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Administrivia

• Get started on Scheduling Lab right away!
• Getting Started lab was NOT an accurate representation of workload

• Don’t plan on being able to get schedulers working at the last minute

• Scheduling Lab debugging tip:
• Make your own workloads, do the math on their metrics, then test on them

• That’s the only way to know for sure that your scheduler is right

• We will test on many workloads that have not been provided to you
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Today’s Goals

• Describe where and why concurrency and parallelism are involved 
in computing.

• Be disappointed by performance limits on concurrency.

• Introduce concept of data races as a concurrency problem.
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• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline



Proportional-share scheduling is impossible instantaneously

• Goal: each process gets an 
equal share of processor

• N threads “simultaneously” 
execute on 1/Nth of processor

• Doesn’t work in the real world
• Jobs block on I/O

• OS needs to give out timeslices
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At any time t 
we want to observe:

CPU
Time

T1 T2 T3

t/N



Linux Completely Fair Scheduler (CFS) (2007-2023)

• Track processor time given to 
job so far

• Scheduling decision
• Choose thread with minimum 

processor time to schedule
• “Repairs” illusion of fairness

• Update processor time when the 
scheduling occurs again
• Timeslice expiration is a big 

update
• Blocking I/O results in maintaining 

small processor time
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Time T1
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What if we make shares 
proportional over a longer 
period?



Modern scheduling is not easy

• Getting scheduling right on multicore can be difficult
• No way to know whether a process will be more I/O or CPU bound in the 

future

• Want to keep threads on the same core, but also not waste cores

• In 2016, researchers found issues in Linux scheduler 
implementation that lead to 13%+ slowdown in jobs
• https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-

wasted-cores/
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Modern scheduling challenges

• Fair sharing of CPU time is insufficient
• Maximize cache usage

• Maximize processor affinity

• Reduce energy consumption

• Hybrid systems with heterogeneous processing capabilities

• Particular focus: latency requirements
• Some processes need to respond quickly to new data

• They don’t need more processing time. They need the time more quickly

• Heuristic shortcuts were added to CFS to allow some jobs to jump the 
queue
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Earliest Eligible Virtual Deadline First (EEVDF) (2023-Present)

• Algorithm first described in a 1995 research paper
• Run job with earliest “virtual deadline”
• TLDR: share processor time proportionally, but schedule within that based on latency

• Still divides processor time equally between jobs, like CFS
• Biased by priority of the job. Higher priority means larger share

• Calculate “lag” for each job
• Measurement of how far it’s behind a fair share of processor time
• Negative lag means a job has run more than its fair share already

• Job won’t be eligible to run until lag >= 0
• Lag increases automatically as other jobs run. So time until lag >= 0 can be calculated

• Virtual deadline for job: time until lag >= 0, plus duration it should run for
• Now + timeslice for any jobs below fair share of processor time
• Future + timeslice for any jobs above fair share of processor time
• Where timeslices vary by priority of the job

9https://lwn.net/Articles/925371/
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Multicore scheduling

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries 
to reschedule it on the same CPU
• Cache reuse

• Grouping threads could help or hurt…

• Soft affinity: make this a goal of the system
• Not always achieved

• Hard affinity: allow some jobs to demand guaranteed affinity
• Process/Thread can tell the kernel which core it should be run on
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Single queue multicore scheduling

• Simplest approach to multicore scheduling
• Keep one global queue of all jobs to be run

• Whenever a processor becomes idle, grab the next job from the queue

• Essentially, exactly the single-core strategy, but with more cores

• Downsides
• Odds are that a job will run on a different core next time

• So state for the job won’t be in the per-core cache

• Only one core can modify the queue at a time

• See data race issues we’ll talk about today
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Multi-queue multicore scheduling

• Keep one queue of jobs for each core
• Ensures that jobs stay on a single core when running

• Need to balance work among cores somehow
• Might have one core with many jobs and another that’s idle

• Work stealing: when a processor is idle, look at other processor’s queues 
and take a job from them

• Still undermines affinity goals, but hopefully worth it?

• Complicated to scale out to many cores
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Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out

Average Turnaround Time Shortest Remaining Processing Time

Average Response Time Round Robin

Favoring Important Tasks Priority

Fair CPU Time Usage Linux CFS or EEVDF

Meeting Deadlines EDF or RMS
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• Threads Review

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline



Processes and threads

• A process could have multiple threads
• Each with its own registers and stack
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• Code and 
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables



Thread use case: web server
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• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request



Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides 
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343
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Scheduler

OS 
Kernel

Processes



POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr  the value passed to pthread_exit() by the 

terminating thread is made available in the location referenced by value_ptr.
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Pthread system call example

• What happens when pthread_create() is called in a process?
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Library:

int pthread_create(…) {
   Do some work like a normal function
   Put syscall number into register
   Put args into registers
   Special trap instruction

Get return values from regs
  Do some more work like a normal function
};

Get args from regs
  Do the work to spawn the new thread
  Store return value in %eax

Kernel:

clone (56) syscall on Linux



Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all 

threads of the process.
• Scheduled independently of 

parent

• pthread_join()
• Waits for a particular thread to 

finish

• Can communicate by 
reading/writing (shared) 
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to 

finish

• Can communicate by setting up 
shared memory, pipes, 
reading/writing files, or using 
sockets (network).



Threads Example
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Threads Example

• Reads N from process 
arguments

• Creates N threads

• Each one prints a 
number, then 
increments it, then exits

• Main process waits for 
all of the threads to 
finish
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Threads Example
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Threads Example
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• Left: Every thread has its 
own stack

• Right: Every thread 
shares global memory



Break +
Check your understanding

1. How many threads are in this 
program?

2. Does the main thread join with 
the threads in the same order 
that they were created?

3. Do the threads exit in the 
same order they were 
created?

4. If we run the program again, 
could the result change?
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1. How many threads are in this 
program? Five

2. Does the main thread join with 
the threads in the same order 
that they were created? Yes

3. Do the threads exit in the 
same order they were 
created? Maybe??

4. If we run the program again, 
could the result change?
Possibly!
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Break +
Check your understanding
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• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline



It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?

30



It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?  Take a vacation
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Moore’s Law – CPU transistors counts 

“Number of transistors in a chip 
doubles every 18 months”

How? Transistors are getting 
exponentially smaller!

How small? Today: <7nm!
(maybe smaller, kind of complicated)
< ½ the size of most viruses!
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Processors kept getting faster too
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Power is a major limiting factor on speed

• We could make processors go very fast
• But doing so uses more and more power

• More power means more heat generated
• And chips typically work up to around 100°C

• Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool
• But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed
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Denard Scaling

• Moore’s Law corollary: Denar Scaling
• As transistors get smaller, the power density stays the same

• Which is to say that the power-per-transistor decreases!

• Making the processor clock speed faster uses more power
• But the two balance out for roughly net even power

• So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:
• In two years, new hardware would run the existing software twice as fast
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Then they stopped getting faster

36

~2006: Leakage 
current becomes 
significant

Now smaller 
transistors doesn’t 
mean lower power



So… now what?

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better by 
waiting for clock speeds to increase.

How do we continue to get better computation performance?
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Exploit parallelism!
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Update: 2010-2021
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Still growing!

Stable

Stable

Small 
improvement

Still growing 
for servers



Key question: how do we use all these cores?
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Break + Parallelism Analogy

• I want to peel 100 potatoes as fast as possible:

• I can learn to peel potatoes faster

OR

• I can get 99 friends to help me

• Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!
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• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline



Parallelism versus Concurrency Two processes A and B
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BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution



Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active
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B

A
OR

time time

OR

time



Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads
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Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads
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Model of a processor
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CPU

Instructions,
Registers,
Memory

Updated
Registers 
and
Memory

Instruction 
Fetch

Instruction 
Decode

Execute Memory Writeback

CPU



But instructions don’t always have to be executed in order

movq  (%rdi), %rax
movq  (%rsi), %rdx
movq  %rdx, (%rdi)
movq  %rax, (%rsi)
addq  %rcx, %rbx

We can apply the multiprogramming approach of executing this 
addq while the movq is waiting on memory.
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Doesn’t have to go after the 
movq instructions because it 
uses different registers



Out-of-order processors

Fetch many 
instructions at 
once!

Read register file, 
handle data 
dependencies with 
register renaming

Reorder instructions 
to make best use of 
CPU Commit, or 

“write back” 
data to memory 
and regfile in 
the order the 
programmer 
expects

Generally: looks for independent 
instructions it can execute early



Out-of-order processors obey normal execution results

• Initial thoughts on out-of-order execution
•

• The processor could be executing my program in order it feels like?!!

• How do I possibly reason about anything?

• Answer: the processor promises to have the same results as if 
things were done in the normal order.
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CPU

Instructions,
Registers,
Memory

Updated
Registers 
and
Memory



Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might 
mess something up for you.

• What will Thread 1 print?
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while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2



Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might 
mess something up for you.

• What will Thread 1 print? Could be 42. Could be 0.
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while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

This can be 
addressed with 
memory barriers



Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads
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Task parallelism use case

Run Chrome and Spotify simultaneously
• Each are separate programs
• Each has a different memory space
• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,
but hardware can make it actually simultaneous
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Multicore Systems (in pictures)
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Core 0

Control

Datapath
RIP

Registers

(ALU)

Memory

Bytes

Processor 0 
Memory 
Accesses

Core 1

Control

Datapath
RIP

Registers

(ALU)

Processor 1 
Memory 
Accesses

Actually parallel!



Multicore Systems (in words)

• A computer system with at least 2 processor cores
• Each core has its own registers
• Each core executes independent instruction streams
• Cores share the same system memory

• But usually use different parts of it
• Communication possible through memory accesses

• Deliver high throughput for independent jobs via task-level 
parallelism
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Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads
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Multithreading processors

Basic idea: Processor resources are expensive and should not be left 
idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while waiting for 

cache miss

• Cost of thread context switch must be much less than cache miss latency

• Switching threads is less expensive than processes because they share 
memory
• Cache is still valid

• Page Table for virtual memory doesn’t have to change

58



Memory

Bytes

Processor 

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

•  Two copies of RIP and Registers inside processor hardware

•  Looks like two processors to software
  (hardware thread 0, hardware thread 1)

•  Control logic decides which thread to execute an instruction
   from next (concurrent, but NOT parallel)
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Multithreading processor



Multithreading versus Multicore

• Multithreading => Better utilization
• ≈5% more hardware for ≈1.3x better performance?

• Gets to share ALUs, caches, memory controller

• Multicore => Duplicate cores
• ≈50% more hardware for ≈2x better performance?

• Share some caches (L2 cache, L3 cache), memory controller

• Modern processors might do both!
• Multiple cores with multiple threads per core

• Not all do though, some focus on better single-thread performance
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Multithreading, multicore processors

• Combine capabilities 
of both designs

• Run two processes 
each with two threads

• Or run one process 
with four threads
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Memory

Bytes

Processor 0 
Memory 
Accesses

Processor 1 
Memory 
Accesses

Processor 

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Processor 

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1



Clearing up vocabulary

• Core: computation unit within the CPU
• ALU, Registers, etc.

• Capable of running one or more threads

• CPU (processor): the chip that goes in your computer
• Contains one or more cores

• Computers could have multiple CPU chips as well

• Sometimes people equate processors and cores, which is 
confusing
• I’ll definitely do it by mistake at some point if I haven’t already. Sorry!
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My desktop computer
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4 total cores
Each capable of 2 threads

≈ 8 jobs at once



Quad core processor

• One thread per core

• 3-way superscalar pipeline
• L1 Cache

• 32 KiB 2-way set associative data cache
• 48 KiB 3-way set associative instruction cache
• Per core

• L2 Cache
• 512 KiB to 4 MiB (shared)

• RAM 1-4 GB

$35
Literally all computers 
are doing parallelism 
these days

Raspberry Pi 4
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Other modern multicore designs

• Heterogeneous 
multicore
• Not all cores are 

necessarily identical

• Enables scheduler to 
make complicated 
choices of performance 
or energy savings
• At the cost of a 

complicated scheduler…
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Back up to the OS perspective

• Modern operating systems must manage concurrency
• Both parallel operation and interleaving operations

• Concurrency is valuable
• Performance gains are the reason
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Break + Real-world Connection

• How many cores/threads does your processor support?
• Windows: Task Manager -> Performance -> CPU

• MacOS: About this Mac -> System Report -> Hardware

• Apple ARM M processors only do 1 thread per core

• Linux: In terminal: lscpu

• Android/iOS: You’ll need to google it
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• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline



Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

69



Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

70



Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

95 s 5 s

Speedup Example
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95 s 5 s

Speedup from improvements
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Speedup with
Improvement

=

Execution time without 
improvement

Execution time with 
improvement

 

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s:  Speedup = 100/96  = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053
 

The impact of a performance improvement is relative 
to the importance of the part being improved!



Speedup  =  

 

 F = Fraction of execution time speed up
 S = Scale of improvement

(1 - F)   +   F
SNot improved part Improved part

1

1
0.75 + 0.25

2

1
0.75 + 0.125

= = 1.14

Example: 2x improvement to 25% of the program

Equivalent to 
prior equationAmdahl’s Law
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Parallel speedup example Speedup with 
improvement

=  
1

1 − 𝐹 + (𝐹/𝑆)

74

• Consider an improvement which runs 20 times faster but is only 
usable 15% of the time

Speedup with 
improvement

=  
1

0.85 + (0.15/20) = 1.166

Speedup with 
improvement

=  
1

0.75 + (0.25/20) = 1.311

• What if it’s usable 25% of the time?

Nowhere near 
20x speedup!



Amdahl’s (heartbreaking) Law (in pictures)

• The amount of speedup that can be achieved through parallelism is 
limited by the non-parallel portion of your program!
• And every program has at least some non-parallel parts
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Parallel 
portion

Serial 
portion

Time

Number of Processors
1 2 3 4 5

Sp
e

e
d

u
p

Number of Processors



Amdahl’s (heartbreaking) Law (in words)

• Amdahl’s Law tells us that to achieve linear speedup with more 
processors:

• none of the original computation can be serial (non-parallelizable)

• To get a speedup of 90 from 100 processors, the percentage of 
the original program that could be scalar would have to be 0.1% 
or less

  Speedup  =  1/(.001 + .999/100)  =  90.99
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Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?
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Speedup with 
improvement

=  
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%



Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?
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Speedup with 
improvement

=  
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Speedup = 1 / [ (1 - F) + (F/S) ]

2 = 1 / [ (1 - 0.5) + (0.5/S)]

S = 0.5 / ((1/2) – 0.5) = ∞

The square root would need to decrease 
to nothing before you got 2x speedup
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• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline



Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?
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Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

 

count could end up with a final value of 1 or 2. How?

81

Thread 1:

void main(){
  count += 1;
}

Thread 2:

void main(){
  count += 1;
}



Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

 

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.
82

Thread 1:

void thread_fn(){

  mov $0x8049a1c, %edi

  mov (%edi), %eax

  add $0x1, %eax

  mov %eax, (%edi)

}

Thread 2:

void thread_fn(){

  mov $0x8049a1c, %edi

  mov (%edi), %eax

  add $0x1, %eax

  mov %eax, (%edi)

}

Assuming “count” is 
in memory location 
0x8049a1c



Data race example – Count = 2
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Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax ???

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Before this code starts



Data race example – Count = 2
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Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Assuming “count” is 
in memory location 
pointed to by %edi



Data race example – Count = 2

85

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Assuming “count” is 
in memory location 
pointed to by %edi



Data race example – Count = 2
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Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 1

Assuming “count” is 
in memory location 
pointed to by %edi



Data race example – Count = 2
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Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1

Assuming “count” is 
in memory location 
pointed to by %edi



Data race example – Count = 2

88

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 2

Memory

Variable Value

count 1

Assuming “count” is 
in memory location 
pointed to by %edi



Data race example – Count = 2
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Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 2

Memory

Variable Value

count 2

Assuming “count” is 
in memory location 
pointed to by %edi



Theads do not have guaranteed ordering

BUT, there’s no guarantee that the instructions occur in that order!

Since the two threads are running in parallel, the instructions could 
be interleaved in any way
(both threads are really running simultaneously)
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Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax ???

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0

Before this code starts

Remember, each thread has its 
own separate registers!



Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax ???

Memory

Variable Value

count 0



Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax 0

Memory

Variable Value

count 0



Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 0



Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax 0

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1



Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1



Data race example – Count = 1
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Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Time

Assuming “count” is 
in memory location 
pointed to by %edi

Thread 1

Register Value

%eax 1

Thread 2

Register Value

%eax 1

Memory

Variable Value

count 1



Data race comparison

98

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Final value of count: 2 Final value of count: 1

Assuming “count” is 
in memory location 
pointed to by %edi



Data race explanation

• Thread scheduling is non-deterministic
• There is no guarantee that any thread will go first or last or 

not be interrupted at any point
 
• If different threads write to the same variable

• The final value of the variable is also non-deterministic
• This is a data race
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Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

100

Thread 1:

void main(){
  count += 2;
}

Thread 2:

void main(){
  count -= 2;
}

Thread 3:

void main(){
  count += 3;
}



Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?  -2, 0, 1, 2, 3, 5

How are you supposed to reason about this?!
Need mechanisms for sharing memory.
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Thread 1:

void main(){
  count += 2;
}

Thread 2:

void main(){
  count -= 2;
}

Thread 3:

void main(){
  count += 3;
}
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• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline
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