Lecture 09:
Device Input and Output

CS343 — Operating Systems
Branden Ghena — Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), Jaswinder Pal Singh (Princeton), and UC Berkeley CS61C and CS162

Northwestern

Administrivia

« SchedulingLab grades are out now
« Exam grades should be out tonight

 Drop deadline is this week as well
« I'm happy to meet with you if you're concerned

» PCLab due Thursday!

Today’s Goals

* Discuss I/O devices and how a computer connects to them.
« Understand two different methods of reading/writing device data.

 Explore patterns for device interaction:
» Synchronous versus Asynchronous
» Programmed I/O versus Direct Memory Access

Outline

« Overview of Device I/0

« Connecting to devices
« Buses on a computer

» Talking to devices
 Port-Mapped I/O and Memory-Mapped I/0

 Device interactions
 Synchronous versus Asynchronous Events
* Programmed I/O versus Direct Memory Access

Devices are the point of modern computers

« Computation was sufficient for
batch systems

» Even then, tape or disk was the input
and output mechanism

 But interactive systems need to

receive input from users and
output responses

« Keyboard/mouse

 Disk

« Network

 Graphics

 Audio

« Various USB devices

Computer

Processor

[Control]

[Datap ath]

Memory

Devices

=

[Output]

Devices are core to useful general-purpose computing

Input Output

[Mouse] [Monitor]
4)
[Keyboard] [Headphones]
> Computer >
Ethernet Ethernet

4) \ J (

Bluetooth Bluetooth

Devices are essential to cyber-physical systems too

Input Output

[Lidar] Throttle Control
4 N\ ’
Inertial |
| Measurement Unit | L Al eidsneel)

> Computer >
Camera [Wheel Rotation]
. _/

o) o)

Device access rates vary by many orders of magnitude

« Rates in bit/sec

« System must be
able to handle
each of these

« Sometimes
needs low
overhead

« Sometimes
needs to not
wait around

Device Behavior Partner Data Rate (Kb/s)
Keyboard Input Human 0.2
Mouse Input Human 0.4
Microphone Output Human 700.0
Bluetooth Input or Output Machine 20,000.0
Hard disk drive Storage Machine 100,000.0
Wireless network Input or Output Machine 300,000.0
Solid state drive Storage Machine 500,000.0
Wired LAN network Input or Output Machine 1,000,000.0
Graphics display Output Human 3,000,000.0

Handling devices appropriately

« OS concerns
« Communicating with devices needs to be fast and efficient
« Devices are shared resources that need to be access controlled and shared

 Devices are wildly variable and need some common interfaces for
application software

« General solution pattern
 Access I/O devices similarly to memory
» Read device state and write commands to it
« With interrupts to inform kernel of events

Outline

« Overview of Device I/0

« Connecting to devices
 Buses on a computer

» Talking to devices
 Port-Mapped I/O and Memory-Mapped I/0

 Device interactions
 Synchronous versus Asynchronous Events
* Programmed I/O versus Direct Memory Access

Devices connect to buses on the computer

 I/O Hierarchy
* Close to the CPU are very

CPU

fast connections

 Farther from CPU are slower
but more flexible protocols

Memory

Graphics

Memory Bus
(proprietary)

General I/0O Bus
(e.g., PCI)

5806

» Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

11

What is a bus anyways?

« Common set of wires for communication between two or more components
» Lets one set of wires connect to N devices

 Standardized buses have a specific set of wires and protocol for
communicating over them (DMI, PCI, SATA, USB)

« Example wires: 64 address wires, 64 data wires, ~10 control wires

« Concerns
« How many wires in the bus?
* Single controller or multiple with arbitration?
 Half-duplex (one direction of communication at a time) or full-duplex?

12

Computer networks also run over buses

« Ethernet is a bus too!

« Network protocols specify how two computers communicate, very
similarly to these buses

« Compared to networks, internal computer busses are:
 Higher speed
« Very high reliability
« Accessed cooperatively (often with only one controller: the CPU)

13

My office “desktop”

« Small form factor desktop
 Intel NUC 8

* CPU includes I/O Controller
and GPU in single package

* CPU implements many
connections directly
- USB
« SATA
« Some have hardware controllers
« Ethernet (RJ45)
« Thunderbolt (Rear USB-C)

« 3.5mm Audio (Front stereo
headset...)

Backpanel

DC Jack

Power
Block

Front Panel USE 3.1
Connector (CDP)

Front Panel USE 3.1
Connector

Rear Panel USB 3.1
Connectors [2)

CIR Receiver

SI0 or EC

SPI Flash

SD Card Slot

Mic Array

Coffee Lake
Intel® SoC

Rear USB-C
DP 1.2
Alpine Ridge
PCle xd
R |
! CECHeader |
e LSPCON HDMI 2.0a
DDR4-2400
DDR4-2400
PCle x4
M.2 2242/2280
SATA 6.0 Gh/s
2x USB 2.0 | 1x4USB20 |
Header
CNVi ;
Wireless AC 9560
PCle x1
1219-V |— RJ45
Front Stereo
Audio CODEC headset/

microphone jack

24350

19

Some important buses

* Legacy
 Parallel Port
 Serial Port

 USB
« SATA
* PCle

e Device driver software
usually talks to bus
controller

« Which sends appropriate
signals to device

Backpanel

DC Jack

Power
Block

Front Panel USE 3.1
Connector (COP)

Front Panel USE 3.1
Connector

Rear Panel USB 3.1
Connectors [2)

CIR Receiver

510 or EC

SPI Flash

SD Card Slot

Mic Array

Coffee Lake
Intel® SoC

Rear USB-C

Alpine Ridge

HDMI 2.0a

DDR4-2400

DDR4-2400

M.2 22422280

PCle x4
SATA 6.0 Gbh/s

r 1
x4 USB 2.0

Header
CNVi ;
Wireless AC 9560
PCle x1
[1219-V RJ145
Front Stereo
Audio CODEC headset/
microphone jack

24350

20

Parallel Port — “Printer Port” or Centronics Port

» “That big long one you might have seen once” 25— 8¢ 13 ¢ roper ena)

21— @ o .11 BUSY
231—® o 10 ACK
Ground 224 =
¢ o
211—@ > 5
201—@9 ©

8 data bits plus control signals 2018 g 57
18— @ & "5

¢ Up tO 2.5 MbpS” SELIN 174 e .—:5
INIT 16¢—@ o—._> g
ERROR 15— @ @ >
AUTOF 14— @ @, T STROBE

Data Out

OFRPNWRARUIO

 Very simple to implement
 Write 8 bits of data
« Set STROBE low
« BUSY goes low in response
« When BUSY goes high
« Set STROBE high
* Repeat

1 Pin 3
erial Fort — - Transmi
Bin 2 Data (TD)
Receive Data Pin 4
in 1 (RDO) Data Terminal

Ready (OTR)

* “"That one we used to use before USB”

« RS-232 serial protocol s’
 One wire for Transmit, one wire for receive

- Bits go one after another at a certain speed ("baudrate”) e Geresw
« Up to 256 Kbps

« Used to connect modems

« Still occasionally used for
old devices (via a USB to
RS-232 converter)

22

USB — Universal Serial Bus

« “That one you are familiar with already”

« Connect and power external devices

« Comes in multiple form-factors and versions
« USB 3.x and type C connectors are the fast ones

» Speed has increased greatly
« 1.5 Mbps
« 12 Mbps
» 480 Mbps
* 5 Gbps
« 10 Gbps
* 40 Gbps

23

SATA — Serial ATA — AT Attachment — “"Advanced Technology”

 “"That cable you plug an SSD/HDD in with”

 Long evolution as you might have
guessed from the name

* 6 Gbps
« One transmit and one receive single
« Two wires for each in twisted pair
 Short connection length for high speed

AL LT LT LA L)

SATA Power 24

PClIe — Peripheral Component Interconnect Express

« “That slot you put a graphics card into”
« Or WiFi card, or some SSDs

» Collection of point-to-point —— S
connections [s 1+ il G5
» Motherboard and CPU support ilZ_Z:ZLZLL;;;'.W"
N “lanes” in various configurations I R |

AL T TTY EEEERE RIS - e« L aae a e
- o y
g2l 2 Rigat 2 i L W 3l sl ot ol ol 3l sl Ml shat st sloat gl i uiiee

+ Different sizes for different
number of bits in parallel T "

"

=gt 0 4 : 25 SN Sewraol N o Tz cs et

7_.A‘_x_;: --n‘.unu L R RN TITIT sugEuNNN = ’“%m 2 8 o021 020

° raer S S 3 : UBHEHRAAA] EREARNA A A
=3 [zl =l
" O lass -
-l T ¢ . = . . : E143) 2ERI3
cam A Lz, YA e QST < 3 < e g] 748 2l le) SISEIT AR
- o L INE - e

25

Live Demo: List devices on a Linux computer

* | susb
 List USB devices

* lspci
* List PCI devices

« Combine with —s flag to select a single device
« Combine with -v flag for verbose mode with more information

26

Break + Question

« Why do we need all of these busses?
 Isn't USB enough for everything?

27

Break + Question

« Why do we need all of these busses?
 Isn't USB enough for everything?

« Different tools for different purposes!
« USB is more general-purpose, short range, powers devices

« PCle is for LOTS of data, but very short range and cables would be crazy

 Ethernet is for long-range, lots of data, no power

https://www.reddit.com/r/explainlikeimfive/comments/uf4efj/comment/i6rmv15

28

https://www.reddit.com/r/explainlikeimfive/comments/uf4efj/comment/i6rmv15

Outline

« Overview of Device I/0

« Connecting to devices
« Buses on a computer

 Talking to devices
- Port-Mapped I/0 and Memory-Mapped I/0

 Device interactions
 Synchronous versus Asynchronous Events
* Programmed I/O versus Direct Memory Access

How does an OS talk with I/O devices?

* A device is really a miniature computer-within-the-computer
« Has its own processing, memory, software

« We can mostly ignore that and deal with its interface
 Called registers (similar to processor registers in that they hold data)

« Read/Write like they're data

 How do we read/write them?
 Special assembly instructions
e Treat like normal memory

Registers | Status Command Data

Micro-controller (CPU)
Memory (DRAM or SRAM or both)

Other Hardware-specific Chips

Interface

Internals

30

Example powered device: Real Time Clock

. Battery_backed up Index | Contents Range
clock on computer [900 | Seconds 0-59
motherboard 0x02 | Minutes 0-59
0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM
« Keeps sense of time |0x06 | Weekday 1-7, Sunday =1
when computer is 0x07 | Day of Month | 1-31
off 0x08 | Month 1-12
0x09 | Year 0-99
° Resynchronized Index Register Data Register
when the computer
is awake

https://www.singlix.com/trdos/archive/pdf archive/real-time-clock-nmi-enable-paper.pdf 31

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Port-Mapped I/O (PMIO): special assembly instructions

* Xx86 IN and OUT instructions

* Privileged instructions (kernel mode only)
« Two arguments: destination and data register

 Each device is mapped to some port address
« IN and OUT instructions interact with interface

« IN <PORT NUMBER>, <REGISTER>
* OUT <REGISTER>, <PORT NUMBER>

32

Example powered device: Real Time Clock

« Example: read
current value from
real-time clock

// read seconds

mov $0, %al
out %al, $0x70
in $0x71, %al

Index | Contents Range
0x00 | Seconds 0-59
0x02 Minutes 0-59
0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM
0x06 | Weekday 1-7, Sunday =1
0x07 Day of Month | 1-31
0x08 Month 1-12
0x09 | Year 0-99

Index Register

Data Register

0x70*

0x71 4= Port Address

https://www.singlix.com/trdos/archive/pdf archive/real-time-clock-nmi-enable-paper.pdf 33

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Example I/O
port map

This isn't
standardized,
but these are
some typical
values.

https://wiki.osdev.org/Can I

Port range

Summary

0x0000-0x001F

The first legacy DMA controller, often used for transfers to floppies.

0x0020-0x0021

The first Programmable Interrupt Controller

0x0022-0x0023

Access to the Model-Specific Registers of Cyrix processors.

0x0040-0x0047

The PIT (Programmable Interval Timer)

0x0060-0x0064

The "8042" PS/2 Controller or its predecessors, dealing with keyboards and mice.

0x0070-0x0071

The CMOS and RTC registers

0x0080-0x008F

The DMA (Page registers)

0x0092

The location of the fast A20 gate register

0x00A0-0x00A1

The second PIC

0x00C0-0x00DF

The second DMA controller, often used for soundblasters

0x00E9

Home of the Port E9 Hack. Used on some emulators to directly send text to the hosts' console.

0x0170-0x0177

The secondary ATA harddisk controller.

0x01F0-0x01F7

The primary ATA harddisk controller.

0x0278-0x027A

Parallel port

have a list of I0 Ports

0x02F8-0x02FF

Second serial port

0x03B0-0x03DF

The range used for the IBM VGA, its direct predecessors, as well as any modern video card in legacy mode.

0x03F0-0x03F7

Floppy disk controller

0Ox03F8-0x03FF

First serial port

https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports
https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports

Check your understanding — PMIO in C

« How would you access PMIO from a C program?

35

Check your understanding — PMIO in C

« How would you access PMIO from a C program?

* Need to use assembly!

« Hopefully with C function wrapper, like System Calls

36

Annoying parts of Port-Mapped I/0

 Special assembly instructions are hard to write in C
« Need some wrapper function that actually calls them
 Not really that big of an issue, but a little weird

* Feels sort of like memory read/write, but isn't
« Why not?
« Can we just put the “port address space” somewhere in memory?
 Could be a problem if we don’t have enough memory
 But today we have tons of extra physical address space laying around

37

Memory-mapped I/O (MMIO): treat devices like normal memory

» Certain physical addresses do not actually go to RAM

» Instead, they correspond to I/O devices
« And any instruction that accesses memory can access them too!

Address
OXFFFFFFFF

e
e
-

OxFFFF0000 control reg.| S
~~~~~~~~~~ data reg.

» X86 being the historical
amalgamation that it is,
uses both PMIO or MMIO

depending on the device

0x00000000

38



Example memory map (from an old 32-bit computer)

Memory = il el
Layout L) (00000000 - OOOFFFFF] System board
= [DO0ADDO00 - DOOBFFFF] PCI bus
= ' [000ADOOO - DOOBFFFF] Intel(R) processor PCT Express Root Port - 0045 | VGA Area
@ [000A0000 - DOOBFFFF] NVIDLA NVS 3100M

[000CO000 - QOOCIFFF] System board
[000C4000 - 0DCTFFF] System board
[DOOC3000 - DOOCEFFF] System board
[DOOCCO00 - DODCFFFF] System board
(00000000 - 00003FFF] System board
[00004000 - O00DFFFF] PCI bus
[000DS000 - DOODBFFF] PCI bus
000D 000 - DO0DFFFF] Syshem board )
[DOOEDODO - DOOESFFF] System board
[OO0E4000 - 000ETFFF] System board BIOS
[OOOES000 - OOOEEFFF] System board
[DODECOOD - OOOEFFFF] System board
DOOFO000 - DODFFFFF] System boand
PCI devices are ':' System RAM extented mem above 1MB

— ¢ [CUDUUODU - FEBFFRPEL PCTDUs ) PCl Addon device MMIO maps
mapped here T T e boars

E [FED40000 - FED44FFF] STMicroslsctronics Trusted Platform Module | Onginal System BIOS

FPrimary Mem

OpROMs

s

[FED4S000 - FED4BFFF] Motherboard resources
[FEC4CO00 - FFFFFFFF] System board




Example devices on my windows computer

« SATA controller is
mapped into memory -~
at two places

Standard SATA AHCI Controller

Resource settings:

_ Resource type Setting
- USB controller is W Memory Range  00000000COA24000 - D000D000COAZ5FFF
mapped into a much 3 Memory Range  00000000C0A27000 - 00000000C0A270FF
nigner memory region

] 2 Intel(R)} LISB 3.1 eXtensible Host Controller - 1.10 {Microscft)
» Regions are large
because they contain Resource settings:

multiple control/data

W regiSteI‘S" Resource type Setting

i Memory Range QO0000404ACO0000 - DOCG000404ACOFFFF

40




Microcontroller example: reading temperature

« Internal temperature sensor
 0.25° C resolution

« Range equivalent to microcontroller IC (-40° to 105° C)

» Various configurations for the temperature conversion (ignoring)

Base address
ChedDOOCD00

Register
TASKS_START
TASKS_STOP
EVENTS_DATARDY
INTENSET
INTENCLR

TEMP

TEMP

CheDi0

Che 100
Che304

Ch3028
Che%02

Instance Description

TEMP

Temperature sensor

Descrioti

Start tempsrature measursment

Temperature measurement complete, data ready

Enable intermupt
Disable interrupt

Temiperature in *C (025" steps)

nRF52833

41



MMIO addresses for TEMP device

« What addresses do we need? (ignore interrupts for now)
* 0x4000C000 — TASKS_START

« 0x4000C100 — EVENTS_DATARDY

+ 0x4000C508 - TEMP

Base address
ChedDOOCD00

Register
TASKS_START
TASKS_STOP
EVENTS_DATARDY
INTENSET
INTENCLR

TEMP

TEMP

CheDi0
Che 100
Che304

Che%02

Instance Description

TEMP

Temperature sensor

Descrioti

Start tempsrature measursment

Temperature measurement complete, data ready
Enable intermupt
Disable interrupt

Temiperature in *C (025" steps)

nRF52833

42



Accessing addresses in C

 What does this C code do?

*(uint32_t*)(0x4000C000) = 1;

43



Accessing addresses in C

 What does this C code do?

*(uint32_t*)(0x4000C000) = 1;

« Ox4000C000 is cast to a uint32_t*
* Then dereferenced
« And we write 1 to it

« “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

44



Other details about MMIO

 Devices are mapped into physical memory
 Usually only accessible by the kernel
 But could be directly placed in virtual memory for a process in very special cases

» Devices are NOT memory though
« Need to be careful not to cache them
« Values being read could change, or reading could have an effect

« Cannot let compiler mess with our reads/writes either
* volatile keyword in C

« Conceptually not really very different from PMIO
« Both just read/write to specific addresses the device is mapped to

45



Break + example code to read and print temperature value

£32_t*)(

7(!ready)'{
ready = *(uint32_t

o 23 4 A+ vt e 4 S &
Yala, aata (1Nl N 1 N |
S 4 A A L S SERAS 4 CC

_ ”

t value
printf(

nrf_delay ms( s

- ready = *(uint32_t

1£32_t*)( )5

.:»témperature = ((float)value)/4.0;

, temperature);

46



Outline

« Overview of Device I/0

« Connecting to devices
« Buses on a computer

» Talking to devices
 Port-Mapped I/O and Memory-Mapped I/0

* Device interactions
« Synchronous versus Asynchronous Events
* Programmed I/O versus Direct Memory Access




What do interactions with devices look like?

Registers | Status Command Data Interface

1. while STATUS==BUSY; Wait

* (Need to make sure device is ready for a command) This is the "polling

model of I/0.

2. Write value(s) to DATA
“Poll” the peripheral

3. Write command(s) to COMMAND in software repeatedly
to see if it's ready vyet.

4. while STATUS==BUSY; Wait

* (Need to make sure device has completed the request)

5. Read value(s) from Data

48



Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
* (Need to make sure device is ready for a command)

Write value(s) to DATA
Write command(s) to COMMAND

. While STATUS==BUSY; Wait
* (Need to make sure device has completed the request)

Read value(s) from Data

AW N

o

» Imagine a keyboard device
« CPU could be waiting for minutes before data arrives
* Need a way to notify CPU when an event occurs
« Interrupts!

49



Interrupts, visually

Some code
that’s executing

Interrupt
triggers!

q

Continue

original code

v

Could be kernel code or

— — some application

Interrupt handler
code

50



Hardware devices can generate interrupts

« Each device maps
to some number of
hardware interrupts

* Done at system
boot time
* Discover devices

« Map devices into
address space

« Map interrupts for
devices

Table 6-1. Exceptions and Interrupts

Vector No. | Mnemonic Description Source
0 #DE Divide Error | DIV and IDIV instructions.
1 #DB Debug | Any code or data reference.
P4 NMI Interrupt Non-maskable external interrupt,
3 #BpP Breakpont EINT 3 InStruction.
4 #OF Overfiow | INTO instruction.
S #BR BOUND Range Excesded | BOUND instruction.
6 #UD Invalid Opcode (UnDefined Opcode) UD2 instruction or reserved opcode.’
7 #NM Device Not Available (No Math Coprocessor) | Floating-point or WAIT/FWAIT instruction.
8 #DF Double Fault ‘ Any instruction that can generate an exception, an NM|, or
|‘ an INTR.
9 #MF CoProcessor Segment Overrun (reserved) | Floating-point instruction :
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers of accessing system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #0OP General Protection | Any memory reference and other protection checks.
14 #PF Page Fault | Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction,
17 #AC Alignment Check | Any data reference in m-zmon,(_3
18 #MC Machine Chedk | Error codes (if any) 2nd source are model dependent?
19 #XM SIMD Floating-Point Exception | SIMD Floating-Point Instruction®
20-31 Reserved
32-255 J Maskable Interrupts ; External intermupt from INTR pin or INT ninstruction.

. v~

51




Interrupts allow waiting to happen asynchronously

* Prior code example was syrnchronous
 Nothing else continued on the processor until access was complete
« Good for very fast devices (like the real-time clock, that just returns data)
« We call this “Polling”
« Might make sense in applications which can Block

 With interrupts, device handling is now asynchronous
 Access occurs in the background and processor can do something else
« Good for very slow devices (Disk)
« Comes with all the downsides of concurrency though...

52



Microcontroller TEMP device supports interrupts!

 Can either wait on the EVENTS_DATARDY register

 Or could enable an interrupt from the device
* And only both reading data when it is ready

e DOOCO00 TEMP TEMP Temperature sensor
TASES_START D00 Start tempsrature measursment

TASES _STOP a0 Stop temperature measursms nit
EVENTS_DATARDY e 100 Temperature measurement complete, data ready
INTEMSET b0 Enable intermupt

INTEMCLR (308 Disable interrupt

TEMP 503 Temiperature in *C (025" steps)

53



Device driver interrupt pattern: non-blocking

1. Kernel requests driver to perform some action
 Driver writes to the hardware device
« Sets the status of the driver to be busy

2. Function returns so the kernel can keep running

3. Interrupt occurs when action is completed
« Change the status of the driver to be ready

4. Kernel can now make a new request whenever it wants to

55



Outline

« Overview of Device I/0

« Connecting to devices
« Buses on a computer

» Talking to devices
 Port-Mapped I/O and Memory-Mapped I/0

* Device interactions
« Synchronous versus Asynchronous Events
 Programmed I/0 versus Direct Memory Access




Programmed I/0O (PIO)

1. while STATUS==BUSY; Wait (possibly on interrupt)
* (Need to make sure device is ready for a command)

2. Write value(s) to DATA
3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait (possibly on interrupt)
* (Need to make sure device has completed the request)

5. Read value(s) from Data

* How do we read and write those values? (could be a lot)
« With normal CPU memory accesses: Programmed I/0O
» Literally: you write a program to do the input and output

58



Check your understanding — writing to GPU

* Let’s say that a GPU has MMIO registers for an entire 4 KB page
« Takes 100 ns to write each word (8 bytes) of memory

« Assuming that we're just writing all zeros (ignore reading from
memory), how long does it take to write a page to MMIQO?

59



Check your understanding — writing to GPU

* Let’s say that a GPU has MMIO registers for an entire 4 KB page
« Takes 100 ns to write each word (8 bytes) of memory

« Assuming that we're just writing all zeros (ignore reading from
memory), how long does it take to write a page to MMIQO?

« 4 KB/ 8 B = 500 writes * 100 ns / write = 50 ps
 (For a 3 GHz processor, that's ~150,000 cycles)

60



Direct Memory Access (DMA)

« Even with interrupts, just providing data to the peripheral is time
consuming
» The processor is involved in writing/reading each byte

* DMA is an alternative method that uses hardware to do the
memory transfers for the processor
 Software writes address of the data and the size to the peripheral
 Device reads data directly from memory
 Processor can go do other things while read/write is occurring

61



Programmed I/O versus Direct Memory Access

SATA
Controller

SATA
Controller

62



Disk access with DMA

CPU

@ e Dnve

1.CPU
programs DMA, Disk Main
the DMA controller controller Memaory
controller Py Buffer
f.—"'-___-‘-\
Address
Count
Control 4. Ack H
$

s B
|
5. Interrupt when 2. DMA requests
done transfer to memory

| | 3. Data transferred | |

-— Bus

63



DMA considerations

* Need to be careful about letting devices access arbitrary memory
 Should devices be trusted?

 This random flash drive that’s plugged in shouldn’t be able to read all of
RAM

« Often a hardware “"DMA controller” does the transfer for the device
« JIOMMU can even set up virtual memory spaces for devices

64



Interaction pattern with Interrupts and DMA

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer
4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete
6. Set up next DMA transfer
Continue on to other code, and repeat

« Kernel is in charge of keeping a queue of hardware requests

65



Returning to the variety of devices

* Interrupts
support high-
latency devices
and time-
sensitive devices

* DMA supports
high-throughput
devices

Device Behavior Partner Data Rate (Kb/s)
Keyboard Input Human 0.2
Mouse Input Human 0.4
Microphone Output Human 700.0
Bluetooth Input or Output Machine 20,000.0
Hard disk drive Storage Machine 100,000.0
Wireless network  Input or Output Machine 300,000.0
Solid state drive Storage Machine 500,000.0
Wired LAN network Input or Output Machine 1,000,000.0
Graphics display Output Human 3,000,000.0

66



Outline

« Overview of Device I/0

« Connecting to devices
« Buses on a computer

» Talking to devices

 Port-Mapped I/O and Memory-Mapped I/O

* Device interactions
« Synchronous versus Asynchronous Events
« Programmed I/O versus Direct Memory Access




	Default Section
	Slide 1: Lecture 09: Device Input and Output

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Devices
	Slide 4: Outline
	Slide 5: Devices are the point of modern computers
	Slide 6: Devices are core to useful general-purpose computing
	Slide 7: Devices are essential to cyber-physical systems too
	Slide 8: Device access rates vary by many orders of magnitude
	Slide 9: Handling devices appropriately

	Connecting to Devices
	Slide 10: Outline
	Slide 11: Devices connect to buses on the computer
	Slide 12: What is a bus anyways?
	Slide 13: Computer networks also run over buses
	Slide 19: My office “desktop”
	Slide 20: Some important buses
	Slide 21: Parallel Port – “Printer Port” or Centronics Port
	Slide 22: Serial Port – RS-232
	Slide 23: USB – Universal Serial Bus
	Slide 24: SATA – Serial ATA – AT Attachment – “Advanced Technology”
	Slide 25: PCIe – Peripheral Component Interconnect Express
	Slide 26: Live Demo: List devices on a Linux computer
	Slide 27: Break + Question
	Slide 28: Break + Question

	Talking to Devices
	Slide 29: Outline
	Slide 30: How does an OS talk with I/O devices?
	Slide 31: Example powered device: Real Time Clock
	Slide 32: Port-Mapped I/O (PMIO): special assembly instructions
	Slide 33: Example powered device: Real Time Clock
	Slide 34
	Slide 35: Check your understanding – PMIO in C
	Slide 36: Check your understanding – PMIO in C
	Slide 37: Annoying parts of Port-Mapped I/O
	Slide 38: Memory-mapped I/O (MMIO): treat devices like normal memory
	Slide 39: Example memory map (from an old 32-bit computer)
	Slide 40: Example devices on my windows computer
	Slide 41: Microcontroller example: reading temperature
	Slide 42: MMIO addresses for TEMP device
	Slide 43: Accessing addresses in C
	Slide 44: Accessing addresses in C
	Slide 45: Other details about MMIO
	Slide 46: Break + example code to read and print temperature value

	Device Interactions
	Slide 47: Outline
	Slide 48: What do interactions with devices look like?
	Slide 49: Waiting can be a waste of CPU time
	Slide 50: Interrupts, visually
	Slide 51: Hardware devices can generate interrupts
	Slide 52: Interrupts allow waiting to happen asynchronously
	Slide 53: Microcontroller TEMP device supports interrupts!
	Slide 55: Device driver interrupt pattern: non-blocking
	Slide 57: Outline
	Slide 58: Programmed I/O (PIO)
	Slide 59: Check your understanding – writing to GPU
	Slide 60: Check your understanding – writing to GPU
	Slide 61: Direct Memory Access (DMA)
	Slide 62: Programmed I/O versus Direct Memory Access
	Slide 63: Disk access with DMA
	Slide 64: DMA considerations
	Slide 65: Interaction pattern with Interrupts and DMA

	Wrapup
	Slide 66: Returning to the variety of devices
	Slide 67: Outline


