
Lecture 05: Concurrency
Sources and Challenges

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), and UC Berkeley CS61C and CS162

Administrivia

• Get started on Scheduling Lab right away!
• Getting Started lab was NOT an accurate representation of workload

• Don’t plan on being able to get schedulers working at the last minute

• Scheduling Lab debugging tip:
• Make your own workloads, do the math on their metrics, then test on them

• That’s the only way to know for sure that your scheduler is right

• We will test on many workloads that have not been provided to you

2

Today’s Goals

• Describe where and why concurrency and parallelism are involved
in computing.

• Be disappointed by performance limits on concurrency.

• Introduce concept of data races as a concurrency problem.

3

4

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Proportional-share scheduling is impossible instantaneously

• Goal: each process gets an
equal share of processor

• N threads “simultaneously”
execute on 1/Nth of processor

• Doesn’t work in the real world
• Jobs block on I/O

• OS needs to give out timeslices

5

At any time t
we want to observe:

CPU
Time

T1 T2 T3

t/N

Linux Completely Fair Scheduler (CFS) (2007-2023)

• Track processor time given to
job so far

• Scheduling decision
• Choose thread with minimum

processor time to schedule
• “Repairs” illusion of fairness

• Update processor time when the
scheduling occurs again
• Timeslice expiration is a big

update
• Blocking I/O results in maintaining

small processor time

6

CPU
Time T1

T2
T3

t/N

What if we make shares
proportional over a longer
period?

Modern scheduling is not easy

• Getting scheduling right on multicore can be difficult
• No way to know whether a process will be more I/O or CPU bound in the

future

• Want to keep threads on the same core, but also not waste cores

• In 2016, researchers found issues in Linux scheduler
implementation that lead to 13%+ slowdown in jobs
• https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-

wasted-cores/

7

https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/
https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/

Modern scheduling challenges

• Fair sharing of CPU time is insufficient
• Maximize cache usage

• Maximize processor affinity

• Reduce energy consumption

• Hybrid systems with heterogeneous processing capabilities

• Particular focus: latency requirements
• Some processes need to respond quickly to new data

• They don’t need more processing time. They need the time more quickly

• Heuristic shortcuts were added to CFS to allow some jobs to jump the
queue

8

Earliest Eligible Virtual Deadline First (EEVDF) (2023-Present)

• Algorithm first described in a 1995 research paper
• Run job with earliest “virtual deadline”
• TLDR: share processor time proportionally, but schedule within that based on latency

• Still divides processor time equally between jobs, like CFS
• Biased by priority of the job. Higher priority means larger share

• Calculate “lag” for each job
• Measurement of how far it’s behind a fair share of processor time
• Negative lag means a job has run more than its fair share already

• Job won’t be eligible to run until lag >= 0
• Lag increases automatically as other jobs run. So time until lag >= 0 can be calculated

• Virtual deadline for job: time until lag >= 0, plus duration it should run for
• Now + timeslice for any jobs below fair share of processor time
• Future + timeslice for any jobs above fair share of processor time
• Where timeslices vary by priority of the job

9https://lwn.net/Articles/925371/

https://lwn.net/Articles/925371/

Multicore scheduling

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries
to reschedule it on the same CPU
• Cache reuse

• Grouping threads could help or hurt…

• Soft affinity: make this a goal of the system
• Not always achieved

• Hard affinity: allow some jobs to demand guaranteed affinity
• Process/Thread can tell the kernel which core it should be run on

10

Single queue multicore scheduling

• Simplest approach to multicore scheduling
• Keep one global queue of all jobs to be run

• Whenever a processor becomes idle, grab the next job from the queue

• Essentially, exactly the single-core strategy, but with more cores

• Downsides
• Odds are that a job will run on a different core next time

• So state for the job won’t be in the per-core cache

• Only one core can modify the queue at a time

• See data race issues we’ll talk about today

11

Multi-queue multicore scheduling

• Keep one queue of jobs for each core
• Ensures that jobs stay on a single core when running

• Need to balance work among cores somehow
• Might have one core with many jobs and another that’s idle

• Work stealing: when a processor is idle, look at other processor’s queues
and take a job from them

• Still undermines affinity goals, but hopefully worth it?

• Complicated to scale out to many cores

12

Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out

Average Turnaround Time Shortest Remaining Processing Time

Average Response Time Round Robin

Favoring Important Tasks Priority

Fair CPU Time Usage Linux CFS or EEVDF

Meeting Deadlines EDF or RMS

13

14

• Threads Review

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Processes and threads

• A process could have multiple threads
• Each with its own registers and stack

15

• Code and
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables

Thread use case: web server

16

• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343

19

Scheduler

OS
Kernel

Processes

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

20

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

• What happens when pthread_create() is called in a process?

21

Library:

int pthread_create(…) {
 Do some work like a normal function
 Put syscall number into register
 Put args into registers
 Special trap instruction

Get return values from regs
 Do some more work like a normal function
};

Get args from regs
 Do the work to spawn the new thread
 Store return value in %eax

Kernel:

clone (56) syscall on Linux

Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all

threads of the process.
• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by
reading/writing (shared)
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

Threads Example

23

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a
number, then
increments it, then exits

• Main process waits for
all of the threads to
finish

24

Threads Example

25

Threads Example

26

• Left: Every thread has its
own stack

• Right: Every thread
shares global memory

Break +
Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
created?

4. If we run the program again,
could the result change?

27

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
could the result change?
Possibly!

28

Break +
Check your understanding

29

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?

30

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do? Take a vacation

31

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

How? Transistors are getting
exponentially smaller!

How small? Today: <7nm!
(maybe smaller, kind of complicated)
< ½ the size of most viruses!

32

Processors kept getting faster too

33

Power is a major limiting factor on speed

• We could make processors go very fast
• But doing so uses more and more power

• More power means more heat generated
• And chips typically work up to around 100°C

• Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool
• But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed

34

Denard Scaling

• Moore’s Law corollary: Denar Scaling
• As transistors get smaller, the power density stays the same

• Which is to say that the power-per-transistor decreases!

• Making the processor clock speed faster uses more power
• But the two balance out for roughly net even power

• So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:
• In two years, new hardware would run the existing software twice as fast

35

Then they stopped getting faster

36

~2006: Leakage
current becomes
significant

Now smaller
transistors doesn’t
mean lower power

So… now what?

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better by
waiting for clock speeds to increase.

How do we continue to get better computation performance?

37

Exploit parallelism!

38

Update: 2010-2021

39

Still growing!

Stable

Stable

Small
improvement

Still growing
for servers

Key question: how do we use all these cores?

40

Break + Parallelism Analogy

• I want to peel 100 potatoes as fast as possible:

• I can learn to peel potatoes faster

OR

• I can get 99 friends to help me

• Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!

41

42

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Parallelism versus Concurrency Two processes A and B

43

BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active

44

B

A
OR

time time

OR

time

Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads

45

Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads

46

Model of a processor

47

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Instruction
Fetch

Instruction
Decode

Execute Memory Writeback

CPU

But instructions don’t always have to be executed in order

movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
addq %rcx, %rbx

We can apply the multiprogramming approach of executing this
addq while the movq is waiting on memory.

48

Doesn’t have to go after the
movq instructions because it
uses different registers

Out-of-order processors

Fetch many
instructions at
once!

Read register file,
handle data
dependencies with
register renaming

Reorder instructions
to make best use of
CPU Commit, or

“write back”
data to memory
and regfile in
the order the
programmer
expects

Generally: looks for independent
instructions it can execute early

Out-of-order processors obey normal execution results

• Initial thoughts on out-of-order execution
•

• The processor could be executing my program in order it feels like?!!

• How do I possibly reason about anything?

• Answer: the processor promises to have the same results as if
things were done in the normal order.

50

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print?

51

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print? Could be 42. Could be 0.

52

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

This can be
addressed with
memory barriers

Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads

53

Task parallelism use case

Run Chrome and Spotify simultaneously
• Each are separate programs
• Each has a different memory space
• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,
but hardware can make it actually simultaneous

54

Multicore Systems (in pictures)

55

Core 0

Control

Datapath
RIP

Registers

(ALU)

Memory

Bytes

Processor 0
Memory
Accesses

Core 1

Control

Datapath
RIP

Registers

(ALU)

Processor 1
Memory
Accesses

Actually parallel!

Multicore Systems (in words)

• A computer system with at least 2 processor cores
• Each core has its own registers
• Each core executes independent instruction streams
• Cores share the same system memory

• But usually use different parts of it
• Communication possible through memory accesses

• Deliver high throughput for independent jobs via task-level
parallelism

56

Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads

57

Multithreading processors

Basic idea: Processor resources are expensive and should not be left
idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while waiting for

cache miss

• Cost of thread context switch must be much less than cache miss latency

• Switching threads is less expensive than processes because they share
memory
• Cache is still valid

• Page Table for virtual memory doesn’t have to change

58

Memory

Bytes

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

• Two copies of RIP and Registers inside processor hardware

• Looks like two processors to software
 (hardware thread 0, hardware thread 1)

• Control logic decides which thread to execute an instruction
 from next (concurrent, but NOT parallel)

59

Multithreading processor

Multithreading versus Multicore

• Multithreading => Better utilization
• ≈5% more hardware for ≈1.3x better performance?

• Gets to share ALUs, caches, memory controller

• Multicore => Duplicate cores
• ≈50% more hardware for ≈2x better performance?

• Share some caches (L2 cache, L3 cache), memory controller

• Modern processors might do both!
• Multiple cores with multiple threads per core

• Not all do though, some focus on better single-thread performance

60

Multithreading, multicore processors

• Combine capabilities
of both designs

• Run two processes
each with two threads

• Or run one process
with four threads

61

Memory

Bytes

Processor 0
Memory
Accesses

Processor 1
Memory
Accesses

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Clearing up vocabulary

• Core: computation unit within the CPU
• ALU, Registers, etc.

• Capable of running one or more threads

• CPU (processor): the chip that goes in your computer
• Contains one or more cores

• Computers could have multiple CPU chips as well

• Sometimes people equate processors and cores, which is
confusing
• I’ll definitely do it by mistake at some point if I haven’t already. Sorry!

62

My desktop computer

63

4 total cores
Each capable of 2 threads

≈ 8 jobs at once

Quad core processor

• One thread per core

• 3-way superscalar pipeline
• L1 Cache

• 32 KiB 2-way set associative data cache
• 48 KiB 3-way set associative instruction cache
• Per core

• L2 Cache
• 512 KiB to 4 MiB (shared)

• RAM 1-4 GB

$35
Literally all computers
are doing parallelism
these days

Raspberry Pi 4

64

Other modern multicore designs

• Heterogeneous
multicore
• Not all cores are

necessarily identical

• Enables scheduler to
make complicated
choices of performance
or energy savings
• At the cost of a

complicated scheduler…

65

Back up to the OS perspective

• Modern operating systems must manage concurrency
• Both parallel operation and interleaving operations

• Concurrency is valuable
• Performance gains are the reason

66

Break + Real-world Connection

• How many cores/threads does your processor support?
• Windows: Task Manager -> Performance -> CPU

• MacOS: About this Mac -> System Report -> Hardware

• Apple ARM M processors only do 1 thread per core

• Linux: In terminal: lscpu

• Android/iOS: You’ll need to google it

67

68

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

69

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

70

Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

95 s 5 s

Speedup Example

71

95 s 5 s

Speedup from improvements

72

Speedup with
Improvement

=

Execution time without
improvement

Execution time with
improvement

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s: Speedup = 100/96 = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

Speedup =

 F = Fraction of execution time speed up
 S = Scale of improvement

(1 - F) + F
SNot improved part Improved part

1

1
0.75 + 0.25

2

1
0.75 + 0.125

= = 1.14

Example: 2x improvement to 25% of the program

Equivalent to
prior equationAmdahl’s Law

73

Parallel speedup example Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

74

• Consider an improvement which runs 20 times faster but is only
usable 15% of the time

Speedup with
improvement

=
1

0.85 + (0.15/20) = 1.166

Speedup with
improvement

=
1

0.75 + (0.25/20) = 1.311

• What if it’s usable 25% of the time?

Nowhere near
20x speedup!

Amdahl’s (heartbreaking) Law (in pictures)

• The amount of speedup that can be achieved through parallelism is
limited by the non-parallel portion of your program!
• And every program has at least some non-parallel parts

75

Parallel
portion

Serial
portion

Time

Number of Processors
1 2 3 4 5

Sp
e

e
d

u
p

Number of Processors

Amdahl’s (heartbreaking) Law (in words)

• Amdahl’s Law tells us that to achieve linear speedup with more
processors:

• none of the original computation can be serial (non-parallelizable)

• To get a speedup of 90 from 100 processors, the percentage of
the original program that could be scalar would have to be 0.1%
or less

 Speedup = 1/(.001 + .999/100) = 90.99

76

Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

77

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

78

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Speedup = 1 / [(1 - F) + (F/S)]

2 = 1 / [(1 - 0.5) + (0.5/S)]

S = 0.5 / ((1/2) – 0.5) = ∞

The square root would need to decrease
to nothing before you got 2x speedup

79

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

80

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

81

Thread 1:

void main(){
 count += 1;
}

Thread 2:

void main(){
 count += 1;
}

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.
82

Thread 1:

void thread_fn(){

 mov $0x8049a1c, %edi

 mov (%edi), %eax

 add $0x1, %eax

 mov %eax, (%edi)

}

Thread 2:

void thread_fn(){

 mov $0x8049a1c, %edi

 mov (%edi), %eax

 add $0x1, %eax

 mov %eax, (%edi)

}

Assuming “count” is
in memory location
0x8049a1c

Data race example – Count = 2

83

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax ???

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Before this code starts

Data race example – Count = 2

84

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Assuming “count” is
in memory location
pointed to by %edi

Data race example – Count = 2

85

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Assuming “count” is
in memory location
pointed to by %edi

Data race example – Count = 2

86

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 1

Assuming “count” is
in memory location
pointed to by %edi

Data race example – Count = 2

87

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1

Assuming “count” is
in memory location
pointed to by %edi

Data race example – Count = 2

88

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 2

Memory

Variable Value

count 1

Assuming “count” is
in memory location
pointed to by %edi

Data race example – Count = 2

89

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 2

Memory

Variable Value

count 2

Assuming “count” is
in memory location
pointed to by %edi

Theads do not have guaranteed ordering

BUT, there’s no guarantee that the instructions occur in that order!

Since the two threads are running in parallel, the instructions could
be interleaved in any way
(both threads are really running simultaneously)

90

Data race example – Count = 1

91

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax ???

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Before this code starts

Remember, each thread has its
own separate registers!

Data race example – Count = 1

92

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Data race example – Count = 1

93

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax 0

Memory

Variable Value

count 0

Data race example – Count = 1

94

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 0

Data race example – Count = 1

95

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1

Data race example – Count = 1

96

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1

Data race example – Count = 1

97

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is
in memory location
pointed to by %edi

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1

Data race comparison

98

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Final value of count: 2 Final value of count: 1

Assuming “count” is
in memory location
pointed to by %edi

Data race explanation

• Thread scheduling is non-deterministic
• There is no guarantee that any thread will go first or last or

not be interrupted at any point

• If different threads write to the same variable

• The final value of the variable is also non-deterministic
• This is a data race

99

Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

100

Thread 1:

void main(){
 count += 2;
}

Thread 2:

void main(){
 count -= 2;
}

Thread 3:

void main(){
 count += 3;
}

Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count? -2, 0, 1, 2, 3, 5

How are you supposed to reason about this?!
Need mechanisms for sharing memory.

101

Thread 1:

void main(){
 count += 2;
}

Thread 2:

void main(){
 count -= 2;
}

Thread 3:

void main(){
 count += 3;
}

102

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

	Default Section
	Slide 1: Lecture 05: Concurrency Sources and Challenges

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Schedulers Wrap-up
	Slide 4: Outline
	Slide 5: Proportional-share scheduling is impossible instantaneously
	Slide 6: Linux Completely Fair Scheduler (CFS) (2007-2023)
	Slide 7: Modern scheduling is not easy
	Slide 8: Modern scheduling challenges
	Slide 9: Earliest Eligible Virtual Deadline First (EEVDF) (2023-Present)
	Slide 10: Multicore scheduling
	Slide 11: Single queue multicore scheduling
	Slide 12: Multi-queue multicore scheduling
	Slide 13: Summary on schedulers

	Threads
	Slide 14: Outline
	Slide 15: Processes and threads
	Slide 16: Thread use case: web server
	Slide 19: Models for thread libraries: Kernel Threads
	Slide 20: POSIX Threads Library: pthreads
	Slide 21: Pthread system call example
	Slide 22: Threads versus Processes
	Slide 23: Threads Example
	Slide 24: Threads Example
	Slide 25: Threads Example
	Slide 26: Threads Example
	Slide 27: Break + Check your understanding
	Slide 28

	Need for Parallelism
	Slide 29: Outline
	Slide 30
	Slide 31
	Slide 32: Moore’s Law – CPU transistors counts
	Slide 33: Processors kept getting faster too
	Slide 34: Power is a major limiting factor on speed
	Slide 35: Denard Scaling
	Slide 36: Then they stopped getting faster
	Slide 37: So… now what?
	Slide 38: Exploit parallelism!
	Slide 39: Update: 2010-2021
	Slide 40: Key question: how do we use all these cores?
	Slide 41: Break + Parallelism Analogy

	Processor concurrency
	Slide 42: Outline
	Slide 43: Parallelism versus Concurrency
	Slide 44: Parallelism versus Concurrency
	Slide 45: Hardware sources of concurrency
	Slide 46: Hardware sources of concurrency
	Slide 47: Model of a processor
	Slide 48: But instructions don’t always have to be executed in order
	Slide 49: Out-of-order processors
	Slide 50: Out-of-order processors obey normal execution results
	Slide 51: Multiple threads might rely on memory ordering
	Slide 52: Multiple threads might rely on memory ordering
	Slide 53: Hardware sources of concurrency
	Slide 54: Task parallelism use case
	Slide 55: Multicore Systems (in pictures)
	Slide 56: Multicore Systems (in words)
	Slide 57: Hardware sources of concurrency
	Slide 58: Multithreading processors
	Slide 59: Multithreading processor
	Slide 60: Multithreading versus Multicore
	Slide 61: Multithreading, multicore processors
	Slide 62: Clearing up vocabulary
	Slide 63: My desktop computer
	Slide 64: Raspberry Pi 4
	Slide 65: Other modern multicore designs
	Slide 66: Back up to the OS perspective
	Slide 67: Break + Real-world Connection

	Amdahl's Law
	Slide 68: Outline
	Slide 69: Challenges to concurrency
	Slide 70: Challenges to concurrency
	Slide 71: Speedup Example
	Slide 72: Speedup from improvements
	Slide 73
	Slide 74: Parallel speedup example
	Slide 75: Amdahl’s (heartbreaking) Law (in pictures)
	Slide 76: Amdahl’s (heartbreaking) Law (in words)
	Slide 77: Break + Question
	Slide 78: Break + Question

	Data Races
	Slide 79: Outline
	Slide 80: Challenges to concurrency
	Slide 81: Concurrency problem: data races
	Slide 82: Concurrency problem: data races
	Slide 83: Data race example – Count = 2
	Slide 84: Data race example – Count = 2
	Slide 85: Data race example – Count = 2
	Slide 86: Data race example – Count = 2
	Slide 87: Data race example – Count = 2
	Slide 88: Data race example – Count = 2
	Slide 89: Data race example – Count = 2
	Slide 90: Theads do not have guaranteed ordering
	Slide 91: Data race example – Count = 1
	Slide 92: Data race example – Count = 1
	Slide 93: Data race example – Count = 1
	Slide 94: Data race example – Count = 1
	Slide 95: Data race example – Count = 1
	Slide 96: Data race example – Count = 1
	Slide 97: Data race example – Count = 1
	Slide 98: Data race comparison
	Slide 99: Data race explanation
	Slide 100: Check your understanding: data races with multiple threads
	Slide 101: Check your understanding: data races with multiple threads

	Wrapup
	Slide 102: Outline

