
Lecture 09:
Device Input and Output

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), Jaswinder Pal Singh (Princeton), and UC Berkeley CS61C and CS162

Administrivia

• SchedulingLab grades are out now

• Exam grades should be out tonight

• Drop deadline is this week as well
• I’m happy to meet with you if you’re concerned

• PCLab due Thursday!

2

Today’s Goals

• Discuss I/O devices and how a computer connects to them.

• Understand two different methods of reading/writing device data.

• Explore patterns for device interaction:
• Synchronous versus Asynchronous

• Programmed I/O versus Direct Memory Access

3

4

• Overview of Device I/O

• Connecting to devices
• Buses on a computer

• Talking to devices
• Port-Mapped I/O and Memory-Mapped I/O

• Device interactions
• Synchronous versus Asynchronous Events

• Programmed I/O versus Direct Memory Access

Outline

Devices are the point of modern computers

• Computation was sufficient for
batch systems
• Even then, tape or disk was the input

and output mechanism

• But interactive systems need to
receive input from users and
output responses
• Keyboard/mouse
• Disk
• Network
• Graphics
• Audio
• Various USB devices

5

Processor

Computer

Control

Datapath

Memory Devices

Input

Output

Devices are core to useful general-purpose computing

6

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output

Devices are essential to cyber-physical systems too

7

Computer

Lidar

Inertial
Measurement Unit

Camera

CAN

Throttle Control

Brake Control

Wheel Rotation

CAN

Input Output

Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be
able to handle
each of these
• Sometimes

needs low
overhead

• Sometimes
needs to not
wait around

8

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0

Handling devices appropriately

• OS concerns
• Communicating with devices needs to be fast and efficient

• Devices are shared resources that need to be access controlled and shared

• Devices are wildly variable and need some common interfaces for
application software

• General solution pattern
• Access I/O devices similarly to memory

• Read device state and write commands to it

• With interrupts to inform kernel of events

9

10

• Overview of Device I/O

• Connecting to devices
• Buses on a computer

• Talking to devices
• Port-Mapped I/O and Memory-Mapped I/O

• Device interactions
• Synchronous versus Asynchronous Events

• Programmed I/O versus Direct Memory Access

Outline

Devices connect to buses on the computer

• I/O Hierarchy
• Close to the CPU are very

fast connections

• Farther from CPU are slower
but more flexible protocols

11

What is a bus anyways?

• Common set of wires for communication between two or more components
• Lets one set of wires connect to N devices

• Standardized buses have a specific set of wires and protocol for
communicating over them (DMI, PCI, SATA, USB)
• Example wires: 64 address wires, 64 data wires, ~10 control wires

• Concerns
• How many wires in the bus?
• Single controller or multiple with arbitration?
• Half-duplex (one direction of communication at a time) or full-duplex?

12

Computer networks also run over buses

• Ethernet is a bus too!

• Network protocols specify how two computers communicate, very
similarly to these buses

• Compared to networks, internal computer busses are:
• Higher speed

• Very high reliability

• Accessed cooperatively (often with only one controller: the CPU)

13

My office “desktop”

• Small form factor desktop
• Intel NUC 8

• CPU includes I/O Controller
and GPU in single package

• CPU implements many
connections directly
• USB
• SATA
• Some have hardware controllers

• Ethernet (RJ45)
• Thunderbolt (Rear USB-C)
• 3.5mm Audio (Front stereo

headset…)

19

Some important buses

• Legacy
• Parallel Port
• Serial Port

• USB

• SATA

• PCIe

• Device driver software
usually talks to bus
controller
• Which sends appropriate

signals to device

20

Parallel Port – “Printer Port” or Centronics Port

• “That big long one you might have seen once”

• 8 data bits plus control signals
• Up to 2.5 Mbps!!

• Very simple to implement
• Write 8 bits of data
• Set STROBE low

• BUSY goes low in response
• When BUSY goes high

• Set STROBE high
• Repeat

21

Serial Port – RS-232

• “That one we used to use before USB”

• RS-232 serial protocol
• One wire for Transmit, one wire for receive

• Bits go one after another at a certain speed (“baudrate”)

• Up to 256 Kbps

• Used to connect modems
• Still occasionally used for

old devices (via a USB to
RS-232 converter)

22

USB – Universal Serial Bus

23

• “That one you are familiar with already”

• Connect and power external devices

• Comes in multiple form-factors and versions
• USB 3.x and type C connectors are the fast ones

• Speed has increased greatly
• 1.5 Mbps
• 12 Mbps
• 480 Mbps
• 5 Gbps
• 10 Gbps
• 40 Gbps

SATA – Serial ATA – AT Attachment – “Advanced Technology”

24

• “That cable you plug an SSD/HDD in with”

• Long evolution as you might have
guessed from the name

• 6 Gbps
• One transmit and one receive single

• Two wires for each in twisted pair

• Short connection length for high speed

SATA Power

PCIe – Peripheral Component Interconnect Express

• “That slot you put a graphics card into”
• Or WiFi card, or some SSDs

• Collection of point-to-point
connections
• Motherboard and CPU support

N “lanes” in various configurations

• Different sizes for different
number of bits in parallel
• Order 10s Gbps

25

Live Demo: List devices on a Linux computer

• lsusb

• List USB devices

• lspci

• List PCI devices

• Combine with –s flag to select a single device

• Combine with -v flag for verbose mode with more information

26

Break + Question

• Why do we need all of these busses?
• Isn’t USB enough for everything?

27

Break + Question

• Why do we need all of these busses?
• Isn’t USB enough for everything?

• Different tools for different purposes!
• USB is more general-purpose, short range, powers devices

• PCIe is for LOTS of data, but very short range and cables would be crazy

• Ethernet is for long-range, lots of data, no power

28

https://www.reddit.com/r/explainlikeimfive/comments/uf4efj/comment/i6rmv15

https://www.reddit.com/r/explainlikeimfive/comments/uf4efj/comment/i6rmv15

29

• Overview of Device I/O

• Connecting to devices
• Buses on a computer

• Talking to devices
• Port-Mapped I/O and Memory-Mapped I/O

• Device interactions
• Synchronous versus Asynchronous Events

• Programmed I/O versus Direct Memory Access

Outline

How does an OS talk with I/O devices?

• A device is really a miniature computer-within-the-computer
• Has its own processing, memory, software

• We can mostly ignore that and deal with its interface
• Called registers (similar to processor registers in that they hold data)

• Read/Write like they’re data

• How do we read/write them?
• Special assembly instructions

• Treat like normal memory

30

Example powered device: Real Time Clock

• Battery-backed up
clock on computer
motherboard

• Keeps sense of time
when computer is
off

• Resynchronized
when the computer
is awake

31

Index Contents Range

0x00 Seconds 0-59

0x02 Minutes 0-59

0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM

0x06 Weekday 1-7, Sunday =1

0x07 Day of Month 1-31

0x08 Month 1-12

0x09 Year 0-99

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Port-Mapped I/O (PMIO): special assembly instructions

• x86 IN and OUT instructions
• Privileged instructions (kernel mode only)

• Two arguments: destination and data register

• Each device is mapped to some port address
• IN and OUT instructions interact with interface

• IN <PORT NUMBER>, <REGISTER>

• OUT <REGISTER>, <PORT NUMBER>

32

Example powered device: Real Time Clock

• Example: read
current value from
real-time clock

// read seconds

mov $0, %al
out %al, $0x70
in $0x71, %al

33

Index Contents Range

0x00 Seconds 0-59

0x02 Minutes 0-59

0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM

0x06 Weekday 1-7, Sunday =1

0x07 Day of Month 1-31

0x08 Month 1-12

0x09 Year 0-99

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Port Address

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Example I/O
port map

This isn’t
standardized,
but these are
some typical
values.

https://wiki.osdev.org/Can_I
_have_a_list_of_IO_Ports

34

https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports
https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports

Check your understanding – PMIO in C

• How would you access PMIO from a C program?

35

Check your understanding – PMIO in C

• How would you access PMIO from a C program?

• Need to use assembly!

• Hopefully with C function wrapper, like System Calls

36

Annoying parts of Port-Mapped I/O

• Special assembly instructions are hard to write in C
• Need some wrapper function that actually calls them

• Not really that big of an issue, but a little weird

• Feels sort of like memory read/write, but isn’t
• Why not?

• Can we just put the “port address space” somewhere in memory?

• Could be a problem if we don’t have enough memory

• But today we have tons of extra physical address space laying around

37

Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to RAM

• Instead, they correspond to I/O devices
• And any instruction that accesses memory can access them too!

• x86 being the historical
amalgamation that it is,
uses both PMIO or MMIO
depending on the device

38

control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address

Example memory map (from an old 32-bit computer)

39

PCI devices are
mapped here

Example devices on my windows computer

• SATA controller is
mapped into memory
at two places

• USB controller is
mapped into a much
higher memory region

• Regions are large
because they contain
multiple control/data
“registers”

40

Microcontroller example: reading temperature

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller IC (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)

41

nRF52833

MMIO addresses for TEMP device

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP

42

nRF52833

Accessing addresses in C

• What does this C code do?

 (uint32_t)(0x4000C000) = 1;

43

Accessing addresses in C

• What does this C code do?

 (uint32_t)(0x4000C000) = 1;

• 0x4000C000 is cast to a uint32_t*

• Then dereferenced

• And we write 1 to it

• “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

44

Other details about MMIO

• Devices are mapped into physical memory
• Usually only accessible by the kernel
• But could be directly placed in virtual memory for a process in very special cases

• Devices are NOT memory though
• Need to be careful not to cache them

• Values being read could change, or reading could have an effect

• Cannot let compiler mess with our reads/writes either
• volatile keyword in C

• Conceptually not really very different from PMIO
• Both just read/write to specific addresses the device is mapped to

45

Break + example code to read and print temperature value

46

47

• Overview of Device I/O

• Connecting to devices
• Buses on a computer

• Talking to devices
• Port-Mapped I/O and Memory-Mapped I/O

• Device interactions
• Synchronous versus Asynchronous Events

• Programmed I/O versus Direct Memory Access

Outline

What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

48

This is the “polling”
model of I/O.

“Poll” the peripheral
in software repeatedly
to see if it’s ready yet.

Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Imagine a keyboard device
• CPU could be waiting for minutes before data arrives

• Need a way to notify CPU when an event occurs

• Interrupts!

49

Interrupts, visually

50

Some code
that’s executing

Interrupt
triggers!

Interrupt handler
code

Continue
original code

Could be kernel code or
some application

Hardware devices can generate interrupts

• Each device maps
to some number of
hardware interrupts

• Done at system
boot time
• Discover devices

• Map devices into
address space

• Map interrupts for
devices

51

Interrupts allow waiting to happen asynchronously

• Prior code example was synchronous
• Nothing else continued on the processor until access was complete

• Good for very fast devices (like the real-time clock, that just returns data)

• We call this “Polling”

• Might make sense in applications which can Block

• With interrupts, device handling is now asynchronous
• Access occurs in the background and processor can do something else

• Good for very slow devices (Disk)

• Comes with all the downsides of concurrency though…

52

Microcontroller TEMP device supports interrupts!

• Can either wait on the EVENTS_DATARDY register

• Or could enable an interrupt from the device
• And only both reading data when it is ready

53

Device driver interrupt pattern: non-blocking

1. Kernel requests driver to perform some action
• Driver writes to the hardware device

• Sets the status of the driver to be busy

2. Function returns so the kernel can keep running

3. Interrupt occurs when action is completed
• Change the status of the driver to be ready

4. Kernel can now make a new request whenever it wants to

55

57

• Overview of Device I/O

• Connecting to devices
• Buses on a computer

• Talking to devices
• Port-Mapped I/O and Memory-Mapped I/O

• Device interactions
• Synchronous versus Asynchronous Events

• Programmed I/O versus Direct Memory Access

Outline

Programmed I/O (PIO)

1. while STATUS==BUSY; Wait (possibly on interrupt)
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait (possibly on interrupt)
• (Need to make sure device has completed the request)

5. Read value(s) from Data

• How do we read and write those values? (could be a lot)
• With normal CPU memory accesses: Programmed I/O

• Literally: you write a program to do the input and output

58

Check your understanding – writing to GPU

• Let’s say that a GPU has MMIO registers for an entire 4 KB page
• Takes 100 ns to write each word (8 bytes) of memory

• Assuming that we’re just writing all zeros (ignore reading from
memory), how long does it take to write a page to MMIO?

59

Check your understanding – writing to GPU

• Let’s say that a GPU has MMIO registers for an entire 4 KB page
• Takes 100 ns to write each word (8 bytes) of memory

• Assuming that we’re just writing all zeros (ignore reading from
memory), how long does it take to write a page to MMIO?

• 4 KB / 8 B = 500 writes * 100 ns / write = 50 µs

• (For a 3 GHz processor, that’s ~150,000 cycles)

60

Direct Memory Access (DMA)

• Even with interrupts, just providing data to the peripheral is time
consuming
• The processor is involved in writing/reading each byte

• DMA is an alternative method that uses hardware to do the
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Device reads data directly from memory

• Processor can go do other things while read/write is occurring

61

Programmed I/O versus Direct Memory Access

62

SATA
Controller

SATA
Controller

Disk

Disk

Disk access with DMA

63

DMA considerations

• Need to be careful about letting devices access arbitrary memory
• Should devices be trusted?

• This random flash drive that’s plugged in shouldn’t be able to read all of
RAM

• Often a hardware “DMA controller” does the transfer for the device
• IOMMU can even set up virtual memory spaces for devices

64

Interaction pattern with Interrupts and DMA

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat

• Kernel is in charge of keeping a queue of hardware requests
65

Returning to the variety of devices

• Interrupts
support high-
latency devices
and time-
sensitive devices

• DMA supports
high-throughput
devices

66

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0

67

• Overview of Device I/O

• Connecting to devices
• Buses on a computer

• Talking to devices
• Port-Mapped I/O and Memory-Mapped I/O

• Device interactions
• Synchronous versus Asynchronous Events
• Programmed I/O versus Direct Memory Access

Outline

	Default Section
	Slide 1: Lecture 09: Device Input and Output

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Devices
	Slide 4: Outline
	Slide 5: Devices are the point of modern computers
	Slide 6: Devices are core to useful general-purpose computing
	Slide 7: Devices are essential to cyber-physical systems too
	Slide 8: Device access rates vary by many orders of magnitude
	Slide 9: Handling devices appropriately

	Connecting to Devices
	Slide 10: Outline
	Slide 11: Devices connect to buses on the computer
	Slide 12: What is a bus anyways?
	Slide 13: Computer networks also run over buses
	Slide 19: My office “desktop”
	Slide 20: Some important buses
	Slide 21: Parallel Port – “Printer Port” or Centronics Port
	Slide 22: Serial Port – RS-232
	Slide 23: USB – Universal Serial Bus
	Slide 24: SATA – Serial ATA – AT Attachment – “Advanced Technology”
	Slide 25: PCIe – Peripheral Component Interconnect Express
	Slide 26: Live Demo: List devices on a Linux computer
	Slide 27: Break + Question
	Slide 28: Break + Question

	Talking to Devices
	Slide 29: Outline
	Slide 30: How does an OS talk with I/O devices?
	Slide 31: Example powered device: Real Time Clock
	Slide 32: Port-Mapped I/O (PMIO): special assembly instructions
	Slide 33: Example powered device: Real Time Clock
	Slide 34
	Slide 35: Check your understanding – PMIO in C
	Slide 36: Check your understanding – PMIO in C
	Slide 37: Annoying parts of Port-Mapped I/O
	Slide 38: Memory-mapped I/O (MMIO): treat devices like normal memory
	Slide 39: Example memory map (from an old 32-bit computer)
	Slide 40: Example devices on my windows computer
	Slide 41: Microcontroller example: reading temperature
	Slide 42: MMIO addresses for TEMP device
	Slide 43: Accessing addresses in C
	Slide 44: Accessing addresses in C
	Slide 45: Other details about MMIO
	Slide 46: Break + example code to read and print temperature value

	Device Interactions
	Slide 47: Outline
	Slide 48: What do interactions with devices look like?
	Slide 49: Waiting can be a waste of CPU time
	Slide 50: Interrupts, visually
	Slide 51: Hardware devices can generate interrupts
	Slide 52: Interrupts allow waiting to happen asynchronously
	Slide 53: Microcontroller TEMP device supports interrupts!
	Slide 55: Device driver interrupt pattern: non-blocking
	Slide 57: Outline
	Slide 58: Programmed I/O (PIO)
	Slide 59: Check your understanding – writing to GPU
	Slide 60: Check your understanding – writing to GPU
	Slide 61: Direct Memory Access (DMA)
	Slide 62: Programmed I/O versus Direct Memory Access
	Slide 63: Disk access with DMA
	Slide 64: DMA considerations
	Slide 65: Interaction pattern with Interrupts and DMA

	Wrapup
	Slide 66: Returning to the variety of devices
	Slide 67: Outline

