
Lecture 07:
Condvars and Semaphores

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), and Shivaram Venkataraman (Wisconsin)

Administrivia

• Scheduler lab due by end-of-day today
• Remember that slip days are automatic, no need to ask

• Get started on PCLab right away as midterm practice

2

Midterm Exam 1

• Exam Details
• In class, Thursday April 25. Starts at 12:30 sharp. 80-minute exam

• Covers all lectures through next week Tuesday

• (1. Introduction through 8. Synchronization Bugs)

• You may bring ONE 8.5”x11” sheet of paper with notes on front and back

• Handwritten, typeset, whatever you want

• No calculators or other notes

• Review materials
• Posted to Canvas homepage: practice problems + prior exams

• Review session: Monday 5-6 pm in Annenberg G21

• Will practice some problems from those materials

3

Today’s Goals

• Understand how we can apply locks to gain correctness and
maintain performance
• Counter

• Data Structures (bonus, if time is available)

• Signaling between threads to enforce ordering
• Condition Variables

• Semaphores

• Consider types of synchronization issues that can occur

4

Review: Locks/Mutexes

• Simple mutual exclusion primitive

• Init(), Acquire()/Lock(), Release()/Unlock()

• Implementations trade complexity, fairness, and performance
• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks

5

6

• Applying Locks

• Ordering with Condition Variables

• Semaphores

• Synchronization Bugs

Outline

Review: Need to enforce mutual exclusion on critical sections

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter++;

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal was

%d)\n", counter, 2*LOOPS);

 return 0;

}

7

Naively locked counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 pthread_mutex_lock(&lock);

 counter++;

 pthread_mutex_unlock(&lock);

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

 return 0;

}

8

Problem: locking overhead decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds (Correct…)

9

• Formerly loop contained 3 instructions (mov, add, mov)

• Now it has
• Two function calls
• Multiple instructions inside of those
• Possibly even interaction with the OS…
• 3 instructions -> 60 instructions

When iterating
one billion times:

Simple mutual exclusion: one big lock

• Simple solution “one big lock”
• Find all the function calls that interact with shared memory

• Lock at the start of each function call and unlock at the end

• Essentially, no concurrent access
• Correct but poor performance

• If you’ve forgotten all of this years from now, “one big lock” will still work

10

Counter example with big lock technique

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 pthread_mutex_lock(&lock);

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter++;

 }

 printf("%s: done\n", (char*)arg);

 pthread_mutex_unlock(&lock);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

 return 0;

}

11

code posted with last
lecture on canvas

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

12

• Big lock technique basically returned us to single-threaded
execution time (and single-threaded implementation)

• Why is the no-lock multithreaded version so slow?
• Not 100% certain
• Likely something to do with hardware memory/cache consistency

Reducing lock overhead

• We want to enable parallelism, but deal with less lock overhead
• Need to increase the amount of work done when not locked

• Goal: lots of parallel work per lock/unlock event

• “Sloppy” updates to global state
• Keep local state that is operated on

• Occasionally synchronize global state with current local state

• Counter example
• Keep a local counter for each thread (not shared memory)

• Add local counter to global counter periodically

13

Sloppy counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 int sloppy_count = 0;

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 sloppy_count++;

 if (i%1000 == 0) {

 pthread_mutex_lock(&lock);

 counter += sloppy_count;

 pthread_mutex_unlock(&lock);

 sloppy_count = 0;

 }

 }

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

 return 0;

}

14

Offscreen Tail condition: don’t forget to update
“counter” again when the for loop is complete!

code posted with last
lecture on canvas

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multi-threaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

Sloppy lock (synchronize every 100): 2.150 seconds

Sloppy lock (synchronize every 10000): 1.472 seconds

Sloppy lock (synchronize every 1000000):
Sloppy lock (synchronize every 1000000000):

1.478 seconds
1.500 seconds

15

• Optimal for this counter example will be synchronizing once, when
entirely finished with the local sum

Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel
anyways

• Is concurrency worth it? What kinds of problems work best?

16

Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel
anyways

• Is concurrency worth it? What kinds of problems work best?

• Problems that do not share data will still be HUGE wins!

• No (or few) data races. Big concurrency performance gains.

• Such problems are termed: embarrassingly parallel
• https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

17

https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

18

• Applying Locks

• Ordering with Condition Variables

• Semaphores

• Synchronization Bugs

Outline

Requirements for sensible concurrency

• Mutual exclusion
• Prevents corruption of data manipulated in critical sections

• Atomic instructions → Locks → Concurrent data structures

• Ordering (B runs after A)
• By default, concurrency leads to a lack of control over ordering

• We can use mutex’d variables to control ordering, but it’s inefficient:
• while(!myTurn) sleep(1);

• We would like cooperating threads to be able to signal each other.

• Park/unpark and futex could be used solve this problem

• But we want a higher-level abstraction

19

Barriers for all-or-nothing synchronization

• Barriers create synchronization points in the program
• All threads must reach barrier before any thread continues

• pthread_barrier_init(barrier_t)

• pthread_barrier_wait(barrier_t)

• Use case: neural network processing
• Spawn a pool of threads
• Each thread handles a portion of the input data
• Collect results from all threads at the end of the layer
• Distribute results to appropriate threads for next layer

20

Basic Signaling with Condition Variable (condvar)

• Queue of waiting threads
• Combine with a flag and a mutex to synchronize threads

• wait(condvar_t, lock_t)
• Lock must be held when wait() is called
• Puts the caller to sleep AND releases lock (atomically)
• When awoken, reacquires lock before returning

• signal(condvar_t)
• Wake a single waiting thread (if any are waiting)
• Do nothing if there are no waiting threads
• Called while holding the lock; action occurs after lock is released

21

Waiting for a thread to finish

pthread_t p1, p2;

// create child threads
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

...

// join waits for the child threads to finish
thr_join(p1, NULL);
thr_join(p2, NULL);

return 0; How to implement
join?

22

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Done flag tracks the event

• Condvar is used for ordering

• Mutex protects both!

23

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

24

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

• Child calls thr_exit()
• sets done to 1

• calls signal()

• unlocks mutex

25

Check your understanding: why doesn’t this work?
P
a
re

n
t

C
h
ild

Correct Code

26

Incorrect Code

Consider if an ordering exists that would lead to incorrect behavior
• Lock means that only one critical section will run at a time

Buggy attempts to wait for a child, no flag
P
a
re

n
t

C
h
ild

Without done variable:
1) The child could run first and signal
2) Before the parent starts waiting for the child
3) Parent waits forever…

Correct Code

27

Incorrect Code

Check your understanding: is a lock necessary?
P
a
re

n
t

 C

h
ild

Correct Code

28

Incorrect Code

What could go wrong?
• Without the lock, these lines could be interleaved in any way

Buggy attempts to wait for a child, no mutex
P
a
re

n
t

 C

h
ild

Correct Code

29

Incorrect Code

Without the lock:
1) Parent could see done == 0 and enter the if statement
2) Child could then exit, setting done to 1 and signaling
3) Parent then calls wait (missed the signal) and waits forever

Always use a loop to check the flag variable

• It’s possible for the thread
to wake up from a wait, but
the resource is not available!

• Maybe another thread took the resource first
• Another thread could run and claim it before the woken thread is scheduled

• Maybe a spurious wakeup occurred
• Often other sources can cause wakeups to occur

• Signals or Interrupts usually
• Makes the implementation of condvar simpler, and we need to double-check

the flag anyways, so it doesn’t matter

30

Classical concurrency problem: Producer-Consumer

33

Produce/Consumer Example Details

• We have multiple producers and multiple consumers that
communicate with a shared queue (FIFO buffer).
• Concurrent queue allows work to happen asynchronously.
• Buffer has finite size (does not dynamically expand)

• Two operations:
• Put, which should block (wait) if the buffer is full.
• Get, which should block (wait) if the buffer is empty.

• This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting.

• Example scenario: request queue in a multi-threaded web server.

34

Managing the buffer

• A simple implementation of a circular
buffer that stores data in a fixed-size
array.

• fill is the index of the tail

• use is the index of the head

• count is the number of items

This simple implementation assumes:

• Concurrency is managed elsewhere

• It will overwrite data if we try to put
more than MAX elements.

35

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

36

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

37

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is
empty
• Consumer signals empty after get

38

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is
empty
• Consumer signals empty after get

• Loops re-check count condition after
breaking out of wait, to check that there
really is a resource

39

Broadcast makes more complex conditions possible

• Recall that signal wakes one waiting thread (FIFO)
• But there are times when threads are not all equivalent

• The signal may not be serviceable by any of the threads

• For example, consider memory allocation/free requests
• An allocation can only be serviced by free of >= size

• pthread_cond_broadcast wakes all threads
• This approach may be inefficient, but it may be necessary to ensure

progress

40

Condition Variable: rules of thumb

• Shared state determines if condition is true or not
• Check the state in a while loop before waiting on condvar

• Use a mutex to protect:
• The shared state on which condition is based, and

• Operations on the condvar itself

• Use different condvars for different conditions
• Sometimes, cond_broadcast() helps if you can’t find an elegant solution

using cond_signal()

41

Break + xkcd (not relevant, just funny)

42https://xkcd.com/336/

43

• Applying Locks

• Ordering with Condition Variables

• Semaphores

• Synchronization Bugs

Outline

Generalizing Synchronization

• Condvars have no state or lock, just a waiting queue
• The rest is handled by the programmer

• Semaphores are a generalization of condvars and locks
• Includes internal (locked) state

• A little harder to understand and use, but can do everything

44

Semaphores (by Edsger Dijkstra, 1965)

• Keeps an internal integer value that determines
what happens to a calling thread

• Init(val)
• Set the initial internal value
• Value cannot otherwise be directly modified

• Up/Signal/Post/V() (from Dutch verhogen “increase”)
• Increase the value. If there is a waiting thread, wake one.

• Down/Wait/Test/P() (from Dutch proberen “to try”)
• Decrease the value. Wait if the value is negative.

45

Dijkstra invented
Dijkstra’s Algorithm!

Also Semaphores and the
entire field of Concurrent
Programming

https://en.wikipedia.org/
wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphores vs Condition Variables

• Semaphores

• Up/Post: increase value and
wake one waiting thread

• Down/Wait: decrease value
and wait if it’s negative

• Condition Variables

• Signal: wake one waiting thread

• Wait: wait

• Compared to CVs, Semaphores add an integer value that controls
when waiting is necessary
• Value counts the quantity of a shared resource currently available
• Up makes a resource available, down reserves a resource
• Negative value -X means that X threads are waiting for the

resource
46

Check your understanding: build a mutex

• How would we build a mutex out of a semaphore?
typdef struct {

 sem_t sem;

} lock_t;

init(lock_t* lock){

}

acquire(lock_t* lock) {

}

release(lock_t* lock) {

}

47

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

 value >= 0
sem_post(sem_t*): Increment value then

 wake a single waiter

Check your understanding: build a mutex

• How would we build a mutex out of a semaphore?
typdef struct {
 sem_t sem;
} lock_t;
init(lock_t* lock){
 sem_init(&(lock->sem), 1);
}
acquire(lock_t* lock) {
 sem_wait(&(lock->sem));
}
release(lock_t* lock) {
 sem_post(&(lock->sem));
}

48

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

 value >= 0
sem_post(sem_t*): Increment value then

 wake a single waiter

Explanation of semaphore mutex implementation

typdef struct {

 sem_t sem;

} lock_t;

init(lock_t* lock){

 sem_init(&(lock->sem), 1);
}

acquire(lock_t* lock) {

 sem_wait(&(lock->sem));

}

release(lock_t* lock) {

 sem_post(&(lock->sem));

}

49

• The semaphore value represents
the number of resources available
• For a lock, there is 1 available

initially

• Acquiring the lock might give it to
you immediately
• Or it might wait

• Multiple threads could be waiting

• Releasing the lock only occurs
after acquiring and resets it to 1

Semaphores reduce effort for numerical conditions
P
a
re

n
t

 C

h
ild

• Want parent to wait immediately so initialize to 0
• If child thread finishes first, semaphore increments to 1
• Resource: number of threads completed

Condition Variable

50

Semaphore

void thr_exit() {
 sem_post(&s);
}

void thr_join() {
 sem_wait(&s);
}

// somewhere before all of this
sem_init(&s, 0);

Readers-Writers Problem

• Some resources don’t need strict mutual exclusion, especially if
they have many read-only accesses. (eg., a linked list)

• Any number of readers can be active simultaneously, but

• Writes must be mutually exclusive AND cannot happen during read

• API:
• acquire_read_lock(), release_read_lock()

• acquire_write_lock(), release_write_lock()

51

Reader-writer Lock

• “lock” semaphore used as
a mutex

Reader-writer Lock

• “writelock” must be held
during read to block writes
or during write to block
reads.

• During reads
• Number of active readers is

counted.

• First/last reader handles
acquiring/releasing
writelock.

Classical concurrency problems

• Note that this particular solution could starve writers
• There might always be readers in the critical section

• Full solution to readers-writers problem with progress guarantee
• https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

• Generally: try to map your problem to one of these solved problems
• Producers/Consumers or Readers/Writers

• There are MANY solutions to these problems available online

54

https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

55

• Applying Locks

• Ordering with Condition Variables

• Semaphores

• Synchronization Bugs

Outline

Common synchronization bugs

• Atomicity violation
• Critical section is violated (due to missing lock)

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry

56

Atomicity violation

• It’s not too bad to find and protect critical sections,
• But often we forget to add locks around other uses of the shared data.

• Obvious critical section is here:
• Two threads should not enter this at once

• But, we also have to make sure that file
is not modified elsewhere.

• Even if this one-line close was atomic we
have to make sure it doesn’t run during
the above critical section.

Main Thread

lock(lck);

if (file == NULL) {

 file = open("~/myfile.txt");

}

write(file, "hello file");

unlock(lck);

…

Some Other Thread

close(file); // whoops!!

57

Order violation

• Code often requires a certain ordering of operations, especially:
• Objects must be initialized before they’re used

• Objects cannot be freed while they are still in use

Parent

file = open("file.dat");

thread_create(child_fcn);

// do some work

…

close(file);

Child Thread

child_fcn() {

 write(file, "hello");

}

Close must happen after
write, but code does not
enforce this ordering.

58

Why is this difficult?

• It seems like we can just add lots of locks and semaphores to be
safe, right?
• Still tricky! Too many locks can cause deadlock – indefinite waiting.

• How about just one big lock?
• (+) Cannot deadlock with one lock (unless there are interrupts)
• (–) However, this would limit concurrency

• If every task requires the same lock, then unrelated tasks cannot
proceed in parallel.

• Concurrent code is always difficult to write
• Although somewhat easier with some higher-level languages

59

Deadlock

• A concurrency bug arising when:
• Two threads are each waiting for the other to release a resource.

• While waiting, the threads cannot release the resource already held.

• Or at least do not release it

• So the two threads wait forever.

• Can arise when multiple shared resources are used.
• For example, acquiring two or more locks.

60

Deadlock versus starvation

• Each segment of road can be viewed as a resource
• Car must own the segment under them
• Must acquire segment that they are moving into

• Deadlock: Two cars in opposite directions meet in middle

• Starvation (not deadlock): Eastbound traffic doesn’t stop for
westbound traffic

61

H
o
n
k
!

Locking granularity

• Coarse grained lock:
• Use one (or a few) locks to protect all (or large chunks of) shared state

• Linux kernel < version 2.6.39 used one “Big Kernel Lock”

• Essentially only one thread could run kernel code

• It’s simple but there is much contention for this lock, and concurrency is
limited

• Fine grained locks:
• Use many locks, each protecting small chunks of related shared state

• Leads to more concurrency and better performance

• However, there is greater risk of deadlock

62

63

• Applying Locks

• Ordering with Condition Variables

• Semaphores

• Synchronization Bugs

Outline

64

• Bonus: Concurrent Data Structures

Outline

Thread-safe data structures

• “Thread safe” – works even if used by multiple threads concurrently
• Can apply to various libraries, functions, and data structures

• Simple data structures implementations are usually not thread safe
• Some global state needs to be shared among all threads

• Need to protect critical sections

• Challenge: multiple function calls each access same shared structure
• Need to identify the critical section in each and lock it with shared lock

65

Linked List

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

66

Concurrent Linked List – Big lock approach

void List_Insert(list_t *L, int key) {

 pthread_mutex_lock(&L->lock);

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 pthread_mutex_unlock(&L->lock);

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 pthread_mutex_unlock(&L->lock);

 return; // success

}

67

Most important part
of this example.
Don’t forget to unlock
if returning early.

• Much better than counter
example, because we are
only serializing the list itself.
Hopefully the rest of the
code can run concurrently.

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

68

Check your understanding:

Where is the critical section here?

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

69

Check your understanding:

Where is the critical section here?

What about malloc? Is that safe to use??

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 new->next = L->head;

 L->head = new;

 return; // success

}

70

• Thread-safe functions
• Capable of being called concurrently

and still functioning correctly
• (Because they use locks!)

• How would we know if malloc is thread-
safe?
• Must check the documentation

Must check the library documentation to determine thread safety

• https://man7.org/linux/man-pages/man3/malloc.3.html

• Malloc (and free) is indeed thread-safe

• If it wasn’t, we would have to consider it another shared resource
that needs to be locked

71

https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

 node_t *new = malloc(sizeof(node_t));

 if (new == NULL) {

 perror("malloc");

 return; // fail

 }

 new->key = key;

 pthread_mutex_lock(&L->lock);

 new->next = L->head;

 L->head = new;

 pthread_mutex_unlock(&L->lock);

 return; // success

}

72

• Now new node is created
locally in parallel

• Only actual access to the
linked list is serialized

Concurrent Queue

• Separate head & tail locks

• Allows concurrent add & remove
• Up to 2 threads can access without waiting

73

Concurrent Queue

• “tailLock” controls adding elements

• Looks similar to ListInsert

74

Concurrent Queue

• Head lock controls removing elements
from front

• Needs to lock almost entire function

75

Concurrent Hash Table

• Each bucket is implemented with a
Concurrent List
• We don’t have to define any locks!

• (Locks are in the lists)

• A thread can access a bucket
without blocking other threads’
access to other buckets.

• Hash tables are ideal for
concurrency.
• Hash (bucket id) can be calculated

without accessing a shared resource.

• Distributed hash tables are used
for huge NoSQL databases.

76

Lock-free data structures

• In our original example, we put a lock around counter++
• We could have instead used atomic_fetch_and_add to update counter
• Lock-free and still atomic!!

• This is possible with more complex data structures as well
• Often based on a compare-and-swap (CAS) approach
• https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf

• Warning: these are not to be taken lightly
• Atomic instructions have performance costs on processors
• Getting this correct involves really understanding hardware
• https://abseil.io/docs/cpp/atomic_danger

77

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://abseil.io/docs/cpp/atomic_danger

Break + Question: Where is the critical section for vector?

typedef struct {

 size_t size;

 size_t count;

 int** data;

} vector_t;

void vector_add(vector_t* v, int* item) {

 if (v->count == v->size) {

 v->size *= 2;

 v->data = realloc(v->data, sizeof(int*)*v->size);

 }

 v->data[v->count++] = item;

}

78

Break + Question: Where is the critical section for vector?

typedef struct {

 size_t size;

 size_t count;

 int** data;

} vector_t;

void vector_add(vector_t* v, int* item) {

 if (v->count == v->size) {

 v->size *= 2;

 v->data = realloc(v->data, sizeof(int*)*v->size);

 }

 v->data[v->count++] = item;

}

79

	Default Section
	Slide 1: Lecture 07: Condvars and Semaphores

	Goals
	Slide 2: Administrivia
	Slide 3: Midterm Exam 1
	Slide 4: Today’s Goals
	Slide 5: Review: Locks/Mutexes

	Applying Locks
	Slide 6: Outline
	Slide 7: Review: Need to enforce mutual exclusion on critical sections
	Slide 8: Naively locked counter example
	Slide 9: Problem: locking overhead decreases performance
	Slide 10: Simple mutual exclusion: one big lock
	Slide 11: Counter example with big lock technique
	Slide 12: Problem: locking decreases performance
	Slide 13: Reducing lock overhead
	Slide 14: Sloppy counter example
	Slide 15: Problem: locking decreases performance
	Slide 16: Break + Open Question
	Slide 17: Break + Open Question

	Ordering with Condition Variables
	Slide 18: Outline
	Slide 19: Requirements for sensible concurrency
	Slide 20: Barriers for all-or-nothing synchronization
	Slide 21: Basic Signaling with Condition Variable (condvar)
	Slide 22: Waiting for a thread to finish
	Slide 23: CV for child wait
	Slide 24: CV for child wait
	Slide 25: CV for child wait
	Slide 26: Check your understanding: why doesn’t this work?
	Slide 27: Buggy attempts to wait for a child, no flag
	Slide 28: Check your understanding: is a lock necessary?
	Slide 29: Buggy attempts to wait for a child, no mutex
	Slide 30: Always use a loop to check the flag variable
	Slide 33: Classical concurrency problem: Producer-Consumer
	Slide 34: Produce/Consumer Example Details
	Slide 35: Managing the buffer
	Slide 36: Managing the concurrency
	Slide 37: Managing the concurrency
	Slide 38: Managing the concurrency
	Slide 39: Managing the concurrency
	Slide 40: Broadcast makes more complex conditions possible
	Slide 41: Condition Variable: rules of thumb
	Slide 42: Break + xkcd (not relevant, just funny)

	Semaphores
	Slide 43: Outline
	Slide 44: Generalizing Synchronization
	Slide 45: Semaphores (by Edsger Dijkstra, 1965)
	Slide 46: Semaphores vs Condition Variables
	Slide 47: Check your understanding: build a mutex
	Slide 48: Check your understanding: build a mutex
	Slide 49: Explanation of semaphore mutex implementation
	Slide 50: Semaphores reduce effort for numerical conditions
	Slide 51: Readers-Writers Problem
	Slide 52: Reader-writer Lock
	Slide 53: Reader-writer Lock
	Slide 54: Classical concurrency problems

	Synchronization Bugs
	Slide 55: Outline
	Slide 56: Common synchronization bugs
	Slide 57: Atomicity violation
	Slide 58: Order violation
	Slide 59: Why is this difficult?
	Slide 60: Deadlock
	Slide 61: Deadlock versus starvation
	Slide 62: Locking granularity

	Wrapup
	Slide 63: Outline

	Concurrent Data Structures
	Slide 64: Outline
	Slide 65: Thread-safe data structures
	Slide 66: Linked List
	Slide 67: Concurrent Linked List – Big lock approach
	Slide 68: Better Concurrent Linked List – Only lock critical section
	Slide 69: Better Concurrent Linked List – Only lock critical section
	Slide 70: What about malloc? Is that safe to use??
	Slide 71: Must check the library documentation to determine thread safety
	Slide 72: Better Concurrent Linked List – Only lock critical section
	Slide 73: Concurrent Queue
	Slide 74: Concurrent Queue
	Slide 75: Concurrent Queue
	Slide 76: Concurrent Hash Table
	Slide 77: Lock-free data structures
	Slide 78: Break + Question: Where is the critical section for vector?
	Slide 79: Break + Question: Where is the critical section for vector?

