
Lecture 08:
Synchronization Bugs

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Harsha Madhyastha (Michigan), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Today’s Goals

• Common synchronization bugs
• Deadlock

• Livelock

• Methods to avoid, prevent, and recover in the presence of
deadlock

• Discuss how thread-safe data structures might work

• Touch on what concurrency looks like in other languages

2

3

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Where else does concurrency come from?

• Processors introduce it for performance reasons by running
multiple processes and threads

• Interactions with the outside world introduce it because events
occur whenever they feel like it
• Network request arriving
• User presses a key
• Motion sensor triggers

• Also, we need some way to deal with errors the occur when
executing instructions
• No pathway for returning an error from an instruction

4

Interrupts

• An event that the processor handles by running special OS handler
code
• Timer expiration, Keyboard event, Network packet, etc.

• Necessary for asynchronous event handling

• Don’t wait around for the event, just handle it whenever it happens

• Very similar to Exceptions, which are caused by errors occurring

• A system call is a way to generate a software interrupt

5

Differences from system calls

• When we performed a system call:
• We knew it was about to happen

• Set up our registers in advance

• Performed what looked sort of like a function call

• And we were always switching from process to kernel

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order

execution, multiple cores and threads, and caches

6

Interrupt Vector Table

7

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt Vector Table

8

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt handlers

• Interrupt context
• Running code in a special mode
• Pauses whatever was running previously (kernel or process) until finished

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire

core jumped to handling this interrupt

• Handled by the operating system kernel
• Processes are interrupted, but otherwise not normally involved

9

Why are interrupts important to concurrency?

• Interrupts are a case where the kernel could have a data race with
itself!!
• Imagine being in the middle of an operation on a device

• When an interrupt comes in for that same device

• Data structures for the device could end up messed up

• Takeaway: concurrency isn’t just about processes and threads
• Many different software designs need to deal with it

10

Data race fix for single-core machines: disable interrupts

void lock() {

 disable_interrupts();

}

void unlock() {

 enable_interrupts();

}

11

• Disable interrupts to prevent preemption
during critical section
• Scheduler can’t run if the OS never takes

control

• Also stops data races in interrupt handlers

• Problems
• Doesn’t work by itself on multicore machines

• Need to use it AND mutexes

• Bad Idea to let processes disable the OS

• Process could freeze the entire computer

• Might screw up timing for interrupt handling

12

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Common synchronization bugs

• Atomicity violation
• An operation that should have been atomic wasn’t

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry

13

Atomicity Violation

• Failing to make an entire option atomic
• Must lock all references to shared memory which could be a data race

• Must handle entire indeterminant state in one atomic section

14

lock(lck);

count++;

unlock(lck);

if (count == MAX) {

 count = 0;

}

Should have been
included in critical
section

Check your understanding: atomicity violation

• What’s wrong here?
• Every access is locked, right?

• Here, calling close() and setting
the file to NULL need to be one
atomic operation
• Otherwise the main thread could try

to use to file when it’s closed

• Example of failing to resolve
indeterminant state atomically

15

Main Thread

lock(lck);

if (file == NULL) {

 file = open("~/myfile.txt");

}

write(file, "hello file");

unlock(lck);

…

Some Other Thread

lock(lck);

close(file);

unlock(lck);

// do some unrelated work

lock(lck);

file = NULL;

unlock(lck);

Order violation

• Code often requires a certain ordering of operations, especially:
• Objects must be initialized before they’re used

• Objects cannot be freed while they are still in use

• Resolve with semaphores or condvars

Parent

file = open("file.dat");

thread_create(child_fcn);

// do some work

…

close(file);

Child Thread

child_fcn() {

 write(file, "hello");

}

Close must happen after write, but
code does not enforce this ordering.

16

Why is this difficult?

• It seems like we can just add lots of locks and semaphores to be
safe, right?
• Still tricky! Too many locks can cause deadlock – indefinite waiting.

• How about just one big lock?
• (+) Cannot deadlock with one lock (unless there are interrupts)
• (–) However, this would limit concurrency

• If every task requires the same lock, then unrelated tasks cannot
proceed in parallel.

• Concurrent code is always difficult to write 
• Although somewhat easier with some higher-level languages

17

Locking granularity

• Coarse grained lock:
• Use one (or a few) locks to protect all (or large chunks of) shared state

• Linux kernel < version 2.6.39 used one “Big Kernel Lock”

• Essentially only one thread (CPU core) could run kernel code

• It’s simple but there is much contention for this lock, and concurrency is
limited

• Fine grained locks:
• Use many locks, each protecting small chunks of related shared state

• Leads to more concurrency and better performance

• However, there is greater risk of deadlock

18

19

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Deadlock

• A concurrency bug arising when:
• Two threads are each waiting for the other to release a resource.

• While waiting, the threads cannot release the resource already held.

• Or at least do not release it

• So the two threads wait forever.

• Can arise when multiple shared resources are used.
• For example, acquiring two or more locks.

21

Deadlock versus starvation

• Each segment of road can be viewed as a resource
• Car must own the segment under them
• Must acquire segment that they are moving into

• Deadlock: Two cars in opposite directions meet in middle

• Starvation (not deadlock): Eastbound traffic doesn’t stop for
westbound traffic

22

H
o
n
k
!

Simple example: four-way stop

• Traffic rules state that you must yield to the car on your right if you
reach the intersection simultaneously.

• This rule usually works well.

• But there’s a problem if
four cars arrive simultaneously.

Circular
waiting!

23

Dining philosophers

• A theoretical example of deadlock

• There are N philosophers sitting in a circle and N chopsticks
• left and right of each philosopher

• Philosophers repeatedly run this loop:
1. Think for some time

2. Grab chopstick to left

3. Grab chopstick to right

4. Eat

5. Replace chopsticks

• If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

24

Dining philosophers

• A solution: one philosopher must grab right before left

25

Dining philosophers

• A solution: one philosopher must grab right before left

26

Dining philosophers

• A solution: one philosopher must grab right before left
• Adding an asymmetry will allow both resources to eventually be obtained

27

Deadlock with locks

• This is a Nondeterministic Deadlock
• Whether it occurs depends on scheduling

28

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

No deadlock in the lucky case

29

Thread A
x.Acquire();
y.Acquire();

…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Thread B waits until
Thread A is finished

But deadlock can still occur

30

Thread A
x.Acquire();

y.Acquire();

…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();

…
x.Release();
y.Release();

Thread A waits until
y is available

Thread B waits until
x is available

--Unreachable--

Deadlocks involve circular dependencies

31

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock can occur on any shared resource

• Example deadlock if the system only has 2 MB of memory

• Could deadlock on access to hardware as well

32

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Interrupts can cause deadlocks too

• Thread cannot continue until the interrupt is finished

• Interrupt cannot finish until the thread continues

33

Thread A
acquire()

…

release()

Interrupt Handler
acquire() Deadlock

Reentrant library functions

• Functions that can safely and successfully be called again while
currently in the middle of its execution are called “reentrant”
• Reentrant functions must only modify local variables and input

• Must also never call non-reentrant functions

• malloc() is thread-safe because it uses locks around shared memory

• Malloc is NOT reentrant and it will cause deadlock

• Same goes for printf!!!

• Must not be called in an interrupt or signal handler!

• This matters in PCLab too

34

Break + Check your understanding

void List_Insert(list_t *L, int key) {
 pthread_mutex_lock(&L->lock);
 node_t *new = malloc(sizeof(node_t));
 if (new == NULL) {
 perror("malloc");
 pthread_mutex_unlock(&L->lock);
 return; // fail
 }
 new->key = key;
 new->next = L->head;
 L->head = new;
 pthread_mutex_unlock(&L->lock);
 return; // success
}

35

Is it safe to call
List_Insert from an
interrupt?

Break + Check your understanding

void List_Insert(list_t *L, int key) {
 pthread_mutex_lock(&L->lock);
 node_t *new = malloc(sizeof(node_t));
 if (new == NULL) {
 perror("malloc");
 pthread_mutex_unlock(&L->lock);
 return; // fail
 }
 new->key = key;
 new->next = L->head;
 L->head = new;
 pthread_mutex_unlock(&L->lock);
 return; // success
}

36

Not safe!

If another thread has
acquired the mutex,
there will be a deadlock

37

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

38

Deadlock avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in an unsafe state that could lead to deadlock
• If not, grant the resource

• If so, wait until other threads release resources

39

Thread A
x.Acquire();

y.Acquire();
…
y.Release();
x.Release();

Thread B

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Must stop acquire
here to prevent
unsafe state

Banker’s Algorithm for avoiding deadlock

• Each thread states maximum resource needs in advance

• OS allows a particular thread to claim a resource if
• (available resources - requested)  maximum remaining that might be

 needed by any thread

• For Dining Philosophers, a request for a chopstick is allowed if:
1. Not the last chopstick

2. Or is the last chopstick but a philosopher will have two afterwards

• See the textbook for more details

40

How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t
prone to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

41

Preventing Deadlocks: deadlock requires four conditions

1. Mutual exclusion
• Threads cannot access a critical section simultaneously.
• In other words, we’re using locks so there is the potential for waiting.

2. Hold-and-wait
• Threads do not release locks while waiting for additional locks.

3. No preemption
• Locks are always held until released by the thread.

• E.g., if there is no method to cancel a lock.

4. Circular wait
• Thread is waiting on a thread that is waiting on the original thread.
• This can involve just two threads or a chain of many threads.

Can eliminate deadlock by eliminating any one of these conditions

42

1. Do not have mutual exclusion

• Lockfree/waitfree data structures

43

void* mythread(void* arg) {

 for (int i=0; i<LOOPS; i++) {

 pthread_mutex_lock(&lock);

 counter++;

 pthread_mutex_unlock(&lock);

 }

 return NULL;

}

void* mythread(void* arg) {

 for (int i=0; i<LOOPS; i++) {

 atomic_fetch_and_add(

 &counter, 1);

 }

 return NULL;

}

2. Avoid hold and wait with trylock()

• We can avoid deadlock if we release the first lock after noticing
that the second lock is unavailable.

• Trylock() tries to acquire a lock, but returns a failure code instead
of waiting if the lock is taken:

• This code cannot deadlock,
even if another thread does
the same with L2 first, then L1.

• However it can livelock… we’ll come back to this

45

3. No preemption

• The OS could take away the lock from a blocked thread and give it
back before the thread resumes
• This sounds pretty complicated to get right

• Non-lock resources are easier here
• Temporarily take away memory from a thread by swapping it to disk

46

4. Avoiding Circular Wait

• This is the most practical way to avoid deadlock.

• The simplest solution is to always acquire locks in the same order.
• If you hold lock X and are waiting for lock Y,

• Then holder of Y cannot be waiting on you,

• Because they would have already acquired X before acquiring Y.

• However, in practice it can be difficult to know when locks will be
acquired because they can be buried in subroutines.

47

Ordered locking for dining philosophers

• The chopsticks are shared resources, like
locks

• If we require the lower-numbered
chopstick to be grabbed first, this
eliminates circular waiting.
• Philosophers A, B, C grab left then right.

• However philosopher D will grab
right then left.

• If everyone tries to start at once, A & D race to
grab chopstick 0 first, and the winner eats first.

• While one is waiting to grab its first chopstick a
neighbor will be able to grab two chopsticks.

0 1

23

A

B

C

D

Check your understanding

• In what order must Thread B acquire the three locks to avoid
deadlock?

Thread A
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

Thread B
???

49

Check your understanding

• In what order must Thread B acquire the three locks to avoid
deadlock?
• The same order!! (at least y first, for the two-thread case)

Thread A
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

Thread B
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

50

How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out
how to recover from it

51

Deadlock Recovery: how to deal with a deadlock?

• Terminate thread, force it to give up resources
• Dining Philosophers Example: Remove a dining philosopher

• In AllocateOrWait example, OS kills a process to free up some memory

• Not always possible—killing a thread holding a lock leaves world
inconsistent

• Roll back actions of deadlocked threads
• Common techniques in databases (transactions)

• Of course, if you restart in exactly the same way, you may enter deadlock
again

52

Modern OS approach to deadlocks

• Make sure the system isn’t involved in any deadlock
• Hopefully by prevention

• Generally, be very careful about this stuff in the kernel

• Ignore deadlock in applications (“Ostrich Algorithm”)
• User can just restart them anyways

53

Break + Check your understanding

• Is there a possibility of deadlock?
• If so, how could we fix it?

Thread A
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();
…
usb.Release();
printer.Release();

Thread C
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();

54

Break + Check your understanding

• Is there a possibility of deadlock? Yes
• If so, how could we fix it? One solution: Global ordering of resources

• Example: usb, then webcams, then printers always in that order

Thread A
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();
usb.Acquire();
printer.Acquire();
…
usb.Release();
printer.Release();
printer.Release();
usb.Release();

Thread C
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();

55

Break + Check your understanding

• Is there a possibility of deadlock? Yes
• If so, how could we fix it? One big lock still works too!

Thread A
lock.acquire();
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();
lock.release();

Thread B
lock.acquire();
printer.Acquire();
usb.Acquire();
…
usb.Release();
printer.Release();
lock.release();

Thread C
lock.acquire();
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();
lock.release();

56

57

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Common synchronization bugs

• Atomicity violation
• An operation that should have been atomic wasn’t

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry

58

Livelock while avoiding deadlock

// thread 1
getLocks12(lock1, lock2) {
 lock1.acquire();
 while (lock2.locked()) {
 // attempt to step aside
 // for the other thread
 lock1.release();
 wait();
 lock1.acquire();
 }
 lock2.acquire();
}

59

// thread 2
getLocks21(lock1, lock2) {
 lock2.acquire();
 while (lock1.locked()) {
 // attempt to step aside
 // for the other thread
 lock2.release();
 wait();
 lock2.acquire();
 }
 lock1.acquire();
}

Avoiding hold and wait could lead to livelock

• Avoiding hold and wait can livelock
• Two threads could get stuck in this loop forever

• Unlikely to occur for any length in personal computing setting

• Very possibly stuck forever (or at least extended periods) in a constrained
computing setting

• Example: embedded system with known tasks at the start

60

Livelock in agents

• Livelock is more common in agent-based programs
• All of agent’s options lead to a lack of forward progress

• One example: video games
• The character can still move and take actions

• But cannot complete the level

61

Livelock versus Deadlock

• Livelock is a condition where
two threads repeatedly take action,
but still don’t make progress.

• Differs from deadlock because deadlock is always permanent.

• Livelock involves retries that may lead to progress,
but there is no guarantee of progress.
• A malicious scheduler can always keep the livelock stuck

• Any randomness in the timing of retries will fix livelock.

• In practice, livelock is a much less serious concern than deadlock.

62

63

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Systems interact with each other

• Scheduling and Concurrency problems are not exclusive

• Sharing mutexes between threads can lead to a big problem for
schedulers based on priority
• Especially dangerous for real-time OS scenarios

64

A problem with priority schedulers: priority inversion

• Other concepts from OS still apply when we’re scheduling
• Particularly locks and synchronization

• Imagine Task 1 and Task 3 both need to share a lock

65

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Task 3

Task 2

Task 1

P
ri
o
ri
ty Acquire

lock

p
re

e
m

p
t

re
le

a
se

d
o
n
e

Release
lock Task 1 is

waiting on
Task 2!!

Priority inversion occurred on Pathfinder!

• Bus management missed deadlines while
waiting on meteorology because medium-
priority tasks were taking too long
• System rebooted when deadline was missed

66

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Weather

Comms

Manage Bus

P
ri
o
ri
ty

p
re

e
m

p
t

re
le

a
se

d
o
n
e

Priority inheritance solution to priority inversion

• A solution is to temporarily increase priority for tasks holding
resources that high priority tasks need

67

Preempted
by Task 3

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Task 3

Task 2

Task 1

P
ri
o
ri
ty Acquire

lock

At Priority 1

re
le

a
se

d
o
n
e

Release
lock

d
o
n
e

Task 3 inherits priority of
Task 1 while holding
lock Task 1 needs

Break + Tools

• Helgrind (part of the Valgrind tool) detects many common errors
when using the POSIX pthreads library
• Bad library calls: unlocking an unlocked mutex, destroying a locked mutex

• Deadlocks and Data races

• http://valgrind.org/docs/manual/hg-manual.html

• ThreadSanitizer (in the family of Address Sanitizer) is compiler
instrumentation that detects data races
• 5-15x slowdown for running code

• https://clang.llvm.org/docs/ThreadSanitizer.html

68

http://valgrind.org/docs/manual/hg-manual.html
https://clang.llvm.org/docs/ThreadSanitizer.html

69

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Thread-safe data structures

• “Thread safe” – works even if used by multiple threads concurrently
• Can apply to various libraries, functions, and data structures

• Simple data structures implementations are usually not thread safe
• Some global state needs to be shared among all threads

• Need to protect critical sections

• Challenge: multiple function calls each access same shared structure
• Need to identify the critical section in each and lock it with shared lock

70

Linked List

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

71

Concurrent Linked List – Big lock approach

void List_Insert(list_t *L, int key) {

 pthread_mutex_lock(&L->lock);

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 pthread_mutex_unlock(&L->lock);

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 pthread_mutex_unlock(&L->lock);

 return; // success

}

72

Most important part
of this example.
Don’t forget to unlock
if returning early.

• Much better than counter
example, because we are
only serializing the list itself.
Hopefully the rest of the
code can run concurrently.

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

73

Check your understanding:

Where is the critical section here?

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

74

Check your understanding:

Where is the critical section here?

What about malloc? Is that safe to use??

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

75

• Thread-safe functions
• Capable of being called concurrently

and still functioning correctly
• (Because they use locks!)

• How would we know if malloc is thread-
safe?
• Must check the documentation

Must check the library documentation to determine thread safety

• https://man7.org/linux/man-pages/man3/malloc.3.html

• Malloc (and free) is indeed thread-safe

• If it wasn’t, we would have to consider it another shared resource
that needs to be locked

76

https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 pthread_mutex_lock(&L->lock);

 new->next = L->head;

 L->head = new;

 pthread_mutex_unlock(&L->lock);

 return; // success

}

77

• Now new node is created
locally in parallel

• Only actual access to the
linked list is serialized

Concurrent Queue

• Separate head & tail locks

• Allows concurrent add & remove
• Up to 2 threads can access without waiting

78

Concurrent Queue

• “tailLock” controls adding elements

• Looks similar to ListInsert

79

Concurrent Queue

• Head lock controls removing elements
from front

• Needs to lock almost entire function

80

Concurrent Hash Table

• Each bucket is implemented with a
Concurrent List
• We don’t have to define any locks!

• (Locks are in the lists)

• A thread can access a bucket
without blocking other threads’
access to other buckets.

• Hash tables are great for
concurrency.
• Hash (bucket id) can be calculated

without accessing a shared resource.

• Distributed hash tables are used
for huge NoSQL databases.

81

Lock-free data structures

• In our original example, we put a lock around counter++
• We could have instead used atomic_fetch_and_add to update counter
• Lock-free and still atomic!!

• This is possible with more complex data structures as well
• Often based on a compare-and-swap (CAS) approach
• https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf

• Warning: these are not to be taken lightly
• Atomic instructions have performance costs on processors
• Getting this correct involves really understanding hardware
• https://abseil.io/docs/cpp/atomic_danger

82

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://abseil.io/docs/cpp/atomic_danger

85

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

Javascript

• Javascript (in browsers) is strictly single-threaded
• Therefore, no data races!

• A Javascript function will never be interrupted unless it makes an
asynchronous call

console.log("1");

setTimeout(function(){console.log("2");},0);

console.log("3");

setTimeout(function(){console.log("4");},1000);

• Will always output: 1 3 2 4 in that order

• Even timers only trigger whenever the current code is finished

86

Python

• Provides all the same primitives we discussed!
https://docs.python.org/3/library/concurrency.html

87

And some nicer things
with some_lock:
 # do something…

Is equivalent to
some_lock.acquire()
try:
 # do something…
finally:
 some_lock.release()

https://docs.python.org/3/library/concurrency.html

Python threads are concurrent but not parallel

• Python uses one big lock technique for thread safety
• Global Interpreter Lock (GIL)
• Threads that are I/O bound still

get a performance boost
• Threads that are CPU bound do

not increase performance

• Multiprocessing library does
employ parallelism by spawning
entirely new processes
• Each with their own python interpreter

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a

88

Active work in changing this: https://peps.python.org/pep-0703/

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://peps.python.org/pep-0703/

Java

• Java has synchronized
keyword for surrounding
critical sections

• Automatically releases the lock
when exiting early:

• Similar to
• Python: “with self.lock:”

• Objective-C: “@synchronized”

89

Rust

• Rust’s opinion on sharing memory is amusingly to refer to Go’s opinion

• Rust has a strong concept of ownership
• A writeable (mutable) reference to an object can only be held in one place

• Once an object is passed to another thread, the passer no longer has access

• Solves many concurrency issues due to lack of shared memory

• Rust locks have lifetimes enforced by the compiler
• Lock goes out-of-scope at the end of the function, relocking automatically

90https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

Advice for the future

• Be aware of issues when writing multithreaded code

• Use threadsafe data structures when possible
• In languages that provide them…

• Map your problem onto a classical concurrency problem
• Producer/Consumer
• Readers/Writers

• One big lock for correctness isn’t the worst idea ever
• But with some care (possibly a lot of care) we can do better

91

92

• Interrupts

• Synchronization bugs
• Deadlock

• Solving deadlocks

• Livelock

• Priority Inversion

• Threadsafe data structures

• Concurrency in other languages

Outline

	Default Section
	Slide 1: Lecture 08: Synchronization Bugs

	Goals
	Slide 2: Today’s Goals

	Interrupts
	Slide 3: Outline
	Slide 4: Where else does concurrency come from?
	Slide 5: Interrupts
	Slide 6: Differences from system calls
	Slide 7: Interrupt Vector Table
	Slide 8: Interrupt Vector Table
	Slide 9: Interrupt handlers
	Slide 10: Why are interrupts important to concurrency?
	Slide 11: Data race fix for single-core machines: disable interrupts

	Synchronization Bugs
	Slide 12: Outline
	Slide 13: Common synchronization bugs
	Slide 14: Atomicity Violation
	Slide 15: Check your understanding: atomicity violation
	Slide 16: Order violation
	Slide 17: Why is this difficult?
	Slide 18: Locking granularity

	Deadlock
	Slide 19: Outline
	Slide 20
	Slide 21: Deadlock
	Slide 22: Deadlock versus starvation
	Slide 23: Simple example: four-way stop
	Slide 24: Dining philosophers
	Slide 25: Dining philosophers
	Slide 26: Dining philosophers
	Slide 27: Dining philosophers
	Slide 28: Deadlock with locks
	Slide 29: No deadlock in the lucky case
	Slide 30: But deadlock can still occur
	Slide 31: Deadlocks involve circular dependencies
	Slide 32: Deadlock can occur on any shared resource
	Slide 33: Interrupts can cause deadlocks too
	Slide 34: Reentrant library functions
	Slide 35: Break + Check your understanding
	Slide 36: Break + Check your understanding

	Dealing with Deadlock
	Slide 37: Outline
	Slide 38: How Should a System Deal With Deadlock?
	Slide 39: Deadlock avoidance
	Slide 40: Banker’s Algorithm for avoiding deadlock
	Slide 41: How Should a System Deal With Deadlock?
	Slide 42: Preventing Deadlocks: deadlock requires four conditions
	Slide 43: 1. Do not have mutual exclusion
	Slide 45: 2. Avoid hold and wait with trylock()
	Slide 46: 3. No preemption
	Slide 47: 4. Avoiding Circular Wait
	Slide 48: Ordered locking for dining philosophers
	Slide 49: Check your understanding
	Slide 50: Check your understanding
	Slide 51: How Should a System Deal With Deadlock?
	Slide 52: Deadlock Recovery: how to deal with a deadlock?
	Slide 53: Modern OS approach to deadlocks
	Slide 54: Break + Check your understanding
	Slide 55: Break + Check your understanding
	Slide 56: Break + Check your understanding

	Livelock
	Slide 57: Outline
	Slide 58: Common synchronization bugs
	Slide 59: Livelock while avoiding deadlock
	Slide 60: Avoiding hold and wait could lead to livelock
	Slide 61: Livelock in agents
	Slide 62: Livelock versus Deadlock

	Priority Inversion
	Slide 63: Outline
	Slide 64: Systems interact with each other
	Slide 65: A problem with priority schedulers: priority inversion
	Slide 66: Priority inversion occurred on Pathfinder!
	Slide 67: Priority inheritance solution to priority inversion
	Slide 68: Break + Tools

	Concurrent Data Structures
	Slide 69: Outline
	Slide 70: Thread-safe data structures
	Slide 71: Linked List
	Slide 72: Concurrent Linked List – Big lock approach
	Slide 73: Better Concurrent Linked List – Only lock critical section
	Slide 74: Better Concurrent Linked List – Only lock critical section
	Slide 75: What about malloc? Is that safe to use??
	Slide 76: Must check the library documentation to determine thread safety
	Slide 77: Better Concurrent Linked List – Only lock critical section
	Slide 78: Concurrent Queue
	Slide 79: Concurrent Queue
	Slide 80: Concurrent Queue
	Slide 81: Concurrent Hash Table
	Slide 82: Lock-free data structures

	Other Languages
	Slide 85: Outline
	Slide 86: Javascript
	Slide 87: Python
	Slide 88: Python threads are concurrent but not parallel
	Slide 89: Java
	Slide 90: Rust

	Wrapup
	Slide 91: Advice for the future
	Slide 92: Outline

