
Lecture 08:
Synchronization Bugs

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Harsha Madhyastha (Michigan), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162



Today’s Goals

• Common synchronization bugs
• Deadlock

• Livelock

• Methods to avoid, prevent, and recover in the presence of 
deadlock 

• Discuss how thread-safe data structures might work

• Touch on what concurrency looks like in other languages
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Where else does concurrency come from?

• Processors introduce it for performance reasons by running 
multiple processes and threads

• Interactions with the outside world introduce it because events 
occur whenever they feel like it
• Network request arriving
• User presses a key
• Motion sensor triggers

• Also, we need some way to deal with errors the occur when 
executing instructions
• No pathway for returning an error from an instruction
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Interrupts

• An event that the processor handles by running special OS handler 
code
• Timer expiration, Keyboard event, Network packet, etc.

• Necessary for asynchronous event handling

• Don’t wait around for the event, just handle it whenever it happens

• Very similar to Exceptions, which are caused by errors occurring

• A system call is a way to generate a software interrupt
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Differences from system calls

• When we performed a system call:
• We knew it was about to happen

• Set up our registers in advance

• Performed what looked sort of like a function call

• And we were always switching from process to kernel

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order 

execution, multiple cores and threads, and caches
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Interrupt Vector Table
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Table actually lives in 
memory somewhere, with 
function pointers for each 
vector number

Example from Tock for SAM4L chip (in Rust)



Interrupt Vector Table
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Interrupt handlers

• Interrupt context
• Running code in a special mode
• Pauses whatever was running previously (kernel or process) until finished

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire 

core jumped to handling this interrupt

• Handled by the operating system kernel
• Processes are interrupted, but otherwise not normally involved
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Why are interrupts important to concurrency?

• Interrupts are a case where the kernel could have a data race with 
itself!!
• Imagine being in the middle of an operation on a device

• When an interrupt comes in for that same device

• Data structures for the device could end up messed up

• Takeaway: concurrency isn’t just about processes and threads
• Many different software designs need to deal with it
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Data race fix for single-core machines: disable interrupts

void lock() {

  disable_interrupts();

}

void unlock() {

  enable_interrupts();

}

11

• Disable interrupts to prevent preemption 
during critical section
• Scheduler can’t run if the OS never takes 

control

• Also stops data races in interrupt handlers

• Problems
• Doesn’t work by itself on multicore machines

• Need to use it AND mutexes

• Bad Idea  to let processes disable the OS

• Process could freeze the entire computer

• Might screw up timing for interrupt handling
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Common synchronization bugs

• Atomicity violation
• An operation that should have been atomic wasn’t

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry
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Atomicity Violation

• Failing to make an entire option atomic
• Must lock all references to shared memory which could be a data race

• Must handle entire indeterminant state in one atomic section

14

lock(lck);

count++;

unlock(lck);

if (count == MAX) {

  count = 0;

}

Should have been 
included in critical 
section



Check your understanding: atomicity violation

• What’s wrong here?
• Every access is locked, right?

• Here, calling close() and setting 
the file to NULL need to be one 
atomic operation
• Otherwise the main thread could try 

to use to file when it’s closed

• Example of failing to resolve 
indeterminant state atomically
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Main Thread

lock(lck);

if (file == NULL) {

  file = open("~/myfile.txt");

}

write(file, "hello file");

unlock(lck);

…

Some Other Thread

lock(lck);

close(file);

unlock(lck);

// do some unrelated work

lock(lck);

file = NULL;

unlock(lck);



Order violation

• Code often requires a certain ordering of operations, especially:
• Objects must be initialized before they’re used

• Objects cannot be freed while they are still in use

• Resolve with semaphores or condvars

Parent

file = open("file.dat");

thread_create(child_fcn);

// do some work

…

close(file);

Child Thread

child_fcn() {

  write(file, "hello");

}

Close must happen after write, but 
code does not enforce this ordering.
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Why is this difficult?

• It seems like we can just add lots of locks and semaphores to be 
safe, right?
• Still tricky! Too many locks can cause deadlock – indefinite waiting.

• How about just one big lock?
• (+) Cannot deadlock with one lock (unless there are interrupts)
• (–) However, this would limit concurrency

• If every task requires the same lock, then unrelated tasks cannot 
proceed in parallel.

• Concurrent code is always difficult to write 
• Although somewhat easier with some higher-level languages
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Locking granularity

• Coarse grained lock:
• Use one (or a few) locks to protect all (or large chunks of) shared state

• Linux kernel < version 2.6.39 used one “Big Kernel Lock”

• Essentially only one thread (CPU core) could run kernel code

• It’s simple but there is much contention for this lock, and concurrency is 
limited

• Fine grained locks:
• Use many locks, each protecting small chunks of related shared state

• Leads to more concurrency and better performance

• However, there is greater risk of deadlock
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Deadlock

• A concurrency bug arising when:
• Two threads are each waiting for the other to release a resource.

• While waiting, the threads cannot release the resource already held.

• Or at least do not release it

• So the two threads wait forever.

• Can arise when multiple shared resources are used.
• For example, acquiring two or more locks.
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Deadlock versus starvation

• Each segment of road can be viewed as a resource
• Car must own the segment under them
• Must acquire segment that they are moving into

• Deadlock: Two cars in opposite directions meet in middle

• Starvation (not deadlock): Eastbound traffic doesn’t stop for 
westbound traffic

22
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Simple example: four-way stop

• Traffic rules state that you must yield to the car on your right if you 
reach the intersection simultaneously.

• This rule usually works well.

• But there’s a problem if
four cars arrive simultaneously.

Circular 
waiting!
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Dining philosophers

• A theoretical example of deadlock

• There are N philosophers sitting in a circle and N chopsticks
• left and right of each philosopher

• Philosophers repeatedly run this loop:
1. Think for some time

2. Grab chopstick to left

3. Grab chopstick to right

4. Eat

5. Replace chopsticks

• If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!
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Dining philosophers

• A solution: one philosopher must grab right before left
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Dining philosophers

• A solution: one philosopher must grab right before left
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Dining philosophers

• A solution: one philosopher must grab right before left
• Adding an asymmetry will allow both resources to eventually be obtained
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Deadlock with locks

• This is a Nondeterministic Deadlock
• Whether it occurs depends on scheduling

28

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();



No deadlock in the lucky case
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Thread A
x.Acquire();
y.Acquire();

…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Thread B waits until 
Thread A is finished



But deadlock can still occur
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Thread A
x.Acquire();

y.Acquire();

…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();

…
x.Release();
y.Release();

Thread A waits until 
y is available

Thread B waits until 
x is available

--Unreachable--



Deadlocks involve circular dependencies
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Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By



Deadlock can occur on any shared resource

• Example deadlock if the system only has 2 MB of memory

• Could deadlock on access to hardware as well
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Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)



Interrupts can cause deadlocks too

• Thread cannot continue until the interrupt is finished

• Interrupt cannot finish until the thread continues

33

Thread A
acquire()

…

release()

Interrupt Handler
acquire() Deadlock



Reentrant library functions

• Functions that can safely and successfully be called again while 
currently in the middle of its execution are called “reentrant”
• Reentrant functions must only modify local variables and input

• Must also never call non-reentrant functions

• malloc() is thread-safe because it uses locks around shared memory

• Malloc is NOT reentrant and it will cause deadlock

• Same goes for printf!!!

• Must not be called in an interrupt or signal handler!

• This matters in PCLab too
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Break + Check your understanding

void List_Insert(list_t *L, int key) {
  pthread_mutex_lock(&L->lock);
 node_t *new = malloc(sizeof(node_t));
  if (new == NULL) {
    perror("malloc");
    pthread_mutex_unlock(&L->lock);
    return; // fail
  }
  new->key = key;
  new->next = L->head;
  L->head = new;
  pthread_mutex_unlock(&L->lock);
  return; // success
}

35

Is it safe to call 
List_Insert from an 
interrupt?



Break + Check your understanding

void List_Insert(list_t *L, int key) {
  pthread_mutex_lock(&L->lock);
 node_t *new = malloc(sizeof(node_t));
  if (new == NULL) {
    perror("malloc");
    pthread_mutex_unlock(&L->lock);
    return; // fail
  }
  new->key = key;
  new->next = L->head;
  L->head = new;
  pthread_mutex_unlock(&L->lock);
  return; // success
}

36

Not safe!

If another thread has 
acquired the mutex, 
there will be a deadlock
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How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so 
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t prone 
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how 
to recover from it
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Deadlock avoidance

• Idea: When a thread requests a resource, OS checks if it would 
result in an unsafe state that could lead to deadlock
• If not, grant the resource

• If so, wait until other threads release resources

39

Thread A
x.Acquire();

y.Acquire();
…
y.Release();
x.Release();

Thread B

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Must stop acquire 
here to prevent 
unsafe state



Banker’s Algorithm for avoiding deadlock

• Each thread states maximum resource needs in advance

• OS allows a particular thread to claim a resource if
• (available resources - requested)  maximum remaining that might be  

                                                  needed by any thread

• For Dining Philosophers, a request for a chopstick is allowed if:
1. Not the last chopstick

2. Or is the last chopstick but a philosopher will have two afterwards

• See the textbook for more details
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How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so 
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t 
prone to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how 
to recover from it

41



Preventing Deadlocks: deadlock requires four conditions

1. Mutual exclusion
• Threads cannot access a critical section simultaneously.
• In other words, we’re using locks so there is the potential for waiting.

2. Hold-and-wait
•  Threads do not release locks while waiting for additional locks.

3. No preemption
• Locks are always held until released by the thread.

• E.g., if there is no method to cancel a lock.

4. Circular wait
• Thread is waiting on a thread that is waiting on the original thread.
• This can involve just two threads or a chain of many threads.

Can eliminate deadlock by eliminating any one of these conditions
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1. Do not have mutual exclusion

• Lockfree/waitfree data structures
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void* mythread(void* arg) {

  for (int i=0; i<LOOPS; i++) {

    pthread_mutex_lock(&lock);

    counter++;

    pthread_mutex_unlock(&lock);

  }

  return NULL;

}

void* mythread(void* arg) {

  for (int i=0; i<LOOPS; i++) {

    atomic_fetch_and_add(

        &counter, 1);

  }

  return NULL;

}



2. Avoid hold and wait with trylock()

• We can avoid deadlock if we release the first lock after noticing 
that the second lock is unavailable.

• Trylock() tries to acquire a lock, but returns a failure code instead 
of waiting if the lock is taken:

• This code cannot deadlock,
even if another thread does
the same with L2 first, then L1.

• However it can livelock… we’ll come back to this
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3. No preemption

• The OS could take away the lock from a blocked thread and give it 
back before the thread resumes
• This sounds pretty complicated to get right

• Non-lock resources are easier here
• Temporarily take away memory from a thread by swapping it to disk
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4. Avoiding Circular Wait

• This is the most practical way to avoid deadlock.

• The simplest solution is to always acquire locks in the same order.
• If you hold lock X and are waiting for lock Y,

• Then holder of Y cannot be waiting on you,

• Because they would have already acquired X before acquiring Y.

• However, in practice it can be difficult to know when locks will be 
acquired because they can be buried in subroutines.
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Ordered locking for dining philosophers

• The chopsticks are shared resources, like 
locks

• If we require the lower-numbered 
chopstick to be grabbed first, this 
eliminates circular waiting.
• Philosophers A, B, C grab left then right.

• However philosopher D will grab
right then left.

• If everyone tries to start at once, A & D race to 
grab chopstick 0 first, and the winner eats first.

• While one is waiting to grab its first chopstick a 
neighbor will be able to grab two chopsticks.

0 1

23

A

B

C

D



Check your understanding

• In what order must Thread B acquire the three locks to avoid 
deadlock?

Thread A
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

Thread B
???

49



Check your understanding

• In what order must Thread B acquire the three locks to avoid 
deadlock?
• The same order!! (at least y first, for the two-thread case)

Thread A
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

Thread B
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

50



How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so 
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t prone 
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out 
how to recover from it

51



Deadlock Recovery: how to deal with a deadlock?

• Terminate thread, force it to give up resources
• Dining Philosophers Example: Remove a dining philosopher

• In AllocateOrWait example, OS kills a process to free up some memory

• Not always possible—killing a thread holding a lock leaves world 
inconsistent

• Roll back actions of deadlocked threads
• Common techniques in databases (transactions)

• Of course, if you restart in exactly the same way, you may enter deadlock 
again
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Modern OS approach to deadlocks

• Make sure the system isn’t involved in any deadlock
• Hopefully by prevention

• Generally, be very careful about this stuff in the kernel

• Ignore deadlock in applications (“Ostrich Algorithm”)
• User can just restart them anyways
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Break + Check your understanding

• Is there a possibility of deadlock?
• If so, how could we fix it?

Thread A
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();
…
usb.Release();
printer.Release();

Thread C
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();
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Break + Check your understanding

• Is there a possibility of deadlock? Yes
• If so, how could we fix it? One solution: Global ordering of resources

• Example: usb, then webcams, then printers always in that order

Thread A
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();
usb.Acquire();
printer.Acquire();
…
usb.Release();
printer.Release();
printer.Release();
usb.Release();

Thread C
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();
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Break + Check your understanding

• Is there a possibility of deadlock? Yes
• If so, how could we fix it? One big lock still works too!

Thread A
lock.acquire();
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();
lock.release();

Thread B
lock.acquire();
printer.Acquire();
usb.Acquire();
…
usb.Release();
printer.Release();
lock.release();

Thread C
lock.acquire();
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();
lock.release();

56
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Common synchronization bugs

• Atomicity violation
• An operation that should have been atomic wasn’t

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry
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Livelock while avoiding deadlock

// thread 1
getLocks12(lock1, lock2) {
  lock1.acquire();
  while (lock2.locked()) {
    // attempt to step aside
    // for the other thread
    lock1.release();
    wait();
    lock1.acquire();
  }
  lock2.acquire();
}

59

// thread 2
getLocks21(lock1, lock2) {
  lock2.acquire();
  while (lock1.locked()) {
    // attempt to step aside
    // for the other thread
    lock2.release();
    wait();
    lock2.acquire();
  }
  lock1.acquire();
}



Avoiding hold and wait could lead to livelock

• Avoiding hold and wait can livelock
• Two threads could get stuck in this loop forever

• Unlikely to occur for any length in personal computing setting

• Very possibly stuck forever (or at least extended periods) in a constrained 
computing setting

• Example: embedded system with known tasks at the start
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Livelock in agents

• Livelock is more common in agent-based programs
• All of agent’s options lead to a lack of forward progress

• One example: video games
• The character can still move and take actions

• But cannot complete the level
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Livelock versus Deadlock

• Livelock is a condition where
two threads repeatedly take action,
but still don’t make progress.

• Differs from deadlock because deadlock is always permanent.

• Livelock involves retries that may lead to progress,
but there is no guarantee of progress.
• A malicious scheduler can always keep the livelock stuck

• Any randomness in the timing of retries will fix livelock.

• In practice, livelock is a much less serious concern than deadlock.
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Systems interact with each other

• Scheduling and Concurrency problems are not exclusive

• Sharing mutexes between threads can lead to a big problem for 
schedulers based on priority
• Especially dangerous for real-time OS scenarios
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A problem with priority schedulers: priority inversion

• Other concepts from OS still apply when we’re scheduling
• Particularly locks and synchronization

• Imagine Task 1 and Task 3 both need to share a lock
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Priority inversion occurred on Pathfinder!

• Bus management missed deadlines while 
waiting on meteorology because medium-
priority tasks were taking too long
• System rebooted when deadline was missed
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Priority inheritance solution to priority inversion

• A solution is to temporarily increase priority for tasks holding 
resources that high priority tasks need
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Break + Tools

• Helgrind (part of the Valgrind tool) detects many common errors 
when using the POSIX pthreads library
• Bad library calls: unlocking an unlocked mutex, destroying a locked mutex

• Deadlocks and Data races

• http://valgrind.org/docs/manual/hg-manual.html

• ThreadSanitizer (in the family of Address Sanitizer) is compiler 
instrumentation that detects data races
• 5-15x slowdown for running code

• https://clang.llvm.org/docs/ThreadSanitizer.html
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http://valgrind.org/docs/manual/hg-manual.html
https://clang.llvm.org/docs/ThreadSanitizer.html
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Thread-safe data structures

• “Thread safe” – works even if used by multiple threads concurrently
• Can apply to various libraries, functions, and data structures

• Simple data structures implementations are usually not thread safe
• Some global state needs to be shared among all threads

• Need to protect critical sections

• Challenge: multiple function calls each access same shared structure
• Need to identify the critical section in each and lock it with shared lock
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Linked List

void List_Insert(list_t *L, int key) {

  node_t *new = malloc(sizeof(node_t));

  if (new == NULL) {

    perror("malloc");

    return; // fail

  }

  new->key = key;

  new->next = L->head;

  L->head = new;

  return; // success

}
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Concurrent Linked List – Big lock approach

void List_Insert(list_t *L, int key) {

  pthread_mutex_lock(&L->lock);

  node_t *new = malloc(sizeof(node_t));

  if (new == NULL) {

    perror("malloc");

    pthread_mutex_unlock(&L->lock);

    return; // fail

  }

  new->key = key;

  new->next = L->head;

  L->head = new;

  pthread_mutex_unlock(&L->lock);

  return; // success

}

72

Most important part 
of this example. 
Don’t forget to unlock 
if returning early.

• Much better than counter 
example, because we are 
only serializing the list itself. 
Hopefully the rest of the 
code can run concurrently.



Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

  node_t *new = malloc(sizeof(node_t));

  if (new == NULL) {

    perror("malloc");

    return; // fail

  }

  new->key = key;

  new->next = L->head;

  L->head = new;

  return; // success

}

73

Check your understanding:

Where is the critical section here?



Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

  node_t *new = malloc(sizeof(node_t));

  if (new == NULL) {

    perror("malloc");

    return; // fail

  }

  new->key = key;

  new->next = L->head;

  L->head = new;

  return; // success

}
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Check your understanding:

Where is the critical section here?



What about malloc? Is that safe to use??

void List_Insert(list_t *L, int key) {

  node_t *new = malloc(sizeof(node_t));

  if (new == NULL) {

    perror("malloc");

    return; // fail

  }

  new->key = key;

  new->next = L->head;

  L->head = new;

  return; // success

}
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• Thread-safe functions
• Capable of being called concurrently 

and still functioning correctly
• (Because they use locks!)

• How would we know if malloc is thread-
safe?
• Must check the documentation



Must check the library documentation to determine thread safety

• https://man7.org/linux/man-pages/man3/malloc.3.html

• Malloc (and free) is indeed thread-safe

• If it wasn’t, we would have to consider it another shared resource 
that needs to be locked
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https://man7.org/linux/man-pages/man3/malloc.3.html


Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

  node_t *new = malloc(sizeof(node_t));

  if (new == NULL) {

    perror("malloc");

    return; // fail

  }

  new->key = key;

  pthread_mutex_lock(&L->lock);

  new->next = L->head;

  L->head = new;

  pthread_mutex_unlock(&L->lock);

  return; // success

}
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• Now new node is created 
locally in parallel

• Only actual access to the 
linked list is serialized



Concurrent Queue

• Separate head & tail locks

• Allows concurrent add & remove
• Up to 2 threads can access without waiting
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Concurrent Queue

• “tailLock” controls adding elements

• Looks similar to ListInsert
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Concurrent Queue

• Head lock controls removing elements 
from front

• Needs to lock almost entire function
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Concurrent Hash Table

• Each bucket is implemented with a 
Concurrent List
• We don’t have to define any locks!

• (Locks are in the lists)

• A thread can access a bucket 
without blocking other threads’ 
access to other buckets.

• Hash tables are great for 
concurrency.
• Hash (bucket id) can be calculated 

without accessing a shared resource.

• Distributed hash tables are used 
for huge NoSQL databases.
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Lock-free data structures

• In our original example, we put a lock around counter++
• We could have instead used atomic_fetch_and_add to update counter
• Lock-free and still atomic!!

• This is possible with more complex data structures as well
• Often based on a compare-and-swap (CAS) approach
• https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf

• Warning: these are not to be taken lightly
• Atomic instructions have performance costs on processors
• Getting this correct involves really understanding hardware
• https://abseil.io/docs/cpp/atomic_danger
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Javascript

• Javascript (in browsers) is strictly single-threaded
• Therefore, no data races!

• A Javascript function will never be interrupted unless it makes an 
asynchronous call

console.log("1");

setTimeout(function(){console.log("2");},0);

console.log("3");

setTimeout(function(){console.log("4");},1000);

• Will always output: 1 3 2 4 in that order

• Even timers only trigger whenever the current code is finished
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Python

• Provides all the same primitives we discussed!
https://docs.python.org/3/library/concurrency.html
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And some nicer things
with some_lock:
  # do something…

Is equivalent to
some_lock.acquire()
try:
  # do something…
finally:
  some_lock.release()

https://docs.python.org/3/library/concurrency.html


Python threads are concurrent but not parallel

• Python uses one big lock technique for thread safety
• Global Interpreter Lock (GIL)
• Threads that are I/O bound still

get a performance boost
• Threads that are CPU bound do

not increase performance

• Multiprocessing library does
employ parallelism by spawning
entirely new processes
• Each with their own python interpreter

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
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Active work in changing this: https://peps.python.org/pep-0703/

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://peps.python.org/pep-0703/


Java

• Java has synchronized 
keyword for surrounding 
critical sections

• Automatically releases the lock 
when exiting early:

• Similar to
• Python: “with self.lock:”

• Objective-C: “@synchronized”
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Rust

• Rust’s opinion on sharing memory is amusingly to refer to Go’s opinion

• Rust has a strong concept of ownership
• A writeable (mutable) reference to an object can only be held in one place

• Once an object is passed to another thread, the passer no longer has access

• Solves many concurrency issues due to lack of shared memory

• Rust locks have lifetimes enforced by the compiler
• Lock goes out-of-scope at the end of the function, relocking automatically

90https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html


Advice for the future

• Be aware of issues when writing multithreaded code

• Use threadsafe data structures when possible
• In languages that provide them…

• Map your problem onto a classical concurrency problem
• Producer/Consumer
• Readers/Writers

• One big lock for correctness isn’t the worst idea ever
• But with some care (possibly a lot of care) we can do better
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