tolerance)
	Slide 73: Check your understanding – RAID 1
	Slide 74: Check your understanding – RAID 1
	Slide 75: RAID 4 – Parity (for fault tolerance, capacity & throughput)
	Slide 76: How does parity work?
	Slide 77: Check your understanding – Parity Recovery
	Slide 78: Check your understanding – Parity Recovery
	Slide 79: Parity can only fix a single error
	Slide 80: Parity chunk in RAID
	Slide 81: Rebuilding an array after failure
	Slide 82: RAID 5 – Distributed Parity (the winner in practice)
	Slide 83: RAID 6 – Double Parity (for large arrays)

	Wrapup
	Slide 84: Outline

