
Lecture 04:
Advanced Scheduling

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Wang Yi (Uppsala), and UC Berkeley CS149 and CS162

Credit: Andy Mauragis

Today’s Goals

• Describe real-time systems

• Understand scheduling policies based on deadlines

• Explore modern operating system schedulers

2

3

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Normal OSes don’t cut it for all use cases

• Some environments need very specialized systems
• Flight controls

• Autonomous vehicles

• Space exploration

• In each of these scenarios
• Computer failures are unacceptable

• Humans can’t intervene to resolve issues

• We’re going to need a computer system with performance guarantees

4

Example: Pathfinder

5

Radiation-hardened
IBM CPU

6

Pathfinder had periodic tasks that must be executed

9

Tasks to execute

time

Scheduler
(kernel)Manage

Bus

Comms

Weather

Report

Comms
Manage

Bus

Weather

Report

Real-Time Operating Systems

• Goal: guaranteed performance
• Meet deadlines even if it means being slow

• Limit how bad the worst case is

• Usually mathematically

• It’s not about speed, it’s about guaranteed performance
• Good turnaround and response time are nice, but insufficient

• Predictability is key to providing a guarantee

• RTOS is actually a whole other class worth of material
• Last taught by Peter Dinda in 2005…

10

Types of real-time schedulers

• Hard real-time:
• Meet all deadlines

• Otherwise decline to accept the job

• Ideally: determine in advance if deadlines will be met

• Soft real-time
• Attempt to meet deadlines with high probability

• Often good enough for many non-safety-critical applications

• Quadcopter software

11

Real-time jobs

• Preemptable jobs with known deadlines (D) and computation (C)
• Computation duration here are the worst-case execution times

• Computation MUST complete before deadline and start after arrival

• Can happen anywhere between those boundaries though

12

Job
arrives

Deadline

Computation

Prior scheduling policies don’t apply here

13

Round Robin example
Need to
account for
deadlines!

Types of real-time jobs

• Aperiodic
• Jobs we are already accustomed to
• Unpredictable start times, no deadlines (not real-time)

• Sporadic
• Unpredictable start time, has a deadline
• Must decide feasibility at runtime and either accept or reject job

• Periodic (we’ll focus on these)
• Recurs at a certain time interval
• Deadline for completion is before the start of the next time interval

• i.e. deadline equals the period
• Can decide feasibility of schedule at compile-time

14

Periodic real-time jobs

• Repeat at their deadline
• New work cannot be started until the deadline

• Work can take place anytime between deadlines

• But MUST finish before the deadline hits

15

Job
arrives

Deadline
and

new arrival

Computation Computation Compu tation

Deadline
and

new arrival

Deadline
and

new arrival

Break + xkcd

16https://xkcd.com/2433/

17

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

18

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

19

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

20

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

21

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Schedulability test for EDF

• Guarantees schedule feasibility if total load is not more than 100%
• All deadlines will be met

• For n tasks with computation time C and deadline (period) D
• A feasible schedule exists if utilization is less than or equal to one:

𝑈 =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

22

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

23

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

24

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

1/3 + 2/5 + 4/15 = 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

25

0 5 10 15

1/3 + 2/5 + 4/15 = 1

Can’t start a job before its period

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

26

0 5 10 15

Earliest deadline changes,
preempting Job B

1/3 + 2/5 + 4/15 = 1

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

27

0 5 10 15

Schedule repeats at least common multiple

1/3 + 2/5 + 4/15 = 1

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

28

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

29

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

1/2 + 1/3 + 1/4 = 1.08

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

30

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1

Missed deadline!

1/2 + 1/3 + 1/4 = 1.08

A

B

C

Break + Thinking

• Where do job deadlines come from? Provide an example.

31

Break + Thinking

• Where do job deadlines come from? Provide an example.

• Real-world constraints!

• Autonomous vehicle:

• “If I don’t finish the detection algorithm by time N,
then I will no longer be able to stop in time to avoid what it detects.”

• In this example, deadline might vary with velocity,
or maybe we just choose a deadline based on fastest velocity.

32

33

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Earliest Deadline First tradeoffs

Good qualities

• Simple concept and simple schedulability test

• Excellent CPU utilization (can use 100% of the CPU)

Bad qualities

• Hard to implement in practice
• Need to constantly recalculate task priorities
• CPU time spent in scheduler needs to be counted against load

• Unstable: Hard to predict which job will miss deadline
• Utilization was greater than 1, so we knew there was a problem
• But we had to work out the whole schedule to see Job C missed

34

Rate Monotonic Scheduling (RMS)

• Priority scheduling

• Assign fixed priority of 1/Period for each job
• Makes the scheduling algorithm simple and stable

• Deterministic failures: only lowest priority jobs might miss deadlines

• If any fixed-priority scheduling algorithm can schedule a workload,
So can Rate Monotonic Scheduling
• There could be dynamic-priority systems that beat it

• But they would be more complicated and take more cycles to run

35

Rate Monotonic Scheduling example

• Schedule the following workload with RMS
• Job A: period 3, computation 1 -> Priority 1/3

• Job B: period 5, computation 2 -> Priority 1/5

36

0 5 10 15

A

B

Schedulability test for RMS

• Schedulability is more complicated for RMS unfortunately
• For a workload of n jobs with computation time C and period D

𝑈 =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 𝑛 ∗ (2

1
𝑛 − 1)

• U(1) = 1.0

• U(2) = 0.828

• U(3) = 0.779

 …

• U(∞) = 0.693

37

Lower Bound on schedulability

RMS schedulability test is conservative

𝑈 =

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 𝑛 ∗ (2

1
𝑛 − 1)

• 0 ≤ 𝑈 ≤ 𝑛 ∗ (2
1

𝑛 − 1)
• Schedulable! (so less than 69% is always schedulable)

• 𝑛 ∗ (2
1

𝑛 − 1) < 𝑈 ≤ 1
• Maybe schedulable

• 1 < 𝑈
• Not schedulable

38

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

39

0 5 10 15

A

B

C

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

40

0 5 10 15

1/3 + 2/5 + 4/15 = 1

U = 1
Maybe schedulable!

A

B

C

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1 -> Highest priority

• Job B: period 5, computation 2 -> Middle priority

• Job C: period 15, computation 4 -> Lowest priority

41

0 5 10 15

1/3 + 2/5 + 4/15 = 1

U = 1
Maybe schedulable!

A

B

C

Rate Monotonic Scheduling tradeoffs

Upsides
• Still conceptually simple

• Easy to implement

• Stable (lower priority jobs will fail to meet deadlines in overload)

Downsides
• Lower CPU utilization

• Might not be able to utilize more than 70% of the processor

• Non-precise schedulability analysis

42

Break + Open Question

• How would you handle sporadic jobs in these systems?
• Unpredictable start time, has a deadline, not repeated

43

Break + Open Question

• How would you handle sporadic jobs in these systems?
• Unpredictable start time, has a deadline, not repeated

• Must decide feasibility at runtime and either accept or reject job
• Calculate new Utilization accounting for the additional job

• Determine whether the schedule will definitely (or maybe) work

• Schedule or reject the job

• If scheduled, works just like any other job

• Either EDF based on deadline of the job

• Or given an RMS priority, based on period (duration)

44

45

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Priority scheduling policies

• Systems may try to set priorities according to some policy goal

• MLFQ Example:
• Give interactive jobs higher priority than long calculations

• Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness:
• elevate priority of threads that don’t get CPU time

(ad-hoc, bad if system overloaded)

46

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Linux O(1) scheduler (Linux 2.6, 2003-2007)

• Goals
• Keep the runtime of the scheduler itself short

• Avoid O(n) algorithms
• Instead, only adjust a single job when it is swapped

• Predictable algorithm
• Identify interactive versus noninteractive processes with heuristics

• Processes with long average sleep time get a priority boost

• Note my machines right now:
• Ubuntu VM: 332 processes (867 threads)
• Windows: 224 processes (2591 threads)
• MacOS: 430 processes (2249 threads)
• Major concern: many processes mean O(n) could be long…

47

O(1) scheduler: scheduling algorithm

• Find the highest priority run queue that’s not empty

• Remove and run the first job from it

48

139

138

…

2

1

0Low

High

P
ri
o
ri
ty

Active Run Queues

139

138

…

2

1

0Low

High

P
ri
o
ri
ty

Expired Run Queues

O(1) scheduler: when swapping out a job

• Always recalculate job priority
• Heuristics: interactivity guess, process “niceness”, possibly other measurements

• If job has not expired its quota, place at end of correct active queue (round-robin at a priority level)

• If job has expired its quota, place at end of correct expired queue
• When all jobs are gone from the active queue, swap which queue is “active” and which is “expired”

49

139

138

…

2

1

0Low

High

P
ri
o
ri
ty

Active Run Queues

139

138

…

2

1

0Low

High

P
ri
o
ri
ty

Expired Run Queues

• Issue with O(1) scheduler:

• Determining priority is
challenging

• “Complex heuristics” make
decisions hard to understand
at runtime

Priorities can lead to starvation

• In priority-based schedulers we’ve seen so far:
• Always prefer to give the CPU to a prioritized job
• Non-prioritized jobs may never get to run

• So they need some special mechanism to occasionally run them
• “Time quota” at a priority level, or periodic “resets”

• But priorities were a means, not an end

• The goal was to serve a mix of CPU-bound, I/O bound, and Interactive
jobs effectively on common hardware
• Give the I/O bound ones enough CPU to issue their next file operation and wait

(on those slow discs)
• Give the interactive ones enough CPU to respond to an input and wait (on those

slow humans)
• Let the CPU bound ones grind away without too much disturbance

50

Idea: proportional-share scheduling

• Many of the policies we’ve studied always prefer to give CPU to a
prioritized job

• Instead, we can share the CPU proportionally
• Give each job a portion of the CPU according to its priority

• Low-priority jobs get to run less often

• But all jobs can at least make progress (no starvation)

51

First attempt: lottery scheduling

• Give out “tickets” according to proportion each job should receive

• Every quantum:
• Draw one ticket at random
• Schedule that job to run

• If there are N jobs,
probability of pick a job is:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑖)

σ𝑗=0
𝑛−1 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑗)

• Definitely not suitable for real-time systems!
• Probabilistic in nature

52

1

10

Better idea: stride scheduling

• Same idea, but remove the random element

• Give each job a stride number inversely proportional to priority
• Priority: A=100, B=50, C=10

• Stride: A=1, B=2, C=10

• Scheduler
• Pick job with lowest cumulative strides and run it

• Increment its cumulative strides by its stride number

• Essentially: low-stride (high-ticket) jobs get run more often
• But starvation is no longer possible

53

𝑠𝑡𝑟𝑖𝑑𝑒 =
𝑁

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

Where N is some
arbitrary large number
This example: 100

Stride scheduling example

• Workload
• Priority: A=100, B=50, C=10

• Stride: A=1, B=2, C=10

54

Step

Dynamic Priority (a.k.a. Pass)

ResultA B C

1 0 0 0 A

2 1 0 0 B

3 1 2 0 C

4 1 2 10 A

5 2 2 10 A

6 3 2 10 B

7 3 4 10 A

Proportional-share scheduling is impossible instantaneously

• Goal: each process gets an
equal share of processor

• N threads “simultaneously”
execute on 1/Nth of processor

• Doesn’t work in the real world
• Jobs block on I/O

• OS needs to give out timeslices

55

At any time t
we want to observe:

CPU
Time

T1 T2 T3

t/N

Linux Completely Fair Scheduler (CFS) (2007-2023)

• Track processor time given to
job so far

• Scheduling decision
• Choose thread with minimum

processor time to schedule
• “Repairs” illusion of fairness

• Update processor time when the
scheduling occurs again
• Timeslice expiration is a big

update
• Blocking I/O results in maintaining

small processor time

56

CPU
Time T1

T2
T3

t/N

What if we make shares
proportional over a longer
period?

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

57

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?

58

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?
• Timeslice needs to stay much greater than context switch time

59

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Constraint 2: avoid excessive overhead
• Don’t want to spend all our time context switching if there are many jobs

• Set a minimum length for timeslices

• Quanta = max(Target_latency/N, minimum_length)

60

CFS priorities are applied as “virtual runtime”

• Virtual runtime doesn’t have to
match wall time

• Create a conversion from actual
runtime to virtual runtime
• High priority jobs:

1 second real-time
-> 0.5 seconds virtual-time

• Low priority jobs:

1 second real-time
-> 2 seconds virtual-time

• Scheduler makes decisions solely
based on equalizing virtual runtime

61

Physical
CPU Time B

A

Virtual
CPU Time

B A

B is higher
priority than A

Multicore scheduling

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries
to reschedule it on the same CPU
• Cache reuse

• Grouping threads could help or hurt…

• Implementation-wise, helpful to have per-core scheduling data
structures
• Each core can make its own scheduling decisions

• Can steal work from other cores, if nothing to do

62

CFS updates over time

• Getting scheduling right on multicore can be difficult
• No way to know whether a process will be more I/O or CPU bound in the

future

• Want to keep threads on the same core, but also not waste cores

• In 2016, researchers found issues in Linux scheduler
implementation that lead to 13%+ slowdown in jobs
• https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-

wasted-cores/

63

https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/
https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/

Modern scheduling challenges

• Fair sharing of CPU time is insufficient
• Maximize cache usage

• Maximize processor affinity

• Reduce energy consumption

• Hybrid systems with heterogeneous processing capabilities

• Particular focus: latency requirements
• Some processes need to respond quickly to new data

• They don’t need more processing time. They need the time more quickly

• Heuristic shortcuts were added to CFS to allow some jobs to jump the
queue

64

Earliest Eligible Virtual Deadline First (EEVDF) (2023-Present)

• Algorithm first described in a 1995 research paper
• Run job with earliest “virtual deadline”
• TLDR: share processor time proportionally, but schedule within that based on latency

• Still divides processor time equally between jobs, like CFS
• Biased by priority of the job. Higher priority means larger share

• Calculate “lag” for each job
• Measurement of how far it’s behind a fair share of processor time
• Negative lag means a job has run more than its fair share already

• Job won’t be eligible to run until lag >= 0
• Lag increases automatically as other jobs run. So time until lag >= 0 can be calculated

• Virtual deadline for job: time until lag >= 0, plus duration it should run for
• Now + timeslice for any jobs below fair share of processor time
• Future + timeslice for any jobs above fair share of processor time
• Where timeslices vary by priority of the job

65https://lwn.net/Articles/925371/

https://lwn.net/Articles/925371/

Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out

Average Turnaround Time Shortest Remaining Processing Time

Average Response Time Round Robin

Favoring Important Tasks Priority

Fair CPU Time Usage Linux CFS or EEVDF

Meeting Deadlines EDF or RMS

66

67

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

	Default Section
	Slide 1: Lecture 04: Advanced Scheduling

	Goals
	Slide 2: Today’s Goals

	Real-Time OS
	Slide 3: Outline
	Slide 4: Normal OSes don’t cut it for all use cases
	Slide 5: Example: Pathfinder
	Slide 6
	Slide 9: Pathfinder had periodic tasks that must be executed
	Slide 10: Real-Time Operating Systems
	Slide 11: Types of real-time schedulers
	Slide 12: Real-time jobs
	Slide 13: Prior scheduling policies don’t apply here
	Slide 14: Types of real-time jobs
	Slide 15: Periodic real-time jobs
	Slide 16: Break + xkcd

	EDF
	Slide 17: Outline
	Slide 18: Earliest Deadline First (EDF) Scheduling
	Slide 19: Earliest Deadline First (EDF) Scheduling
	Slide 20: Earliest Deadline First (EDF) Scheduling
	Slide 21: Earliest Deadline First (EDF) Scheduling
	Slide 22: Schedulability test for EDF
	Slide 23: Check your understanding
	Slide 24: Check your understanding
	Slide 25: Check your understanding
	Slide 26: Check your understanding
	Slide 27: Check your understanding
	Slide 28: Check your understanding
	Slide 29: Check your understanding
	Slide 30: Check your understanding
	Slide 31: Break + Thinking
	Slide 32: Break + Thinking
	Slide 33: Outline
	Slide 34: Earliest Deadline First tradeoffs
	Slide 35: Rate Monotonic Scheduling (RMS)
	Slide 36: Rate Monotonic Scheduling example
	Slide 37: Schedulability test for RMS
	Slide 38: RMS schedulability test is conservative
	Slide 39: Check your understanding
	Slide 40: Check your understanding
	Slide 41: Check your understanding
	Slide 42: Rate Monotonic Scheduling tradeoffs
	Slide 43: Break + Open Question
	Slide 44: Break + Open Question

	Modern OS
	Slide 45: Outline
	Slide 46: Priority scheduling policies
	Slide 47: Linux O(1) scheduler (Linux 2.6, 2003-2007)
	Slide 48: O(1) scheduler: scheduling algorithm
	Slide 49: O(1) scheduler: when swapping out a job
	Slide 50: Priorities can lead to starvation
	Slide 51: Idea: proportional-share scheduling
	Slide 52: First attempt: lottery scheduling
	Slide 53: Better idea: stride scheduling
	Slide 54: Stride scheduling example
	Slide 55: Proportional-share scheduling is impossible instantaneously
	Slide 56: Linux Completely Fair Scheduler (CFS) (2007-2023)
	Slide 57: Linux CFS: responsiveness and throughput
	Slide 58: Linux CFS: responsiveness and throughput
	Slide 59: Linux CFS: responsiveness and throughput
	Slide 60: Linux CFS: responsiveness and throughput
	Slide 61: CFS priorities are applied as “virtual runtime”
	Slide 62: Multicore scheduling
	Slide 63: CFS updates over time
	Slide 64: Modern scheduling challenges
	Slide 65: Earliest Eligible Virtual Deadline First (EEVDF) (2023-Present)

	Wrapup
	Slide 66: Summary on schedulers
	Slide 67: Outline

