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Administrivia

• Driver Lab due Thursday!
• Be sure to write your own test code that checks various edge cases

• There are lots of little edge cases in graphics

• We’re grading tests on the metric “did they try at all”

• Reminder that you can use your slip days

• They will also be usable on Paging Lab, but that will cut into your study 
time
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Today’s Goals

• Introduce swapping as a mechanism for enabling more virtual 
memory than physical memory.

• Understand several page replacement policies that control 
swapping.

• Explore topic of RAID – redundancy in disks.
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The OS view on memory

• Managed through virtual memory translation
• Paging (or Segmentation) that we talked about last time

• OS chooses which portions of processes go in RAM
• Lazy loading: don’t put stuff in RAM until it’s needed

• If memory overfills, some portions of memory get “swapped” to disk

• Writeable memory (stack, heap, global data) must be preserved

• Read-only memory (code) can be reloaded from original location
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Motivation for swapping

• Processes should be independent of the amount of physical 
memory
• Should be correct, even if not performant

• OS goal: support processes when not enough physical memory
• Multiple processes combining to more than physical memory
• Single process with very large address space

• Video games: Red Dead Redemption 2 – 150 GB
• Large-scale data processing: Compiling Android – 64 GB

• Google uses 72-core machines with 64 GB of RAM for a 40-minute build

• OS provides illusion of more physical memory by using disk
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Locality of reference

• If disk is involved with memory, won’t this be ridiculously slow?

• Leverage locality of reference within process
• Spatial: memory addresses near referenced address likely to be next
• Temporal: referenced addresses likely to be referenced again
• Processes spend majority of time in a small portion of code

• Estimate: 90% of time spent in 10% of code (loops)

• Implication
• Process only uses small amount of address space at any moment
• Only small amount of address space needs to be in physical memory
• RAM acts as a sort of cache for program memory
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How swapping works

• OS moves some pages from RAM to disk

• Processes can still run when not all pages are in physical memory

• OS and hardware cooperate to make memory available when 
needed
• Same behavior as if all of address space always was in memory
• Except in terms of time, but processes don’t know about time…

• Requirements
• OS needs mechanism to identify location of address space pages on disk

and move them into RAM when necessary
• OS needs policy to determine which pages go in RAM or disk
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Combination of swapping and paging

• Processes have memory pages, which are distributed among RAM 
and Disk

• Example:
• Processes 0, 1, and 2 are partially in RAM

• Process 3 is entirely in “swap space” on disk
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Paging on Windows

• Windows lets you see and even set 
the size of swap space on disk

• This is only space for temporary storage 
of physical memory pages (from RAM)

• After it runs out, other processes can’t 
be loaded!

• This is separate from leaving some 
parts of a process on disk on unloaded
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Mechanisms to support swapping

• Each page in virtual address space lives in a location
1. Physical memory
2. Disk
3. Nowhere

• Use one of the bits in each page table entry to track this – Present bit
• Physical Page Number, Permissions, Valid, Present

• Page in memory: valid and present

• Page on disk: valid but not present
• Page Table Entry points to block on disk instead!
• Trap to OS on attempted access
• Maybe never loaded before, or maybe moved to swap space (works the same either way)

• Invalid page: not valid and not present
• Trap to OS on attempted access
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Other bits in a page table entry

• Page Base Address can be 
reused to hold disk block

• Dirty bit

• Whether page has been 
modified

• If page needs to be swapped 
out, only preserve if modified

• 64-bit version is mostly a 
bigger Page Base Address

• Plus some reserved bits

• And most-significant bit is 
“Execute Disable”
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Short Break + Question

• What are the possible reasons for a Page Fault?
(when the MMU calls the OS)
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Short Break + Question

• What are the possible reasons for a Page Fault?
(when the MMU calls the OS)

1. Invalid permissions

2. Page actually on disk

• Because the OS never actually loaded it! (lazy loading)

• Because the OS swapped it to disk (when low on RAM)

3. Page isn’t valid at all
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Types of page faults

• Minor/soft: Page is loaded in memory, but PTE is not configured:
• Memory could be a shared library already in memory from another process.
• OS could be tracking accesses to this page. (hardware without a dirty bit)
Response: update the PTE.

• Major/hard: A disk access will be needed:
• Anonymous page (process data) may have been swapped out.
• Lazy-loading program executable. (this is the more common reason)
Response: load the page from disk

• Invalid: User program misbehaved:
• Dereference null or invalid pointer.
• Write to page that is read-only.
• Execute code on a page that is not executable (for security).
Response: terminate the process.
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Steps to a memory access with swapping

1. Hardware checks TLB for virtual address
• If Hit, address translation complete AND page in physical memory

 

2. Hardware (or OS) walks page tables
• If valid and present, then page in physical memory

 

3. Trap into OS (a.k.a. Page Fault!)
• If invalid or bad permissions, fault process (segmentation fault)
• If valid but not present

• If memory is full, select a victim page in memory to replace
• If modified (dirty), write to disk

• Invalidate TLB entry for that page

• OS reads referenced page from disk into memory
• Page table is updated, present bit is set
• Resume process execution
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Policies to determine swapping evictions

• Goal: minimize the number of hard page faults
• Hard page faults need to read/write from disk and are very slow

• So the OS can take plenty of time to make a good decision

• OS has two decisions
1. Page Selection

• When should a page be brought into memory?

2. Page Replacement

• When should a page be swapped into disk?

• Which page should be swapped out of physical memory?
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When do we load in pages? (page selection)

• Demand paging: Load page only when page fault occurs (lazy)
• Intuition: Wait until page must absolutely be in memory 
• When process starts: No pages are loaded in memory 
• Problems: Pay cost of page fault for every newly accessed page

• Pre-paging (prefetching): Load page before referenced (eager)
• OS predicts future accesses and brings pages into memory early
• Works well for some access patterns (e.g., sequential)

• Hints: Combine above with user-supplied hints about page references
• User specifies: “may need page in future”, “don’t need this page for a while”, or 

“sequential access pattern”, ...
• Example: madvise() in POSIX – gives the OS advice about use of memory
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madvise() hints

22https://man7.org/linux/man-pages/man2/madvise.2.html



When do we swap out pages? (page replacement)

• Demand swapping: whenever the page fault actually occurs
• Simplest method

• Swap actually occurs asynchronously

• Start the disk I/O and block the process that faulted

• Background swapping: preemptively when RAM is getting full
• Background service in kernel periodically runs (kswapd)

• If number of free physical pages < “low water mark”, evict a bunch

• Writing many pages to disk in one operation is way more efficient
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Thrashing

• Thrashing: when swapping happens frequently
• Policy could be bad (working set keeps getting swapped to disk)

• More likely RAM is too small

• Frequent swapping slows down the whole computer to a crawl
• Constantly waiting on disk I/O!

• Solution for thrashing
• Kill processes until it stops (relieves memory pressure)

• Install more RAM in the computer
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Which page should be evicted?

• Page replacement policy determines page to evict

• Very similar process as cache eviction or TLB eviction
• Misses are expensive, so make sure you evict the right page

• Difference: hard page faults are extremely long and handled in software

• So a sophisticated policy is possible
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Optimal page replacement policy

• Optimal page replacement
• Evict page that will be accessed furthest in the future

• Advantages
• Guaranteed to minimize the number of page faults

• Disadvantages
• Requires the OS to predict the future 
• Doesn’t actually exist

• This is a performance “upper bound”
• This is the best anything can do, so it is useful to compare against
• Easy enough to calculate after memory accesses have finished
• Still has misses due to cold-start and capacity
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First-In-First-Out replacement policy

• FIFO replacement
• Evict page that has been in memory the longest

• Advantages
• Fair as all pages have equal residency

• Easy to implement

• Disadvantages
• Some pages of memory are always needed (stack)

• Memory doesn’t really need “fairness” like processes did
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Least Recently Used replacement policy

• LRU replacement
• Replace page not accessed for longest time

• Using the past to predict the future (temporal locality)

• Advantages
• With locality, LRU approximates Optimal

• Disadvantages
• Harder to implement as we need to track when pages are accessed

• Cyclical patterns can make LRU fail (bigger concern for cache than RAM)
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Practice – simple replacement policies
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Practice – simple replacement policies
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Practice – simple replacement policies
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These are only replacement policies.
So they don’t matter until RAM is full!



Practice – simple replacement policies

33

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

time

Optimal FIFO LRU
Page 
Requested

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C D B C Miss

B D B C Hit

D D B C Hit

B D B C Hit

D D B C Hit

For Optimal, which page do we replace?



Practice – simple replacement policies
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Practice – simple replacement policies
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Practice – simple replacement policies
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Break + Open Question

• Come up with a scenario where LRU does worse than FIFO
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Break + Open Question

• Come up with a scenario where LRU does worse than FIFO
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Break + Open Question

• Come up with a scenario where LRU does worse than FIFO
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Break + Open Question

• Come up with a scenario where LRU does worse than FIFO

40

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

C D C A Miss

B B C A Miss

D B C D Miss

A B A D Miss

D D Miss

D D Hit

B D B Miss

D D B Hit

A D B A Miss

C C B A Miss

B C B A Hit

D C D A Miss

A C D A Hit

FIFO LRU



41

• Swapping
• Overview

• When To Swap

• Page Replacement Policies

• Implementing LRU

• RAID

Outline



Implementing LRU

• Implementing perfect LRU is difficult in practice

• Software perfect LRU
• OS maintains an ordered list of physical pages by reference time

• When page is referenced: move to end of list
• When swap is needed: evict front of list

• Tradeoff: slow on memory reference, fast on replacement (unacceptable)

• Hardware perfect LRU
• Associate a timestamp with each physical page

• When page is referenced: hardware updates timestamp for page
• When swap is needed: OS searches through all pages for oldest

• Tradeoff: fast on memory reference, extremely slow on replacement and needs 
special hardware
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Clock algorithm

• LRU approximates Optimal anyways, so approximate a little more
• Goal: find an old page, not necessarily the oldest page

• Real memory has many pages, so there are likely many similarly old pages

• Clock algorithm
• One “accessed” bit added to each page

• When page is referenced: accessed bit is set to one (hardware)

• When swap is needed:
• Cycle through pages looking for one with accessed bit zero

• Update accessed bit to zero after checking a page

• Continue from where you left off when next swap is needed

• Essentially looks for page that hasn’t been referenced this “cycle”
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Clock algorithm example

A, 0

B, 0

C, 0

D, 0

E, 0

F, 0

44

• Initial setup
• 6 pages total fit in memory

• Accessed starts as zero

• “clock hand” points at first page

(Page Name, Accessed Bit)



Clock algorithm example

A, 1

B, 1

C, 0

D, 0

E, 1

F, 0

45

• After running a little while
• Pages A, B, E are accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 1

B, 1

C, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 1

C, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

C, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

• C has not been recently 
accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

• C has not been recently 
accessed
• So swap it

• And advance hand once more

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 1

E, 1

F, 1
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• Programs continue running for 
a while
• Pages G, D, F are accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 1

E, 1

F, 1
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 1

F, 1
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 1
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

• A gets swapped!

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

• A gets swapped
• Was A or B the actual LRU?

• Probably doesn’t matter

(Page Name, Accessed Bit)



Clock algorithm is actually used in real computers

• Modern OSes often use some variation on Clock Algorithm

• x86 hardware supports an accessed bit in page table entries

• Clock algorithm could be built without hardware support too
• Mark all pages as valid but not present initially (soft page fault)

• On OS fault, update accessed bit for page, mark as present

• Only fault on first access per clock-hand-cycle

• Reset page to not present whenever accessed is reset to zero
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Accessed bit on x86

• Accessed bit
• Set to 1 automatically by 

the hardware

• Must be cleared manually 
by software

• Enables Clock algorithm
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Improving clock algorithm access notion

• Add multiple “accessed” bits to create accessed counter
• Increment or decrement bits on use or clock-hand-pass respectively

• Only remove pages with 0 accessed (or less than some minimum)

• Combine with timestamp notion to ensure page is “old” (WSClock)
• Keep a timestamp in addition to accessed bit

• Only remove pages with 0 accessed and older than some amount

• Still not necessarily oldest, but definitely old
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Improving clock algorithm evictions

• Keep track of number of times a page re-enters memory (Clock-PRO)
• Give eviction preference to pages that haven’t been brought back a bunch

• Bringing it back implies it was important, even if it was old

• Keep track of which pages are dirty
• Give eviction preference to clean pages (also to read-only pages)

• Means no write to disk is necessary!

• Evict several pages at once each time it is required
• Find first N with accessed bit of zero

• Takes advantage of disk I/O properties
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Break + Nerdy Computer Science Sayings

Source: these are things my advisor (Prabal Dutta) likes to say

• “I’m going to have to page that back in.”
• Translation: It’s been a while since I used that information and it’s going to 

take me a bit to remember it.

• “I’m thrashing right now.”
• Translation: I’m working on many tasks and switching between them frequently 

causing me to be inefficient.

• “What’s the high-order bit of this idea?”
• (i.e., most-significant bit)
• Translation: What’s the part of this idea that has the most impact
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Traditional hard disk drives (HDDs) use magnetic regions

63



Solid state drives (SSDs) use flash memory

• Still non-volatile

• Significantly faster
• 0.1 ms to access

(10 ms for disk)

• More limited lifetime 
than disk
• Limited writes

64

NMOS transistor with an additional conductor 
between gate and source/drain which “traps” 
electrons. The presence/absence is a 1 or 0



Failure rates for disks are a serious problem

• Problem: disks fail
• HDDs have physical actuators that wear out

• SSDs have limited numbers of writes

• Big problem: servers have many disks
• Assume rate of failure per year of disk is 1%

• And failures aren’t correlated

• And a server has 264 disks

• What are the odds that a disk will fail this year?

• 1 – (1 – 0.01)264 = 93% odds that at least one disk will fail
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Database server at Northwestern

• 264 fast (10k RPM) magnetic disks 
(for production)

• 56 slow (7200 RPM) magnetic disks 
(for backup)

• ~150 TB storage capacity

• Comprised of 6 physical chassis (boxes) in one big 
cabinet, about the size of a coat closet.
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Redundant Array of Independent Disks (RAID)

• Observation in 1988 (Patterson, Gibson, Katz)
• Servers could use a high-quality mainframe disk drive

 OR for the same cost

• Servers could use several redundant low-quality consumer disk drives

• Using an array of cheap disks actually improves multiple things
• Reduce impact of a failure by storing data redundantly on multiple disks.

• Increase capacity by making multiple disks available to store data.

• Increase throughput by accessing data in parallel on multiple disks.
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Basic idea of RAID

• Combine many disks to create one superior virtual disk.

• The RAID array provides the same interface as a single disk.

Computer thinks it’s dealing 
with this:

Sector r/w 
requests

But it’s just an illusion.  The reality is:

Sector r/w 
requests

RAID virtual 
disk



How does RAID fit into the OS?

• RAID can be implemented in software or hardware

• Software RAID means that the OS is responsible for assembling 
multiple disks into a RAID.
• Implements a generic block device.

• Hardware RAID requires a specialized controller card that 
coordinates the multiple disks, presenting interface of one disk.
• OS just needs a driver for the RAID controller, like any other disk 

controller.
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RAID levels

• RAID 0 – Striping:
• Distribute data across 2 disks for twice the peak throughput.

• RAID 1 – Mirroring:
• Copy data onto 2 disks to tolerate failure of one.

• RAID 4/5/6 – Parity:
• Keep parity bits around for each block to check for errors and rebuild.

• Typically involves 3+ disks.
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RAID 0 – Striping (for throughput and capacity)

• Divide the logical disk into chunks
(A1, A2, A3 …) 1 or more blocks in size

• Distribute the chunks regularly over two or 
more (N) physical disks.

• (+) Throughput for both random and 
sequential access scales with N.

TRAID0 = N * Tdisk

• (+) Capacity also scales by N.

• (+) Cost per byte is identical

• (–) But Mean Time To Failure is worse 
because failure of a single disk is 
catastrophic:

MTTFRAID0 = MTTFdisk/N
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RAID 1 – Mirroring (for fault tolerance)

• Duplicate each chunk on each of N 
physical disks.

• (+) It is impossible to lose data unless all 
disks fail simultaneously.
• i.e., failure window is reduced to the time it 

takes to replace a broken disk.

• (–) Write throughput is not improved

• (–) Capacity is the same as a single disk

• (–) Cost per byte is greater
$RAID1 = N * $disk
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Check your understanding – RAID 1

• (–) Write throughput is not improved

• Is write throughput reduced in RAID 1?
Or is it the same as a single disk?

• What about read throughput?
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Check your understanding – RAID 1

• (–) Write throughput is not improved

• Is write throughput reduced in RAID 1?
Or is it the same as a single disk?
• Same as a single disk

• Write can go to both disks in parallel

• What about read throughput?
• Better than a single disk

• Can read two different blocks at once!
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RAID 4 – Parity (for fault tolerance, capacity & throughput) 

Redundant data

• Distribute the chunks across the 
first (N-1) disks.

• On the Nth disk, store a 
corresponding parity chunk.
• Parity block is redundant data 

about a set of chunk (a stripe)

• Can tolerate loss of any one 
disk

• Parity disk becomes bottleneck 
for writes limiting throughput
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How does parity work?

• Even parity – add a 0 or 1 such that the total number of 1’s is 
even.
• There also exists odd parity which makes the total number of 1’s odd

• Examples (Even Parity):
• 0b0000_0000 – zero ones -> parity bit = 0

• 0b1111_1111 – eight ones -> parity bit = 0

• 0b0110_1101 – five ones -> parity bit = 1

• If a single bit is lost, the parity bit allows us to infer the value of 
the lost bit
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Check your understanding – Parity Recovery

• What are the values of the missing bits?
• Even Parity: make the total number of 1s even

• [0, 0, 1, 0, ?, 0, 1, 1] – Even Parity with value: 1

• [0, ?, 1, 1, 1, 0, 0, 0] – Even Parity with value: 0
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Check your understanding – Parity Recovery

• What are the values of the missing bits?
• Even Parity: make the total number of 1s even

• [0, 0, 1, 0, ?, 0, 1, 1] – Even Parity with value: 1
• Value must be a 0

• Because parity plus ones is already even

• [0, ?, 1, 1, 1, 0, 0, 0] – Even Parity with value: 0
• Value must be a 1

• Because parity plus ones is not currently even
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Parity can only fix a single error

• What if two bits are missing?

• [?, 0, 1, 0, ?, 0, 1, 1] – Even Parity: 1
• Could both be zeros

• Could both be ones

• Impossible to tell which

• More advanced “error correcting codes” are possible to detect/fix 
two or more errors
• Hamming Code (single error correcting, double error detecting)

79



Parity chunk in RAID

• Parity is computed bit-wise across corresponding chunks.

• Chunks are one or more blocks (multiple of 4 kB) in size

• Writing a small file will involve one disk plus the parity disk.
• (parity disk can become a bottleneck)

• Writing a large file will involve all the disks. 

Disk 0 Disk 1 Disk 2 Disk 3 (parity)
0001 0010 1100 1100 0000 1111 0000 1111 1101 1111 0011 0001 1100 0010 1111 0010

1111 1111 1111 1111 0001 0001 0001 0001 1101 1001 0110 0110 0011 0111 1000 1000

0000 0000 0000 0000 1101 1011 0011 0011 1111 0011 0011 1000 0010 1000 0000 1011

Useful storage capacity Redundancy overhead
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Rebuilding an array after failure

• If a disk fails, then we remove it and replace it with a working disk.

• Then scan through the entire array to compute and write missing data.
• This is called “rebuilding” the array

• We cannot tolerate another disk failure until rebuild completes.

• Reads/writes can continue while array is rebuilding! 

Disk 0 Disk 1 Disk 2 Disk 3 (parity)
0001 0010 1100 1100 1101 1111 0011 0001 1100 0010 1111 0010

1111 1111 1111 1111 1101 1001 0110 0110 0011 0111 1000 1000

0000 0000 0000 0000 1111 0011 0011 1000 0010 1000 0000 1011

Disk failed!
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RAID 5 – Distributed Parity (the winner in practice)

• Distribute parity chunks across 
the disks, to avoid a small-write 
bottleneck

• (+) Failure of one disk is OK

• (+) Throughput is good

TRAID5 = (N-1) * Tdisk

• (+) Cost per byte is good
$RAID1 = N/(N-1) * $disk

• (–) High overhead for small N

• (–) Failure risk is high for large N

• N is typically 3 to 8



RAID 6 – Double Parity (for large arrays)

• Add another disk and keep two 
parity chunks per stripe
• 2nd parity is computed differently

• (+) Failure of two disks is OK

• (~) Throughput is less:

TRAID5 = (N-2) * Tdisk

• (~) Cost per byte is higher:
$RAID1 = N/(N-2) * $disk

• Makes sense for larger N (>8)
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