
Lecture 03:
Classical Scheduling

CS343 – Operating Systems
Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Administriva

• Getting Started lab due tonight! - 11:59 pm
• Submission: your most-recent commit in git
• Should have a STATUS file with results
• Just called STATUS, plain text file please
• Graded on completion

• Scheduling Lab will be out later tonight
• Groups of 1-3 students
• Partnership survey is out, I’m going to start pairing groups tonight too

• Monday office hours canceled for Solar Eclipse

2

Today’s Goals

• Introduce the concept and challenges of scheduling

• Explore scheduling for batch and interactive systems

• Identify important metrics for measuring scheduler performance

• Examine several scheduling policies that target these metrics

3

4

• Scheduling Overview
• Scheduler Metrics

• Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

• Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Outline

Lies your operating system always told you

• “Every process on your computer gets to run at the same time!”
• This is an illusion

• My desktop at home (running Windows)
• Current load: 250 processes with 2987 threads

• So how does the magic work?

5

Processes don’t run all the time
• OS schedules processes

• Decides which of many competing
processes to run.

• A blocked process is not ready to
run and is waiting on I/O
• I/O means input/output – anything

other than computing.
• For example, reading/writing disk,

sending network packet, waiting for
keystroke, condvar/semaphore!

• While waiting for results, the OS
blocks the process, waiting to do more
computation until the result is ready

The three basic
process states:

Multiprogramming processes

7

• Even with a single processor, the
OS can provide the illusion of
many processes running
simultaneously
• And also use this opportunity to get

more useful work done

• When one process is Blocked, OS
can schedule a different process
that is Ready
• OS can also swap between various

Ready processes so they all make
progress

The three basic
process states:

Scheduling

• We know that multiple processes will be sharing the CPU
• Possibly multiple threads in each process
• Possibly multiple cores in the CPU

• Scheduling is creating a policy for sharing the CPU
• Which process/thread is chosen to run, and when?
• When (if ever) does the OS change which process is running?

8

Scheduling terminology

• Job - an execution unit handled by the scheduler (a.k.a. “task”)
• Thread or process (doesn’t matter in this context)
• Moves between Ready and Blocked queues

• Workload – set of jobs
• Arrival time of each job
• Run time of each job

9

When can the OS make scheduling decisions?

• Whenever the OS is actually running
• i.e. after a context switch

• Possible triggers
• System calls
• Process/Thread creation/termination
• I/O requests
• Synchronization primitives (futex/condvar/semaphore)

• Hardware events (interrupts)
• I/O complete
• Timer triggers

10

Goal of most schedulers: always have a job running

• The schedulers we look at in class are “work-conserving”
• Always keeps scheduled resource busy if possible
• When in doubt, make sure some job is running on the processor
• Remember this for the lab and for exams!

• Counter-examples of “non-work-conserving” schedulers
• Network I/O scheduling may rate-limit to avoid overloading network
• Energy-limited systems may choose to run nothing to preserve energy

11

First scheduler: FIFO Scheduling

• First In, First Out (FIFO)
• also known as First Come First Served (FCFS)

• Policy
• First job to arrive gets scheduled first
• Let a job continue until it is complete
• Then schedule next remaining job with earliest arrival

13

14

• Scheduling Overview

• Scheduler Metrics

• Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

• Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Outline

Metrics for systems

• Metric – standard for measuring something
• Mathematical optimization: objective function
• Economics: utility function

• For different computing scenarios, different metrics will be most
important
• Computing systems have different goals and uses
• Performance metrics are often in conflict with each other

• Operating Systems are full of tradeoffs

15

A global scheduling metric

• Fairness
• Each job should get a “fair” share of the processor

• Fair means different things of course
• Could be “each job gets equal time”
• Could be “each job starts in order it arrives”
• Could be “each job is handled based on its priority”

• Scheduler should be fair with regards to the goals of the system it
runs on

16

Other scheduling metrics

• Performance
• How many jobs does the system complete?
• How quickly are jobs completed?

• Responsiveness
• How responsive does the system feel to users

• Energy use, types of jobs run, processor cores used, etc.

17

Different systems have different important metrics

• Example: network server
• Request for home page
• Request for contact page

• Example: personal computer
• Text editor that the user is actively interacting with
• Compilation running in the background

• Example: autonomous vehicle
• Image recognition algorithms
• Radio

18

Different systems have different important metrics

• Example: network server – Batch System
• Request for home page
• Request for contact page

• Example: personal computer – Interactive System
• Text editor that the user is actively interacting with
• Compilation running in the background

• Example: autonomous vehicle – Real-time System
• Image recognition algorithms
• Radio

19

Break + Say hi to your neighbors

• Things to share
• Name

• Major

• One of the following
• Favorite Candy
• Favorite Pokemon
• Favorite Emoji

20

Break + Say hi to your neighbors

• Things to share
• Name -Branden

• Major -Electrical and Computer Engineering, and Computer Science

• One of the following
• Favorite Candy - Twix
• Favorite Pokemon - Eevee
• Favorite Emoji - !

21

22

• Scheduling Overview

• Scheduler Metrics

• Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

• Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Outline

What are batch systems?

• Systems designed to run a set of provided tasks
• No direct interaction with users
• Predominantly run-to-completion jobs

• Example: banking systems or payroll management

• Modern example: network servers
• Tasks are serving requests
• Multiple types of requests, each with known runtimes

23

Metrics for batch systems

• Throughput
• Jobs completed per unit time
• Throughput = jobs_completed / total_duration
• Higher is better

• Turnaround time
• Duration from job arrival until job completion
• Tturnaround = Tcompletion – Tarrival
• Lower is better
• Average turnaround time is computed across all jobs

24

Example: throughput and turnaround

• Job A
• Arrival: 10
• Completion: 40
• Duration: 30

• Job B
• Arrival: 10
• Completion: 60
• Duration: 20

25

time

Jobs A and B
arrive

Running Job A Running Job B

10 40 600

Example: throughput and turnaround

Throughput = jobs_completed / total_duration
Tturnaround = Tcompletion – Tarrival

26

Throughput

Turnaround for A Turnaround for B Average Turnaround

Example: throughput and turnaround

Throughput = jobs_completed / total_duration
Tturnaround = Tcompletion – Tarrival

27

Throughput
2 jobs / 50 time = 0.04

Turnaround for A
40-10 = 30

Turnaround for B
60-10 = 50

Average Turnaround
(30+50)/2 = 40

Batch scheduler metric

• Which metric is most relevant to a batch system scheduler with a
finite list of processes?
• Throughput or Turnaround

• Throughput only cares about sum of durations of jobs
• Throughput is the same no matter whether A or B goes first

• Turnaround accounts for delays in scheduling a job
• Swapping A and B would result in better average turnaround

28

Turnaround for A
60-10 = 50

Turnaround for B
30-10 = 20

Average Turnaround
(50+20)/2 = 35

Schedulers for batch systems

1. First In First Out

2. Shortest Job First

3. Preemptive Shortest Remaining Processing Time

29

1. FIFO Scheduling

• First In, First Out (FIFO)
• assumption for now: all jobs arrive at time zero

• What is the average turnaround for this workload?
• (10 + 20 + 30)/3 = 20

31

Check your understanding – FIFOs with different durations

• What is a problematic scenario for FIFO scheduling?
• (consider job durations)

33

Check your understanding – FIFOs with different durations

• What is a problematic scenario for FIFO scheduling?
• One big job can cause lots of jobs behind it to wait

• Convoy effect – lots of small jobs stuck behind one big job

• Average turnaround time = (100+110+120)/3 = 110
• Minimum average turnaround time = (10+20+120)/3 = 50

34

2. Shortest Job First

• Policy
• Schedule the job with the smallest duration first
• Let a job continue until it is complete
• Then schedule next remaining job with smallest duration

• Essentially: complete a job as soon as possible
• Minimizes the number of waiting jobs, minimizing average turnaround

35

Average Turnaround
(10+20+120)/3 = 50

Shortest Job First can fail with late arrivals

• Scheduler’s previously optimal decision could be invalidated by
new job arrivals
• If B and C arrive late, they will have to wait because A is already running

36

Check your understanding

• What is the average turnaround time for this example?
• B and C arrive at time 10

37

Check your understanding

• What is the average turnaround time for this example?
• B and C arrive at time 10

• Average turnaround = ((100-0) + (110-10) + (120-10))/3

38

= 103.33333333

Preemption

• Let’s add a new scheduler capability: preemption

• OS can “deschedule” jobs that
are running

• This means it can make scheduling
decisions more frequently
• System calls
• Interrupts
• Timers

40

Context switching overhead

• Switching processes is expensive
• Context switch to OS is on the order of 1 μs (1 millionth of a second)
• Switching registers and CPU mode

• Memory is often the larger expense though
• New process has different physical memory pages
• Which means that caches have to be cleared
• Caches will “warm up” as the process runs
• Less of a penalty to threads (only stack changes)

• Alternative option: cooperative scheduling through yield()

41

3. Preemptive Shortest Remaining Processing Time

• Also known as Shortest Time-to-Completion First

• Policy
• Schedule job with smallest duration first
• Preempt a running job when new jobs arrive
• Then schedule job with smallest remaining duration

• Essentially, reevaluate schedule when new information is gained

43

Shortest Remaining Processing Time example

• A is preempted when B and C arrive at time 10
• Scheduler chooses B as new shortest remaining time
• B=10, C=10, A=100

44

Average Turnaround
(120+10+20)/3 = 50

Break + Starvation and scheduling

• Starvation can occur in schedulers
• When one job will never actually get a chance to run

• We’ve discussed:
• FIFO, Shortest Job First, and Shortest Remaining Processing Time
• Which of these can exhibit starvation?

45

Break + Starvation and scheduling

• Starvation can occur in schedulers
• When one job will never actually get a chance to run

• We’ve discussed:
• FIFO, Shortest Job First, and Shortest Remaining Processing Time
• Which of these can exhibit starvation?
• Shortest Remaining Processing Time
• Shortest Job First too if we allow new job arrivals (without preemption)

• Arriving short tasks could lead a long task to never be scheduled

46

47

• Scheduling Overview

• Scheduler Metrics

• Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

• Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Outline

What are interactive systems?

• Every computer you directly interact with
• Desktops, laptops, smartphones

• Differences from batch systems
• Humans are “in-the-loop”
• Computer needs to feel responsive for programs they are using

• Many jobs have no predefined duration
• How long does Chrome run for?

• Still have some batch jobs though (background services)

48

Metric for interactive systems

• Response time
• Time from arrival until the job begins execution
• Doesn’t matter how long the job takes to run since it runs indefinitely
• Tresponse = Tstart – Tarrival

• Particularly useful for interactive processes
• Need to quickly show that they are reacting to user inputs
• Exact total run duration isn’t so important though

49

Schedulers for interactive systems

1. Round Robin

2. Multi-Level Feedback Queue

50

1. Round Robin

• Round Robin scheduling runs a job for a small timeslice (quanta),
then schedules the next job

• If all jobs arrive at time 0
• Average response time = (0 + 1 + 2)/3 = 1

• Smaller timeslice means smaller response time
52

Different policies favor different metrics

Round Robin scheduling:
• Avg turnaround time = 14
• Avg response time = 1

Shortest Job first or SRPT:
• Avg turnaround time = 10
• Avg response time = 5

Better response time versus Better turnaround time

Remember, context switches are not free

Round Robin scheduling:
• Context switches = 14

Shortest Job first or STCF:
• Context switches = 2

• In a real OS, Round Robin would take an extra ~12 μs
• Plus more time lost with cold caches…

• Timeslice must be much greater than context switch time
• Usually timeslice is ~1 ms and context switch is ~1 μs

Handling a round-robin edge case

• What should the scheduler do?
1. Schedule nothing for the rest of the timeslice

2. Schedule a new job for the rest of the timeslice

3. Schedule a new job with a new, full timeslice

56

C
C completes at time 12

Assume quantum
(timeslice duration)
is 5

Handling a round-robin edge case

• What should the scheduler do?
1. Schedule nothing for the rest of the timeslice Not work-conserving

2. Schedule a new job for the rest of the timeslice

3. Schedule a new job with a new, full timeslice

57

C
C completes at time 12

Assume quantum
(timeslice duration)
is 5

Handling a round-robin edge case

• What should the scheduler do?
1. Schedule nothing for the rest of the timeslice Not work-conserving

2. Schedule a new job for the rest of the timeslice Not fair

3. Schedule a new job with a new, full timeslice Correct!

58

C
C completes at time 12

Assume quantum
(timeslice duration)
is 5

Timeslices are attached to jobs

• Each job gets its own timeslice duration

• Jobs may use less than their entire timeslice voluntarily
• They could complete
• They could become blocked
• They could decide to yield

• The scheduler, however, should always provide a full timeslice
• In previous example: runtime of one job shouldn’t affect another job

59

I/O creates scheduling overlap opportunities

• Job A does I/O every ten
milliseconds and each I/O takes 10 ms:

• A is blocked during its I/O.
• It’s just waiting for data from the disk
• But it does not need the CPU

I/O creates scheduling overlap opportunities

• Job A does I/O every ten
milliseconds and each I/O takes 10 ms:

• A is blocked during its I/O.

• It’s just waiting for data from the disk

• But it does not need the CPU

• We can schedule another job during
process A’s I/O

• Once a job is blocked, the scheduler can
immediately move to the next job!

Jobs can be I/O-bound or CPU-bound

• CPU-bound process
• Lots of computation between each I/O request
• Actually needs to do computation on a processor
• Example: doing matrix math

• I/O-bound process
• Very little computation between each I/O request
• Just needs a processor to figure out its next I/O request
• Example: searching a file system for a file name

63

Scheduling goal: I/O-bound before CPU-bound

• First maximize I/O

• Run the I/O-bound jobs as quickly as possible,

• So they can send next I/O request,

• And our disks, network cards, etc. are maximally used

• Then fill up the processor(s)

• Lots of room for multiprogramming between the I/O requests

• Blocked jobs are still “progressing” as their I/O is fetched

64

Scheduling goal: I/O-bound before CPU-bound

• First maximize I/O

• Run the I/O-bound jobs as quickly as possible,

• So they can send next I/O request,

• And our disks, network cards, etc. are maximally used

• Then fill up the processor(s)

• Lots of room for multiprogramming between the I/O requests

• Blocked jobs are still “progressing” as their I/O is fetched

• But how do you know when a job is going to use I/O?

• Can’t know the future

• Can track past behavior of the job

65

2. Multi-Level Feedback Queue (MLFQ)

• General purpose scheduler to support multiple goals
• Good response time for interactive jobs
• Good turnaround time for batch jobs
• Achieves this by prioritizing I/O bound jobs over CPU bound jobs

• Policy
• Automatically attach priority to jobs:
• Interactive, I/O bound jobs should be highest priority
• CPU bound, batch jobs should be lowest priority
• Apply different round robin timeslices to each priority level

67

Multi-Level Feedback Queue Details

• Run highest priority level available
• Round robin among jobs there

• When all jobs at a level are blocked
on I/O
• Move down to next lower level

• Long running jobs lose priority
• Set a processor usage limit at a given

level
• When used up, demote job one level

68

MLFQ Rules

1. If Priority(J1) > Priority(J2),
J1 runs

2. If Priority(J1) = Priority(J2),
J1 and J2 run in Round Robin

3. Jobs start at top priority
4. When a job uses its time quota

for a level, demote it one level
5. Every S seconds, reset priority of

all jobs to top

69

MLFQ Example

70

Pr
io

rit
y

Time

Job’s priority
drops as it runs

Higher priority
jobs run first

Time

MLFQ avoids starvation with periodic priority reset

• Low priority jobs
could starve if
there are enough
interactive jobs

• MLFQ avoids
starvation by
periodically
resetting priorities

71

Many new
interactive jobs

Priority reset

Time Time

Change timeslices to optimize response and turnaround

• Lower priority jobs are CPU bound, not interactive
• So we can use longer timeslices to minimize context switches

72Time

Pr
io

rit
y

MLFQ parameters

• Every MLFQ implementation needs to choose a bunch of
parameters
• How many queues/priority levels?
• When does a job get demoted in priority?
• How often to reset priority for everything?
• How large is the timeslice at each priority level?

73

MLFQ in the wild
• The embedded OS I work on has an MLFQ scheduler!

• https://github.com/tock/tock/blob/master/kernel/src/scheduler/mlfq.rs

• How many queues/priority levels?
• Three

• When does a job get demoted in priority?
• If it ever uses its whole timeslice without blocking

• How often to reset priority for everything?
• Every five seconds

• How large is the timeslice at each priority level?
• 10 ms, 20 ms, 50 ms

74

https://github.com/tock/tock/blob/master/kernel/src/scheduler/mlfq.rs

75

• Scheduling Overview

• Scheduler Metrics

• Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

• Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Outline

