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Today’s Goals

• Describe real-time systems

• Understand scheduling policies based on deadlines

• Explore modern operating system schedulers
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• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline



Normal OSes don’t cut it for all use cases

• Some environments need very specialized systems
• Flight controls

• Autonomous vehicles

• Space exploration

• In each of these scenarios
• Computer failures are unacceptable

• Humans can’t intervene to resolve issues

• We’re going to need a computer system with performance guarantees
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Example: Pathfinder
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Pathfinder had periodic tasks that must be executed
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Real-Time Operating Systems

• Goal: guaranteed performance
• Meet deadlines even if it means being slow

• Limit how bad the worst case is

• Usually mathematically

• It’s not about speed, it’s about guaranteed performance
• Good turnaround and response time are nice, but insufficient

• Predictability is key to providing a guarantee

• RTOS is actually a whole other class worth of material
• Last taught by Peter Dinda in 2005…
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Types of real-time schedulers

• Hard real-time:
• Meet all deadlines

• Otherwise decline to accept the job

• Ideally: determine in advance if deadlines will be met

• Soft real-time
• Attempt to meet deadlines with high probability

• Often good enough for many non-safety-critical applications

• Quadcopter software
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Real-time jobs

• Preemptable jobs with known deadlines (D) and computation (C)
• Computation duration here are the worst-case execution times

• Computation MUST complete before deadline and start after arrival

• Can happen anywhere between those boundaries though
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Prior scheduling policies don’t apply here
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Types of real-time jobs

• Aperiodic
• Jobs we are already accustomed to
• Unpredictable start times, no deadlines (not real-time)

• Sporadic
• Unpredictable start time, has a deadline
• Must decide feasibility at runtime and either accept or reject job

• Periodic (we’ll focus on these)
• Recurs at a certain time interval
• Deadline for completion is before the start of the next time interval

• i.e. deadline equals the period
• Can decide feasibility of schedule at compile-time
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Periodic real-time jobs

• Repeat at their deadline
• New work cannot be started until the deadline

• Work can take place anytime between deadlines

• But MUST finish before the deadline hits
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Break + xkcd
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• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline



Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)
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• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)
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• Highest priority given to task with soonest deadline
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Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)
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Schedulability test for EDF

• Guarantees schedule feasibility if total load is not more than 100%
• All deadlines will be met

• For n tasks with computation time C and deadline (period) D
• A feasible schedule exists if utilization is less than or equal to one:

𝑈 =  

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 1
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Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1
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Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1
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Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1
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Break + Thinking

• Where do job deadlines come from? Provide an example.
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Break + Thinking

• Where do job deadlines come from? Provide an example.

• Real-world constraints!

• Autonomous vehicle:

• “If I don’t finish the detection algorithm by time N,
then I will no longer be able to stop in time to avoid what it detects.”

• In this example, deadline might vary with velocity,
or maybe we just choose a deadline based on fastest velocity.
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• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler
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Earliest Deadline First tradeoffs

Good qualities

• Simple concept and simple schedulability test

• Excellent CPU utilization (can use 100% of the CPU)

Bad qualities

• Hard to implement in practice
• Need to constantly recalculate task priorities
• CPU time spent in scheduler needs to be counted against load

• Unstable: Hard to predict which job will miss deadline
• Utilization was greater than 1, so we knew there was a problem
• But we had to work out the whole schedule to see Job C missed

34



Rate Monotonic Scheduling (RMS)

• Priority scheduling

• Assign fixed priority of 1/Period for each job
• Makes the scheduling algorithm simple and stable

• Deterministic failures: only lowest priority jobs might miss deadlines

• If any fixed-priority scheduling algorithm can schedule a workload,
So can Rate Monotonic Scheduling
• There could be dynamic-priority systems that beat it

• But they would be more complicated and take more cycles to run
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Rate Monotonic Scheduling example

• Schedule the following workload with RMS
• Job A: period 3, computation 1 -> Priority 1/3

• Job B: period 5, computation 2 -> Priority 1/5
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Schedulability test for RMS

• Schedulability is more complicated for RMS unfortunately
• For a workload of n jobs with computation time C and period D

𝑈 =  

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 𝑛 ∗ (2

1
𝑛 − 1)

• U(1) = 1.0

• U(2) = 0.828

• U(3) = 0.779

   …

• U(∞) = 0.693
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RMS schedulability test is conservative

𝑈 =  

𝑖=1

𝑛
𝐶𝑖

𝐷𝑖
≤ 𝑛 ∗ (2

1
𝑛 − 1)

• 0 ≤ 𝑈 ≤ 𝑛 ∗ (2
1

𝑛 − 1)
• Schedulable! (so less than 69% is always schedulable)

• 𝑛 ∗ (2
1

𝑛 − 1) < 𝑈 ≤ 1
• Maybe schedulable

• 1 < 𝑈
• Not schedulable
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Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4
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Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1  -> Highest priority

• Job B: period 5, computation 2  -> Middle priority

• Job C: period 15, computation 4  -> Lowest priority
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Rate Monotonic Scheduling tradeoffs

Upsides
• Still conceptually simple

• Easy to implement

• Stable (lower priority jobs will fail to meet deadlines in overload)

Downsides
• Lower CPU utilization

• Might not be able to utilize more than 70% of the processor

• Non-precise schedulability analysis
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Break + Open Question

• How would you handle sporadic jobs in these systems?
• Unpredictable start time, has a deadline, not repeated
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Break + Open Question

• How would you handle sporadic jobs in these systems?
• Unpredictable start time, has a deadline, not repeated

• Must decide feasibility at runtime and either accept or reject job
• Calculate new Utilization accounting for the additional job

• Determine whether the schedule will definitely (or maybe) work

• Schedule or reject the job

• If scheduled, works just like any other job

• Either EDF based on deadline of the job

• Or given an RMS priority, based on period (duration)
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• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler
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Priority scheduling policies

• Systems may try to set priorities according to some policy goal

• MLFQ Example:
• Give interactive jobs higher priority than long calculations

• Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness:
• elevate priority of threads that don’t get CPU time

(ad-hoc, bad if system overloaded)
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Linux O(1) scheduler (Linux 2.6, 2003-2007)

• Goals
• Keep the runtime of the scheduler itself short

• Avoid O(n) algorithms
• Instead, only adjust a single job when it is swapped

• Predictable algorithm
• Identify interactive versus noninteractive processes with heuristics

• Processes with long average sleep time get a priority boost

• Note my machines right now:
• Ubuntu VM: 332 processes (867 threads)
• Windows: 224 processes (2591 threads)
• MacOS: 430 processes (2249 threads)
• Major concern: many processes mean O(n) could be long…
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O(1) scheduler: scheduling algorithm

• Find the highest priority run queue that’s not empty

• Remove and run the first job from it
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O(1) scheduler: when swapping out a job

• Always recalculate job priority
• Heuristics: interactivity guess, process “niceness”, possibly other measurements

• If job has not expired its quota, place at end of correct active queue (round-robin at a priority level)

• If job has expired its quota, place at end of correct expired queue
• When all jobs are gone from the active queue, swap which queue is “active” and which is “expired”
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• Issue with O(1) scheduler:

• Determining priority is 
challenging

• “Complex heuristics” make 
decisions hard to understand 
at runtime



Priorities can lead to starvation

• In priority-based schedulers we’ve seen so far:
• Always prefer to give the CPU to a prioritized job
• Non-prioritized jobs may never get to run

• So they need some special mechanism to occasionally run them
• “Time quota” at a priority level, or periodic “resets”

• But priorities were a means, not an end

• The goal was to serve a mix of CPU-bound, I/O bound, and Interactive 
jobs effectively on common hardware
• Give the I/O bound ones enough CPU to issue their next file operation and wait 

(on those slow discs)
• Give the interactive ones enough CPU to respond to an input and wait (on those 

slow humans)
• Let the CPU bound ones grind away without too much disturbance
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Idea: proportional-share scheduling

• Many of the policies we’ve studied always prefer to give CPU to a 
prioritized job

• Instead, we can share the CPU proportionally
• Give each job a portion of the CPU according to its priority

• Low-priority jobs get to run less often

• But all jobs can at least make progress (no starvation)
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First attempt: lottery scheduling

• Give out “tickets” according to proportion each job should receive

• Every quantum:
• Draw one ticket at random
• Schedule that job to run

• If there are N jobs,
probability of pick a job is:

 
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑖)

σ𝑗=0
𝑛−1 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑗)

• Definitely not suitable for real-time systems!
• Probabilistic in nature
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Better idea: stride scheduling

• Same idea, but remove the random element

• Give each job a stride number inversely proportional to priority
• Priority: A=100, B=50, C=10

• Stride: A=1, B=2, C=10

• Scheduler
• Pick job with lowest cumulative strides and run it

• Increment its cumulative strides by its stride number

• Essentially: low-stride (high-ticket) jobs get run more often
• But starvation is no longer possible
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Stride scheduling example

• Workload
• Priority: A=100, B=50, C=10

• Stride: A=1, B=2, C=10
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Step

Dynamic Priority (a.k.a. Pass)

ResultA B C

1 0 0 0 A

2 1 0 0 B

3 1 2 0 C

4 1 2 10 A

5 2 2 10 A

6 3 2 10 B

7 3 4 10 A



Proportional-share scheduling is impossible instantaneously

• Goal: each process gets an 
equal share of processor

• N threads “simultaneously” 
execute on 1/Nth of processor

• Doesn’t work in the real world
• Jobs block on I/O

• OS needs to give out timeslices
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Linux Completely Fair Scheduler (CFS) (2007-2023)

• Track processor time given to 
job so far

• Scheduling decision
• Choose thread with minimum 

processor time to schedule
• “Repairs” illusion of fairness

• Update processor time when the 
scheduling occurs again
• Timeslice expiration is a big 

update
• Blocking I/O results in maintaining 

small processor time
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Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs
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Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?
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Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?
• Timeslice needs to stay much greater than context switch time
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Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Constraint 2: avoid excessive overhead
• Don’t want to spend all our time context switching if there are many jobs

• Set a minimum length for timeslices

• Quanta = max(Target_latency/N, minimum_length)
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CFS priorities are applied as “virtual runtime”

• Virtual runtime doesn’t have to 
match wall time

• Create a conversion from actual 
runtime to virtual runtime
• High priority jobs:

1 second real-time
-> 0.5 seconds virtual-time

• Low priority jobs:

1 second real-time
-> 2 seconds virtual-time

• Scheduler makes decisions solely 
based on equalizing virtual runtime
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Multicore scheduling

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries 
to reschedule it on the same CPU
• Cache reuse

• Grouping threads could help or hurt…

• Implementation-wise, helpful to have per-core scheduling data 
structures
• Each core can make its own scheduling decisions

• Can steal work from other cores, if nothing to do
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CFS updates over time

• Getting scheduling right on multicore can be difficult
• No way to know whether a process will be more I/O or CPU bound in the 

future

• Want to keep threads on the same core, but also not waste cores

• In 2016, researchers found issues in Linux scheduler 
implementation that lead to 13%+ slowdown in jobs
• https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-

wasted-cores/
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Modern scheduling challenges

• Fair sharing of CPU time is insufficient
• Maximize cache usage

• Maximize processor affinity

• Reduce energy consumption

• Hybrid systems with heterogeneous processing capabilities

• Particular focus: latency requirements
• Some processes need to respond quickly to new data

• They don’t need more processing time. They need the time more quickly

• Heuristic shortcuts were added to CFS to allow some jobs to jump the 
queue
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Earliest Eligible Virtual Deadline First (EEVDF) (2023-Present)

• Algorithm first described in a 1995 research paper
• Run job with earliest “virtual deadline”
• TLDR: share processor time proportionally, but schedule within that based on latency

• Still divides processor time equally between jobs, like CFS
• Biased by priority of the job. Higher priority means larger share

• Calculate “lag” for each job
• Measurement of how far it’s behind a fair share of processor time
• Negative lag means a job has run more than its fair share already

• Job won’t be eligible to run until lag >= 0
• Lag increases automatically as other jobs run. So time until lag >= 0 can be calculated

• Virtual deadline for job: time until lag >= 0, plus duration it should run for
• Now + timeslice for any jobs below fair share of processor time
• Future + timeslice for any jobs above fair share of processor time
• Where timeslices vary by priority of the job

65https://lwn.net/Articles/925371/
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Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out

Average Turnaround Time Shortest Remaining Processing Time

Average Response Time Round Robin

Favoring Important Tasks Priority

Fair CPU Time Usage Linux CFS or EEVDF

Meeting Deadlines EDF or RMS
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