Lecture 07:
Condvars and Semaphores

CS343 — Operating Systems
Branden Ghena — Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), and Shivaram Venkataraman (Wisconsin)

Northwestern

Administrivia

 Scheduler lab due by end-of-day today

« Remember that slip days are automatic, no need to ask

 Get started on PCLab right away as midterm practice

Midterm Exam 1

« Exam Details
* In class, Thursday April 25. Starts at 12:30 sharp. 80-minute exam
 Covers all lectures through next week Tuesday
* (1. Introduction through 8. Synchronization Bugs)
* You may bring ONE 8.5"x11" sheet of paper with notes on front and back
« Handwritten, typeset, whatever you want
* No calculators or other notes

« Review materials
 Posted to Canvas homepage: practice problems + prior exams
« Review session: Monday 5-6 pm in Annenberg G21
« Will practice some problems from those materials

Today’s Goals

« Understand how we can apply locks to gain correctness and
maintain performance
« Counter
« Data Structures (bonus, if time is available)

« Signaling between threads to enforce ordering
 Condition Variables
« Semaphores

 Consider types of synchronization issues that can occur

Review: Locks/Mutexes

 Simple mutual exclusion primitive

« Init(), Acquire()/Lock(), Release()/Unlock()

« Implementations trade complexity, fairness, and performance
* Spinlocks
* Ticket locks
* Yielding locks
* Queueing locks

Outline

« Applying Locks

 Ordering with Condition Variables

» Semaphores

 Synchronization Bugs

Review: Need to enforce mutual exclusion on critical sections

#include <stdio.h>
#include <pthread.h>

static volatile int counter = 0;
static const int LOOPS = 1e9;

void* mythread(void* arg) {
printf("%s: begin\n", (char*)arg);
for (int i=0; i<LOOPS; i++) {
counter++;
}
printf("%s: done\n", (char*)arg);
return NULL;

int main(int argc, char* argv[]) {
pthread t pl, p2;
printf("main: begin (counter = %d)\n", counter);
pthread create(&pl, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(pl, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal was
%d)\n", counter, 2*LOOPS);

return 0;

}

Naively locked counter example

static volatile int counter = 0;
static const int LOOPS = 1e9;

. int main(int argc, char* argv[]) {
static pthread_mutex_t lock;

pthread_t pl, p2;

pthread_mutex_init(&lock, 0);

void* mythread(void* arg) { printf("main: begin (counter = %d)\n", counter);
pthread_create(&pl, NULL, mythread, "A");

rintf("%s: begin\n" char*)arg);
P (’ 5 ’ () g)’ pthread create(&p2, NULL, mythread, "B");

for (int i1=0; i<LOOPS; i++) {
pthread mutex_ lock(&lock); // wait for threads to finish

counter++; pthread_join(pl, NULL);
pthread join(p2, NULL);

printf("main: done with both (counter = %d, goal

pthread_mutex_unlock(&lock);

} was %d)\n", counter, 2*LOOPS);
printf("%s: done\n", (char*)arg); return 0;
return NULL; }

Problem: locking overhead decreases performance

When iterating Single-threaded counter: 3.850 seconds
one billion times: Multithreaded no-lock counter: 4.700 seconds (Broken!)
Naive-locked counter: 80.000 seconds (Correct...)

« Formerly loop contained 3 instructions (mov, add, mov)

* Now it has
« Two function calls
 Multiple instructions inside of those
 Possibly even interaction with the OS...
3 instructions -> 60 instructions

Simple mutual exclusion: one big lock

 Simple solution “one big lock”
 Find all the function calls that interact with shared memory
 Lock at the start of each function call and unlock at the end

» Essentially, no concurrent access
 Correct but poor performance
« If you've forgotten all of this years from now, “one big lock” will still work

10

Counter example with big lock technique code posted with last

static volatile int counter = 0;
static const int LOOPS = 1e9;
static pthread _mutex_t lock;

void* mythread(void* arg) {
pthread_mutex_lock(&lock);
printf("%s: begin\n", (char*)arg);
for (int i=0; i<LOOPS; i++) {

counter++;

}
printf("%s: done\n", (char*)arg);
pthread_mutex_unlock(&lock);
return NULL;

lecture on canvas

int main(int argc, char* argv|]) {
pthread t pl, p2;
pthread mutex init(&lock, 0);
printf("main: begin (counter = %d)\n", counter);
pthread create(&pl, NULL, mythread, "A");
pthread create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread join(pl, NULL);

pthread join(p2, NULL);

printf("main: done with both (counter = %d, goal
was %d)\n", counter, 2*LOOPS);

return 0;

¥

11

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds
Multithreaded no-lock counter: 4.700 seconds (Broken!)
Naive-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

* Big lock technique basically returned us to single-threaded
execution time (and single-threaded implementation)

« Why is the no-lock multithreaded version so slow?
* Not 100% certain
* Likely something to do with hardware memory/cache consistency

12

Reducing lock overhead

« We want to enable parallelism, but deal with less lock overhead
« Need to increase the amount of work done when not locked
« Goal: lots of parallel work per lock/unlock event

» “Sloppy” updates to global state
« Keep local state that is operated on
 Occasionally synchronize global state with current local state

« Counter example
 Keep a local counter for each thread (not shared memory)
 Add local counter to global counter periodically

13

Sloppy counter example

static volatile int counter = 0;
static const int LOOPS = 1e9;
static pthread mutex_t lock;

void* mythread(void* arg) {
int sloppy count = ©;
printf("%s: begin\n", (char*)arg);
for (int i=0; i<LOOPS; i++) {
sloppy_count++;
if (i%1000 == 0) {
pthread_mutex_lock(&lock);
counter sloppy_count;
pthread_mutex_unlock(&lock);
sloppy_count = 0;

code posted with last
lecture on canvas

int main(int argc, char* argv[]) {
pthread t pl, p2;
pthread mutex init(&lock, 0);
printf("main: begin (counter = %d)\n", counter);
pthread create(&pl, NULL, mythread, "A");
pthread create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread join(pl, NULL);

pthread _join(p2, NULL);

printf("main: done with both (counter = %d, goal
was %d)\n", counter, 2*LOOPS);

return 0;

}

Offscreen Tail condition: don’t forget to update
“counter” again when the for loop is complete!

14

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds
Multi-threaded no-lock counter: 4.700 seconds (Broken!)
Naive-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

Sloppy lock (synchronize every 100): 2.150 second
Sloppy lock (synchronize every 10000): 1.472 second

Sloppy lock (synchronize every 1000000): 1.478 seconc
Sloppy lock (synchronize every 1000000000): 1.500 seconc

n nun unu m

« Optimal for this counter example will be synchronizing once, when
entirely finished with the local sum

15

Break + Open Question

» Avoiding data races is challenging

 Synchronization means we’re running some code in parallel
anyways

 Is concurrency worth it? What kinds of problems work best?

16

Break + Open Question

» Avoiding data races is challenging

 Synchronization means we’re running some code in parallel
anyways

 Is concurrency worth it? What kinds of problems work best?

« Problems that do not share data will still be HUGE wins!
* No (or few) data races. Big concurrency performance gains.

» Such problems are termed: embarrassingly paralle/
« https://en.wikipedia.org/wiki/Embarrassingly parallel#Examples

17

https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

Outline

 Applying Locks

- Ordering with Condition Variables

» Semaphores

 Synchronization Bugs

Requirements for sensible concurrency

« Mutual exclusion
 Prevents corruption of data manipulated in critical sections
 Atomic instructions — Locks — Concurrent data structures

« Ordering (B runs after A)
By default, concurrency leads to a lack of control over ordering

« We can use mutex’'d variables to control ordering, but it's inefficient:
 while(!myTurn) sleep(1);

« We would like cooperating threads to be able to signal each other.
 Park/unpark and futex could be used solve this problem
« But we want a higher-level abstraction

19

Barriers for all-or-nothing synchronization

* Barriers create synchronization points in the program
 All threads must reach barrier before any thread continues

 pthread_barrier_init(barrier_t)
 pthread_barrier_wait(barrier_t)

» Use case: neural network processing
« Spawn a pool of threads
 Each thread handles a portion of the input data
« Collect results from all threads at the end of the layer
« Distribute results to appropriate threads for next layer

20

Basic Sighaling with Condition Variable (condvar)

« Queue of waiting threads
« Combine with a flag and a mutex to synchronize threads

« wait(condvar_t, lock_t)
« Lock must be held when wait() is called
 Puts the caller to sleep AND releases lock (atomically)
« When awoken, reacquires lock before returning

* signal(condvar_t)
« Wake a single waiting thread (if any are waiting)
Do nothing if there are no waiting threads
« Called while holding the lock; action occurs after lock is released

21

Waiting for a thread to finish
pthread t pl, p2;

// create child threads
pthread create(&pl, NULL, mythread, "A");
pthread create(&p2, NULL, mythread, "B");

// join waits for the child threads to finish
thr_join(pl, NULL);
thr_join(p2, NULL);

return 0;

22

CV for child wait

« Must use mutex to protect
“done” flag and condvar

« Done flag tracks the event
 Condvar is used for ordering

« Mutex protects both!

O 00 NN e W N =

o S T S N S e
S W oo N0 N= O

GREBRR

W W N N NN
NHS\QWHO\

int done = 0;
pthread_mutex_t m
pthread_cond_t c

PTHREAD_MUTEX_TINITIALIZER;
PTHREAD_COND_INITIALIZER;

void thr_exit () {
Pthread_mutex_lock (&m);
done = 1;
Pthread_cond_signal(&c);
Pthread_mutex_unlock (&m) ;
}

void xchild(void *arg) ({
printf ("child\n");
thr_exit();
return NULL;

}

void thr_join() {
Pthread_mutex_lock (&m);
while (done == 0)
Pthread_cond_wait (&c, &m);
Pthread_mutex_unlock (&m) ;

}

int main(int argc, char xargv[]) {
printf ("parent: begin\n");
pthread_t p;
Pthread_create (&p, NULL, child, NULL);
thr_join();
printf ("parent: end\n");
return 0;

1 int done = 0;
CV for Child Wait 2 pthread_mutex_t m = PTHREAD_MUTEX_ INITIALIZER;
3 pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;
4
5 void thr_exit () {
Pthr m X_lock (&m);
« Must use mutex to protect ; fone. oo rentock (Em
A\ 4 8 Pthread_cond_signal (&c);
done” flag and condvar S bihresdomiten unlock (am
10 }
11
12 void *child(void xarg) ({
. . 13 printf ("child\n");
- Parent calls thr_join() 18 thr_exit () ;
. , . 15 return NULL;
 wait()’s until done== 16)
17
18 void thr_join() {
19 Pthread_mutex_lock (&m);
20 while (done == 0)
21 Pthread_cond_wait (&c, &m);
22 Pthread_mutex_unlock (&m) ;
23}
24
25 int main(int argc, char xargv[]) {
26 printf ("parent: begin\n");
27 pthread_t p;
28 Pthread_create (&p, NULL, child, NULL);
29 thr_join();
30 printf ("parent: end\n");

w
ey

return 0;
24

w
N
—~

1 int done = 0;
. 1 2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
CV for Chlld Walt 3 pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;
4
5 void thr_exit () {
6 Pthread_mutex_lock (&m);
« Must use mutex to protect ’ dome o1,
\\ 1/ 8 Pthread_cond_signal(&c);
dOne ﬂag and Condvar 9 Pthread_mutex_unlock (&m) ;
10 }
11
12 void *child(void xarg) ({
. . 13 printf ("child\n");
 Parent calls thr_join() 1 thr_exit ();
. , . 15 return NULL;
 wait()’s until done== 16}
17
18 void thr_join() {
19 Pthread_mutex_lock (&m);
m - 20 while (done == 0)
¢ Chlld Ca”S thr_eXIt() 21 Pthread_cond_wait (&c, &m);
22 Pthread_mutex_unlock (&m) ;
« sets done to 1 2)
. 24
¢ Ca”S Slgnal() 25 int main(int argc, char xargv[]) {
26 int £ (" t: begin\n");
« unlocks mutex - D hrond bopg o Pegrmn
28 Pthread_create (&p, NULL, child, NULL);
29 thr_join();
30 printf ("parent: end\n");

w
ey

return 0;
25

w
N
—~

Check your understanding: why doesn't this work?

Incorrect Code Correct Code

1 void thr_exit () { 5 void thr_exit () {

2 Pthread_mutex_lock (&m) ; 6 Pthread_mutex_lock (&m) ;

3 Pthread_cond_signal (&c) ; 7 done = 1;

4 Pthread_mutex_unlock (&m) ; 8 Pthread_cond_signal (&c);

5 } 9 Pthread_mutex_unlock (&m) ;
10 }

6 , o 18 void thr_join() {

7 void thr_join() { 19 Pthread_mutex_lock (&m) ;

8 Pthread_mutex_lock (&m) ; 20 while (done == 0)

9 Pthread_cond_waj_t (&c’ &m); 21 Pthread_cond_wait (&c, &m);

10 Pthread_mutex_unlock (&m) ; i =_ Pthread_mutex_unlock (&m) ;

[
[

}

Consider if an ordering exists that would lead to incorrect behavior
» Lock means that only one critical section will run at a time

26

Buggy attempts to wait for a child, no flag

Incorrect Code

1 void thr_exit () { 5
o 2 Pthread_mutex_lock (&m) ; 6
= 3 Pthread_cond_signal (&c) ; 7
O 4 Pthread_mutex_unlock (&m) ; 8
5] 0
6 , . . 18
7 void thr_join() { 19
= 8 Pthread_mutex_lock (&m) ; 20
Yog Pthread_cond_wait (&c, &m); 21
& 10 Pthread_mutex_unlock (&m) ; i

[
[

}

Without done variable:

Correct Code

void thr _exit () |
Pthread_mutex_lock (&m) ;
done = 1;
Pthread_cond_signal (&c);
Pthread_mutex_unlock (&m) ;

}

void thr_join() {
Pthread_mutex_lock (&m) ;
while (done == 0)

Pthread_cond_wait (&c, &m);

Pthread mutex_unlock (&m) ;

1) The child could run first and signal
2) Before the parent starts waiting for the child

3) Parent waits forever...

27

Check your understanding: is a lock necessary?

Incorrect Code

5

1 void thr_exit () { ¢
O 2 done = 1; 7
ES 3 Pthread_cond_signal (&c) ; 8
4 } ’

10

5 18

2 6 void thr_join () { 19
T 7 if (done == 0) 20
© 8 Pthread_cond_wait (&c) ; 21
9 } »

23

What could go wrong?

Correct Code

void thr _exit () |
Pthread_mutex_lock (&m) ;
done = 1;
Pthread_cond_signal (&c);
Pthread_mutex_unlock (&m) ;

}

void thr_join() {
Pthread_mutex_lock (&m) ;
while (done == 0)

Pthread_cond_wait (&c, &m);

Pthread mutex_unlock (&m) ;

« Without the lock, these lines could be interleaved in any way

28

Buggy attempts to wait for a child, no mutex

Incorrect Code Correct Code

5 void thr _exit () |
1 void thr exit () ({ A Pthread_mutex_lock (&m) ;
2 done = 1; 7 done = 1; |
3 Pthread_cond_signal (&c) ; 8 Pthread_cond_signal (&c);
1 } 9 Pthread_mutex_unlock (&m) ;
5 10 }
. C 18 vold thr_djein
6 vold tAL Joli) 19 Pthrgid_mli:ltei_lm:k (&m) ;
7 if (done == 0) 20 while (done == 0)
8 Pthread_cond_wait (&c) ; 21 Pthread_cond_wait (&c, &m);
9 } 22 Pthread mutex_unlock (&m) ;
3 t

Without the lock:
1) Parent could see done == 0 and enter the if statement
2) Child could then exit, setting done to 1 and signaling
3) Parent then calls wait (missed the signal) and waits forever

Always use a loop to check the flag variable

» It's possible for the thread 5 void thr_join() |
to wake up from a wait, but » phile (@one = 0)
the resource is not available! m Pthreadcond wait (sc, ém);

23 |}

« Maybe another thread took the resource first
« Another thread could run and claim it before the woken thread is scheduled

« Maybe a spurious wakeup occurred
« Often other sources can cause wakeups to occur
« Signals or Interrupts usually

« Makes the implementation of condvar simpler, and we need to double-check
the flag anyways, so it doesn’t matter

30

Classical concurrency problem: Producer-Consumer

Noti'Fication: Food is Ready! \
| _-_j \ :I. - . \ I'.II

Condition Variable

Notification: Food is Eaten!
Producer

Consumer

33

Produce/Consumer Example Details

« We have multiple producers and multiple consumers that
communicate with a shared queue (FIFO buffer).

» Concurrent queue allows work to happen asynchronously.
 Buffer has finite size (does not dynamically expand)

* TWO operations:
- which should block (wait) if the buffer is full.
- which should block (wait) if the buffer is empty.

 This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting.

« Example scenario: request queue in a multi-threaded web server.

34

Managing the buffer

0 NN e W N =

int
int
int
int

buffer [MAX];
£fill = 0;
use = 0;
count = 0;

void put (int value) {

int

buffer[fill] = value;

fill = (fill + 1) % MAX;

count++;

get () {

int tmp = buffer[use];
use = (use + 1) % MAX;
count——;

return tmp;

« A simple implementation of a circular
buffer that stores data in a fixed-size
array.

is the index of the tail
is the index of the head
is the number of items

This simple implementation assumes:
« Concurrency is managed elsewhere

o It will overwrite data if we try to put
more than MAX elements.
35

Managing the concurrency .
 Always acquire mutex

e Must use same mutex in both functions
e Use two condvars

cond_t empty, fill;
mutex_t mutex;

void xproducer (void xarg) {

int i;

for (i = 0; i < loops; i++) {
Pthread_mutex_lock (&mutex) ;
while (count == MAX)

Pthread_cond_wait (&empty, &mutex);

put (i) ;
Pthread_cond_signal (&fill);
Pthread_mutex_unlock (&mutex);

=TT - NS I S I o

ke el ek
= W N= o
et

}

e
=2 TS]

void xconsumer (void xarg) {

int i;

for (i = 0; i < loops; i++) {
Pthread_mutex_lock (&mutex) ;
while (count == 0)

Pthread_cond_wait (&£fill, &mutex);

int tmp = get();
Pthread_cond_signal (&empty) ;
Pthread_mutex_unlock (&mutex);
printf ("%d\n", tmp);

[R S gy
[=—TEAY =T - T |

SRBRR

N N

N S

—
et

36

Manaqging the concurrenc
ging Y Always acquire mutex

e Must use same mutex in both functions

1 cond_t empty, fill;

2 mutex_t mutex;

) - ’ « Use two condvars

4 void xproducer (void xarg) {

5 int i;

6 for (i = 0; i < loops; i++) { . .
, e e » Producer waits on empty while the
8 white (count == HAX) buffer is full

9 Pthread_cond_wait (&empty, &mutex); .)

10 put (i) ; Producer signals fill after put
11 Pthread_cond_signal (&fill);

12 Pthread_mutex_unlock (&mutex);

13 }

14 }

15

16 void xconsumer (void xarg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock (&mutex) ;

20 while (count == 0)

21 Pthread_cond_wait (&£fill, &mutex);

22 int tmp = get();

23 Pthread_cond_signal (&empty) ;

24 Pthread_mutex_unlock (&mutex);

25 printf ("%d\n", tmp);

26 }

7) 37

Managing the concurrency

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void xproducer (void xarg) {

5 int i;

6 for (1 = 0; i < loops; i++) {

7 Pthread_mutex_lock (&mutex) ;

8 while (count == MAX)

9 Pthread_cond_wait (&empty, &mutex);
10 put (1) ;

11 Pthread_cond_signal (&fill);
12 Pthread_mutex_unlock (&mutex);
13 }

14 }

15

16 void xconsumer (void xarg) {

17 int i;

18 for (1 = 0; 1 < loops; i++) {

19 Pthread_mutex_lock (&mutex) ;
20 while (count == 0)

21 Pthread_cond_wait (&£fill, &mutex);
22 int tmp = get();

23 Pthread_cond_signal (&empty) ;
24 Pthread_mutex_unlock (&mutex);
25 printf ("%d\n", tmp);

26 }

27 }

Always acquire
e Must use same mutex in both functions

Use

Producer waits on empty while the
buffer is full

 Producer signals fill after put

Consumer waits on fill while the buffer is
empty

« Consumer signals empty after get

38

Manaqging the concurrenc
ging Y Always acquire

e Must use same mutex in both functions

1 cond_t empty, fill;
2 mutex_t mutex;
; « Use
4 void *producer (void xarg) {
5 int i;
6 f (i =0; i<1 ;oi++) | : "
’ O ST * Producer waits on empty while the
; while (count == MAX) buffer is full
9 Pthread_cond_wait (&empty, &mutex); . .
10 put (i) ; Producer signals fill after put
11 Pthread_cond_signal (&fill);
12 Pthread_mutex_unlock (&mutex);
13 } . - . .
) « Consumer waits on fill while the buffer is
15
16 void *xconsumer (void xarg) { empty
17 int ij _ _ « Consumer signals empty after get
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock (&mutex) ;
20 while (count == 0)
2 SEshread-cond walt(sElL Romitoxlill - Loops re-check count condition after
in mp = ge ; . .
2 Pthread_cond_signal (sempty) ; breaking out of wait, to check that there
24 Pthread_mutex_unlock (&mutex); 1
2 e — really is a resource
26 }
27} 39

Broadcast makes more complex conditions possible

 Recall that signa/ wakes one waiting thread (FIFO)
 But there are times when threads are not all equivalent
« The signal may not be serviceable by any of the threads

« For example, consider memory allocation/free requests
 An allocation can only be serviced by free of >= size

wakes all threads

 This approach may be inefficient, but it may be necessary to ensure
progress

40

Condition Variable: rules of thumb

 Shared state determines if condition is true or not
« Check the state in a while loop before waiting on condvar

» Use a mutex to protect:
« The shared state on which condition is based, and
« Operations on the condvar itself

» Use different condvars for different conditions

« Sometimes, cond_broadcast() helps if you can't find an elegant solution
using cond_signal()

41

Break + xkcd (not relevant, just funny)

https://xkcd.com/336/

IF YOU DONTTURN IN
AT LEAST ONE HOMEWDRIKK
ASSIGNMENT, YoU LL
FAIL THIS CLASS. YEAH. BUTIF I CAN FAIL
THIS CLASS THE GRADES
\ ON MY RERORT CARD WILL
BE INALPHABETICAL ORDER!

/

42

Outline

 Applying Locks

 Ordering with Condition Variables

- Semaphores

 Synchronization Bugs

Generalizing Synchronization

« Condvars have no state or lock, just a waiting queue
* The rest is handled by the programmer

« Semaphores are a generalization of condvars and locks
 Includes internal (locked) state
* A little harder to understand and use, but can do everything

44

Semaphores (by Edsger Dijkstra, 1965)

 Keeps an internal intec]:Jer value that determines
what happens to a calling thread

* Init(val)
 Set the initial internal value
 Value cannot otherwise be directly modified

« Up/Signal/Post/V() (from Dutch verhogen “increase”)
 Increase the value. If there is a waiting thread, wake one.

« Down/Wait/Test/P() (from Dutch proberen “to try”)
 Decrease the value. Wait if the value is negative.

Dijkstra invented
Dijkstra’s Algorithm!

Also Semaphores and the
entire field of Concurrent
Programming

https://en.wikipedia.org/
wiki/Edsger W. Dijkstra

45

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphores vs Condition Variables

« Semaphores Condition Variables
: increase value and : wake one waiting thread
wake one waiting thread
: decrease value : wait

and wait if it's negative

Compared to CVs, Semaphores add an integer value that controls

when waiting is necessary

« lalue counts the quantity of a shared resource currently available

« Up makes a resource available, down reserves a resource

« Negative value -X means that X threads are waiting for the
resource

46

Check your understanding: build a mutex

- How would we build a mutex out of a semaphore?

typdef struct { — —
. sem _init(sem t*, int initial)
sem_t sem; sem_wait(sem_t*): Decrement, wait until
} lock_t; value >= 0
init(lock t* lock){ sem_post(sem_t*): Increment value then
wake a single waiter

}
acquire(lock t* lock) {

}
release(lock t* lock) {

}

47

Check your understanding: build a mutex

- How would we build a mutex out of a semaphore?
typdef struct {

sem t sem; sem_init(sem_t:, iDnt initial)_t "
. sem wait(sem t*): Decrement, wait unti
} lock_t; - senth) value >=0
. . "
1n1t(1?d.<_t lock){ sem_post(sem_t*): Increment value then
sem_init(&(lock->sem), 1); wake a single waiter

acquire(lock_t* lock) {
sem_wait(&(lock->sem));

}
release(lock t* lock) {

sem_post(&(lock->sem));
}

48

Explanation of semaphore mutex implementation

typdef struct { » The semaphore value represents
sem_t sem; the number of resources available
} lock_t; » For a lock, there is 1 available
init(lock t* lock){ initially
sem_init(&(lock->sem), 1);
}

» Acquiring the lock might give it to
you immediately
 Or it might wait
 Multiple threads could be waiting

acquire(lock_t* lock) {
sem_wait(&(lock->sem));

¥

release(lock t* lock) {

sem_post(&(lock->sem)); _
) Releasing the lock only occurs

after acquiring and resets it to 1

49

Semaphores reduce effort for numerical conditions

Condition Variable

void thr_exit () |
Pthread_mutex_lock (&m) ;
done = 1;
Pthread_cond_signal (&c);
Pthread _mutex_unlock (&m) ;

}

void thr_join() {
Pthread_mutex_lock (&m) ;
while (done == 0)

Pthread_cond_wait (&c, &m);

Pthread mutex unlock (&m) ;

Semaphore

void thr _exit() {
sem_post(&s);

}

void thr _join() {
sem wait(&s);

}

// somewhere before all of this
sem_init(&s, 0);

Want parent to wait immediately so initialize to 0
If child thread finishes first, semaphore increments to 1
Resource: number of threads completed

50

Readers-Writers Problem

« Some resources don‘t need strict mutual exclusion, especially if
they have many accesses. (eg., a linked list)

« Any number of readers can be active simultaneously, but
» Writes must be mutually exclusive AND cannot happen during read

* API:

e acquire_read_lock(), release read lock()
e acquire_write lock(), release_write_lock()

51

Reader-writer Lock

* “lock” semaphore used as
a mutex

o0 N e W=

T S S Sy i S Y
S WOV ® NG W= O

SHERBRR

N
~

GREVRE8BE

typedef struct _rwlock_t {

sem_t lock; // binary semaphore (basic lock)

sem_t writelock; // used to allow ONE writer or MANY readers

int readers; // count of readers reading in critical section
} rwlock_t;

void rwlock_init (rwlock_t xrw) ({
rw->readers = 0;
sem_init (&rw—>lock, 0, 1);
sem_init (&rw—->writelock, 0, 1);
}

void rwlock_acquire_readlock (rwlock_t »rw) {
sem_wait (&rw—>1lock) ;
rw—>readers++;
if (rw—->readers == 1)
sem_wait (&rw—>writelock); // first reader acquires writelock
sem_post (&rw—>1lock) ;
}

void rwlock_release_readlock (rwlock_t xrw) {
sem_wait (&rw—>lock) ;
rw—->readers——;
if (rw—>readers == 0)
sem_post (&rw—>writelock); // last reader releases writelock
sem_post (&rw->1lock) ;
}

void rwlock_acquire_writelock (rwlock_t *rw) {
sem_wait (&rw—>writelock) ;

}

void rwlock_release_writelock(rwlock_t *rw) {
sem_post (&rw—->writelock) ;
}

Reader-writer Lock

« “writelock” must be held
during read to block writes
or during write to block
reads.

 During reads

« Number of active readers is
counted.

 First/last reader handles
acquiring/releasing
writelock.

O 0 NN U e W=

NMBNNHH!—I:—!.—!:—I:—!:—!.—!:—I
= W = O W oo NNk NN = O

25
26
27
28
29
30
31
32
33
34
35

typedef struct _rwlock_t {

sem_t lock; // binary semaphore (basic lock)

sem_t writelock; // used to allow ONE writer or MANY readers

int readers; // count of readers reading in critical section
} rwlock_t;

void rwlock_init (rwlock_t xrw) ({
rw->readers = 0;
sem_init (&rw—>lock, 0, 1);
sem_init (&rw—>writelock, 0, 1);
}

void rwlock_acquire_readlock (rwlock_t »rw) {
sem_wait (&rw—>1lock) ;
rw—>readers++;
if (rw—->readers == 1)
sem_wait (&rw—>writelock); // first reader acquires writelock
sem_post (&rw—>1lock) ;
}

void rwlock_release_readlock (rwlock_t xrw) {
sem_wait (&rw—>1lock) ;
rw—>readers——;
if (rw—>readers == 0)
sem_post (&rw—>writelock); // last reader releases writelock
sem_post (&rw->1lock) ;
}

void rwlock_acquire_writelock (rwlock_t *rw) {
sem_wait (&rw—>writelock) ;

}

void rwlock_release_writelock(rwlock_t *rw) {
sem_post (&rw—->writelock) ;
}

Classical concurrency problems

* Note that this particular solution could starve writers
» There might always be readers in the critical section

* Full solution to readers-writers problem with progress guarantee
» https://en.wikipedia.org/wiki/Readers%E2%80%93writers problem

« Generally: try to map your problem to one of these solved problems
* Producers/Consumers or Readers/Writers
« There are MANY solutions to these problems available online

54

https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

Outline

 Applying Locks

 Ordering with Condition Variables

» Semaphores

» Synchronization Bugs

Common synchronization bugs

 Atomicity violation
» Critical section is violated (due to missing lock)

 Order violation
« Something happens sooner (or later) than expected

 Deadlock
« Two threads wait indefinitely on each other

e Livelock (not that common in practice)
« Two threads repeatedly block each other from proceeding and retry

56

Atomicity violation

« It's not too bad to find and protect critical sections,
 But often we forget to add locks around other uses of the shared data.

Main Thread

e Obvious critical section is here:

] i1f (file == NULL) {
« Two threads should not enter this at once

file = open("~/myfile.txt");
}
write(file, "hello file");

 But, we also have to make sure that 7le
Is not modified elsewhere.

Some Other Thread
» Even if this one-line c/ose was atomic we ,close(file);
have to make sure it doesn’t run during
the above critical section.

57

Order violation

« Code often requires a certain ordering of operations, especially:
« Objects must be initialized before they're used
 Objects cannot be freed while they are still in use

file = open("file.dat");
thread create(child fcn); child fen() {

// do some work write(file, "hello");

}

close(file);
Close must happen after
write, but code does not
enforce this ordering.

58

Why is this difficult?

» It seems like we can just add lots of locks and semaphores to be
safe, right?
« Still tricky! Too many locks can cause deadlock — indefinite waiting.

- How about just one big lock?

* (+) Cannot deadlock with one lock (unless there are interrupts)
* (-) However, this would /imit concurrency

« If every task requires the same lock, then unrelated tasks cannot
proceed in parallel.

« Concurrent code is always difficult to write ®
 Although somewhat easier with some higher-level languages

59

Deadlock

A concurrency bug arising when:
« Two threads are each waiting for the other to release a resource.
« While waiting, the threads cannot release the resource already held.
 Or at least do notrelease it
 So the two threads warit forever.

 Can arise when multiple shared resources are used.
« For example, acquiring two or more locks.

60

Deadlock versus starvation

« Each segment of road can be viewed as a resource
« Car must own the segment under them
« Must acquire segment that they are moving into

* Deadlock: Two cars in opposite directions meet in middle

« Starvation (not deadlock): Eastbound traffic doesn't stop for
westbound traffic

61

Locking granularity

« Coarse grained lock:
« Use one (or a few) locks to protect all (or large chunks of) shared state
» Linux kernel < version 2.6.39 used one "Big Kernel Lock”
» Essentially only one thread could run kernel code

o It's simple but there is much contention for this lock, and concurrency is
limited

 Fine grained locks:
« Use many locks, each protecting small chunks of related shared state
 Leads to more concurrency and better performance
« However, there is greater risk of deadlock

62

Outline

 Applying Locks

 Ordering with Condition Variables

» Semaphores

 Synchronization Bugs

Outline

 Bonus: Concurrent Data Structures

Thread-safe data structures

* “Thread safe” — works even if used by multiple threads concurrently
 Can apply to various libraries, functions, and data structures

 Simple data structures implementations are usually not thread safe
« Some global state needs to be shared among all threads
» Need to protect critical sections

 Challenge: multiple function calls each access same shared structure
« Need to identify the critical section in each and lock it with shared lock

65

Linked List

void List Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node _t));
if (new == NULL) {
perror("malloc");
return; // fail
}
new->key = key;
new->next = L->head;
L->head = new;
return; // success

66

Concurrent Linked List — Big lock approach

void List Insert(list_t *L, int key) {
pthread_mutex_lock(&L->lock);
node t *new = malloc(sizeof(node t));
if (new == NULL) {
perror("malloc");

Most important part
of this example.

pthread mutex unlock(&L->lock); < Don't fOFQEt to unlock
} return; // fail if returning early.
new->key = key;
new->next = L->head; Much better than counter
L->head = new; example, because we are

pthread_mutex_unlock(&L->lock); only serializing the list itself.
return; // success

} Hopefully the rest of the
code can run concurrently.

67

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node _t));
if (new == NULL) {
perror("malloc");
return; // fail
} Check your understanding:
new->key = key;
new->next = L->head;

L->head = new; Where is the critical section here?

return; // success

68

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {
node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

Check your understanding:

Where is the critical section here?

69

What about malloc? Is that safe to use??

void List Insert(list_t *L, int key) {

node t *new = malloc(sizeof(node t));
if (new == NULL) {
perror("malloc");

return; // fail « Thread-safe functions
} « Capable of being called concurrently
new->key = key; and still functioning correctly
new->next = L->head; (Because they use locks!)
L->head = new;
return; // success « How would we know if malloc is thread-
} safe?

 Must check the documentation

70

Must check the library documentation to determine thread safety

» https://man7.org/linux/man-pages/man3/malloc.3.html

 Malloc (and free) is indeed thread-safe
ATTRIBUTES top

For an explanation of the terms used in this section, see

attributes(7).
Interface Attribute Value
malloc(), free(), Thread safety | MT-Safe
calloc(), realloc()

o If it wasn’t, we would have to consider it another shared resource
that needs to be locked

https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));
if (new == NULL) {

perror("malloc");

return; // fail
}
new->key = key;
pthread_mutex_lock(&L->lock);
new->next = L->head;
L->head = new;
pthread_mutex_unlock(&L->lock);
return; // success

 Now new node is created
locally in parallel

* Only actual access to the
linked list is serialized

72

Concurrent Queue

« Separate head & tail locks
« Allows concurrent add & remove

O 00 9N Ul e N

10
11
12
13
14
15
16
17
18
19

« Up to 2 threads can access without waiting

typedef struct _ _node_t {

int value;
struct __ _node_t *next;
} node_t;

typedef struct _ _queue_t {

node_t ~head;
node_t *tail;
pthread_mutex_t headLock;
pthread_mutex_t taillock;

} queue_t;

void Queue_Init (queue_t =*q) {

node_t *tmp = malloc(sizeof(node_t));
tmp->next = NULL;

g->head = g->tail = tmp;
pthread_mutex_init (&g—->headLock, NULL) ;
pthread_mutex_init (&g—->taillock, NULL);

21
22
23
24
25
26
7
28
29
30
31
32
33

N

35
36
37
38
39
40

42
43
44

46

void Queue_Enqueue (queue_t *qg, int value)
node_t *tmp = malloc(sizeof (node_t));
assert (tmp != NULL) ;
tmp—->value = value;
tmp->next = NULL;

(pthread_mutex_lock (&§g->taillock) ;
g->tail->next = tmp;
g->tail = tmp;
mlpthread_mutex_unlock(&q—>tailLock);
}

int Queue_Dequeue (queue_t *q, int *value)
ﬂWpthread_mutex_lock(&q—>headLock);
node_t xtmp = g->head;
node_t *newHead = tmp->next;
if (newHead == NULL) {

ﬁ;pthread_mutex_unlock(&q—>headLock);

return -1; // queue was empty

}
x*value = newHead->value;
qg->head = newHead;
L pthread_mutex_unlock (&§q->headLock) ;
free (tmp) ;
return 0;

Concurrent Queue

21 void Queue_Enqueue (queue_t *g, int value) {

22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL) ;
o Vi r” : 24 tmp—->value = value;
tailLock” controls adding elements 2 Cmb-onoxt = NOLLS
.. . 26
* LOOkS Slmllar tO LIStInsert 27 m|pthread_mute:h:_lf::>ck(J.~:=q—>tailLf::>ck),:
1 typedef struct __ node_t { 28 q->taill->next = tmp;
2 int value; 29 m q->tail = tmp;
3 struct _ node_t xnext ; 30 “wpthread_mutex_unlock (&g->taillock);
4 } node_t; 31 }
5 32
6 typedef struct __queue_t { 33 intﬂQueue_Dequeue(queue_t xq, int =*xvalue) ({
7 node_t xhead; 34 pthread_mutex_lock (&g->headLock) ;
8 node_t xtail; 35 node_t xtmp = g->head;
9 pthread_mutex_t headLock; 36 node_t *newHead = tmp->next;
10 pthread_mutex_t taillock; 37 if (newHead == NULL) ({
11 } queue_t; 38 : pthread_mutex_unlock (&g—->headLock) ;
12 39 return -1; // queue was empty
13 void Queue_Init (queue_t =xq) { 40 }
14 node_t *tmp = malloc(sizeof(node_t)); 41 x*value = newHead->value;
15 tmp->next = NULL; 42 g->head = newHead;
16 g->head = g->tail = tmp; 43 L pthread_mutex_unlock (&§g->headLock) ;
17 pthread_mutex_init (&g->headLock, NULL); 44 free (tmp) ;
18 pthread_mutex_init (&g—>taillock, NULL); 45 return 0;

19} 46 } 24

Concurrent Queue .

void Queue_Enqueue (queue_t *g, int value) {

22 node_t *tmp = malloc(sizeof (node_t));

] 23 assert (tmp != NULL) ;

« Head lock controls removing elements 2 tmp->value = value;
from front 25 tmp->next = NULL;

. . 26
 Needs to lock almost entire function 27 (\pthread_mutex_lock (sg->taillLock) ;
1 typedef struct __ node_t { 28 q->taill->next = tmp;
2 int value; 29 N q->tail = tmp;
3 struct _ node_t xnext ; 30 "wpthread_mutex_unlock (&g—->taillLock);
4 } node_t; 31 }
5 32
6 typedef struct __queue_t { 33 intﬂQueue_Dequeue(queue_t xq, int =*xvalue) ({
7 node_t xhead; 34 pthread_mutex_lock (&g->headLock) ;
8 node_t xtail; 35 node_t xtmp = g->head;
9 pthread_mutex_t headLock; 36 node_t *newHead = tmp->next;
10 pthread_mutex_t tailLock; 37 ifﬁ(neWHead == NULL) {
11 } queue_t; 38 "mpthread_mutex_unlock (&§g—>headLock) ;
12 39 return -1; // queue was empty
13 void Queue_Init (queue_t =xq) { 40 }
14 node_t *tmp = malloc(sizeof(node_t)); 41 x*value = newHead->value;
15 tmp->next = NULL; 42 g->head = newHead;
16 g->head = g->tail = tmp; 43 g pthread_mutex_unlock (&g->headLock) ;
17 pthread_mutex_init (&g->headLock, NULL); 44 free (tmp) ;
18 pthread_mutex_init (&g—>taillock, NULL); 45 return 0;

19 } 46 } 75

Concurrent Hash Table

« Each bucket is implemented with a
Concurrent List
« We don't have to define any locks!
 (Locks are in the lists)

* A thread can access a bucket
without blocking other threads’
access to buckets.

e Hash tables are ideal for
concurrency.

« Hash (bucket id) can be calculated
without accessing a shared resource.

are used
for huge NoSQL databases.

0 N O Ul W N =

L T e
Ny U e W= O WO

18
19
20
21
22

#define BUCKETS (101)

typedef struct _ _hash_t {
list_t 1lists[BUCKETS];
} hash_t;

void Hash_Init (hash_t =*H) {
int i;
for (1 = 0; 1 < BUCKETS; i++) {
List_TInit (&H->1lists[i]);
}
}

int Hash_Insert (hash_t xH, int key) {

int bucket = key % BUCKETS;

return List_Insert (&H->1lists[bucket], key);
}

int Hash_Lookup(hash_t xH, int key) {
int bucket = key % BUCKETS;
return List_Lookup (&H->1lists[bucket], key);

76

Lock-free data structures

« In our original example, we put a lock around counter++
« We could have instead used atomic fetch and add to update counter
* Lock-free and sti// atomic!!

* This is possible with more complex data structures as well
 Often based on a compare-and-swap (CAS) approach
e https://www.cs.cmu.edu/~410-s05/lectures/| 31 LockFree.pdf

« Warning: these are not to be taken lightly
 Atomic instructions have performance costs on processors
 Getting this correct involves really understanding hardware
« https://abseil.io/docs/cpp/atomic _danger

77

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://abseil.io/docs/cpp/atomic_danger

Break + Question: Where is the critical section for vector?

typedef struct {
size t size;
size t count;
int** data;

} vector t;

volid vector add(vector t* v, 1nt* item) {

(v—->count == v->size) {
v—->8lze *= 2;
v—>data = realloc(v->data, sizeof(int*)*v->size):;

J

v—->data|[v->count++] = 1tem;

J

78

Break + Question: Where is the critical section for vector?

typedef struct {
size t size;
size t count;
int** data;

} vector t;

volid vector add(vector t* v, 1nt* item) {

(v—>count == v->size) {
v—->8lze *= 2;
v—>data = realloc(v->data, sizeof(int*)*v->size):;

J

v—->data|[v—->count++] = 1tem;

J

79

	Default Section
	Slide 1: Lecture 07: Condvars and Semaphores

	Goals
	Slide 2: Administrivia
	Slide 3: Midterm Exam 1
	Slide 4: Today’s Goals
	Slide 5: Review: Locks/Mutexes

	Applying Locks
	Slide 6: Outline
	Slide 7: Review: Need to enforce mutual exclusion on critical sections
	Slide 8: Naively locked counter example
	Slide 9: Problem: locking overhead decreases performance
	Slide 10: Simple mutual exclusion: one big lock
	Slide 11: Counter example with big lock technique
	Slide 12: Problem: locking decreases performance
	Slide 13: Reducing lock overhead
	Slide 14: Sloppy counter example
	Slide 15: Problem: locking decreases performance
	Slide 16: Break + Open Question
	Slide 17: Break + Open Question

	Ordering with Condition Variables
	Slide 18: Outline
	Slide 19: Requirements for sensible concurrency
	Slide 20: Barriers for all-or-nothing synchronization
	Slide 21: Basic Signaling with Condition Variable (condvar)
	Slide 22: Waiting for a thread to finish
	Slide 23: CV for child wait
	Slide 24: CV for child wait
	Slide 25: CV for child wait
	Slide 26: Check your understanding: why doesn’t this work?
	Slide 27: Buggy attempts to wait for a child, no flag
	Slide 28: Check your understanding: is a lock necessary?
	Slide 29: Buggy attempts to wait for a child, no mutex
	Slide 30: Always use a loop to check the flag variable
	Slide 33: Classical concurrency problem: Producer-Consumer
	Slide 34: Produce/Consumer Example Details
	Slide 35: Managing the buffer
	Slide 36: Managing the concurrency
	Slide 37: Managing the concurrency
	Slide 38: Managing the concurrency
	Slide 39: Managing the concurrency
	Slide 40: Broadcast makes more complex conditions possible
	Slide 41: Condition Variable: rules of thumb
	Slide 42: Break + xkcd (not relevant, just funny)

	Semaphores
	Slide 43: Outline
	Slide 44: Generalizing Synchronization
	Slide 45: Semaphores (by Edsger Dijkstra, 1965)
	Slide 46: Semaphores vs Condition Variables
	Slide 47: Check your understanding: build a mutex
	Slide 48: Check your understanding: build a mutex
	Slide 49: Explanation of semaphore mutex implementation
	Slide 50: Semaphores reduce effort for numerical conditions
	Slide 51: Readers-Writers Problem
	Slide 52: Reader-writer Lock
	Slide 53: Reader-writer Lock
	Slide 54: Classical concurrency problems

	Synchronization Bugs
	Slide 55: Outline
	Slide 56: Common synchronization bugs
	Slide 57: Atomicity violation
	Slide 58: Order violation
	Slide 59: Why is this difficult?
	Slide 60: Deadlock
	Slide 61: Deadlock versus starvation
	Slide 62: Locking granularity

	Wrapup
	Slide 63: Outline

	Concurrent Data Structures
	Slide 64: Outline
	Slide 65: Thread-safe data structures
	Slide 66: Linked List
	Slide 67: Concurrent Linked List – Big lock approach
	Slide 68: Better Concurrent Linked List – Only lock critical section
	Slide 69: Better Concurrent Linked List – Only lock critical section
	Slide 70: What about malloc? Is that safe to use??
	Slide 71: Must check the library documentation to determine thread safety
	Slide 72: Better Concurrent Linked List – Only lock critical section
	Slide 73: Concurrent Queue
	Slide 74: Concurrent Queue
	Slide 75: Concurrent Queue
	Slide 76: Concurrent Hash Table
	Slide 77: Lock-free data structures
	Slide 78: Break + Question: Where is the critical section for vector?
	Slide 79: Break + Question: Where is the critical section for vector?

