
Lecture 02:
Processes and Threads

CS343 – Operating Systems

Branden Ghena – Spring 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), Harsha Madhyastha (Michigan), and UC Berkeley CS61C and CS162

Administrivia

• Getting Started Lab
• Due on Thursday (don’t be late on this)

• Purpose is to make sure that you’ve got everything set up right

• SSH login for EECS servers (if this fails, IT turnaround is ~24 hours)

• Github account and Git SSH access

• Ability to build the Nautilus Kernel

• Let us know if you’re having problems with this

• Should not take long to complete

• 94/120 of you have at least made your own repo (most are done)

2

Today’s Goals

• Understand the operating system’s view of a process.

• Explore the context switches and exceptional control flow.

• Understand the basics of system calls and signals.

• What are threads and why are they useful?

3

4

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

View of a process

• Process: program that is being executed

• Contains code, data, and a thread
• Thread contains registers, instruction pointer, and stack

5

• Registers

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer

• Condition Codes

• Stack

• Code and
Data

POSIX processes also have file descriptors

• Integers specifying a file the process is interacting with
• Process contains a table linking integers to files (and permissions)

• Default file descriptors
• 0 - Standard input (stdin)
• 1 - Standard output (stdout)
• 2 - Standard error (stderr)

• Function calls to interact with files
• int open (const char *path, int oflag, ...);
• ssize_t read (int fildes, void *buf, size_t nbyte);
• ssize_t write (int fildes, const void *buf, size_t nbyte);

6

Example file descriptors

7

Also the code files mapped to the address space

8

Additional process contents

• Whatever else the OS thinks is useful
• Process ID

• Priority

• Time Used

• Process State

• Different OSes will attach different things to the
“process abstraction”

9

Processes are an abstraction provided by the OS

• The machine itself usually doesn’t support processes
• Just has a processor and a set of registers
• Memory is just arbitrary memory

• OS provides the abstraction
• Multiple processes can run at the “same time”
• Each has its own registers
• Each has its own isolated memory

• Processes enable
• Multiple functionalities on a computer
• Multiprogramming of a system

10

Processes don’t run all the time

• OS schedules processes
• Decides which of many competing

processes to run.

• A blocked process is not ready to run.

• I/O means input/output – anything
other than computing.
• For example, reading/writing disk, sending

network packet, waiting for keystroke,
updating display.

• While waiting for results, the process often
cannot do anything, so it blocks, and the
OS schedules a different process to run.

The three basic
process states:

11

Multiprogramming processes

12

• When one process is Blocked, OS
can schedule a different process
that is Ready

• Even with a single processor, the
OS can provide the illusion of
many processes running
simultaneously

• OS usually sets a maximum
runtime before switching limit for
processes (timeslice)

The three basic
process states:

Key difference between kernel and processes: privilege

• Processes have limited access to the computer
• Hardware supports different “modes” of execution (kernel and user)

• Kernel mode has access to physical memory and special instructions

• They run when the OS lets them

• They have access to the memory the OS gives them

• They cannot access many things directly
• Must ask the OS to do so for them

13

Break + Question

• Is it safe for two processes to have the same code section?

14

Break + Question

• Is it safe for two processes to have the same code section?

Usually yes!

• The OS can mark the code section as read-only

• Example: multiple instances of a shell share the same code

• Self-modifying code would be a problem…

15

16

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

Context: Tock Operating System

• Usually we’ll use Nautilus as an example (last two labs are in it)
• But Nautilus doesn’t have a userspace!!

• (also I honestly understand it less well than Tock)

• Tock OS
• Embedded operating system

• Targets resource-constrained embedded systems

• Written in Rust

• Reliability and Security are key goals

• Multi-programming traditional OS environment

• One core, with as many processes as you want

17
https://tockos.org/ - https://github.com/tock/tock

https://tockos.org/
https://github.com/tock/tock

Switch to Process

• When a kernel decides to start running a process it does a context
switch into the process
• This includes starting a process for the first time

• Or continuing running a process after it was stopped

• Blocked for I/O or just timesliced off the processor

• High-level steps for switching into a process
1. Scheduler decides which process should be running

2. Save kernel register values to kernel stack

3. Restore process register values (usually from a data structure)

4. Switch to process mode instead of kernel mode

5. Jump to next instruction in process

18

Tock ARM implementation: Switch to Process

• Tock ARM-v7m implementation
1. Save kernel register values to kernel stack

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L237

2. Restore process register values (usually from a data structure)

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L251

3. Bonus: enter exception handler

4. Switch to process mode instead of kernel mode

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L94

5. Jump to next instruction in process

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L104

19

https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L237
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L251
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L94
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L104

Tock RISC-V implementation: Switch to Process

• Tock rv32i implementation
1. Save kernel register values to kernel stack

• https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L276

2. Bonus: pause exceptions

• https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L300

3. Restore process register values (usually from a data structure)

• https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L336

4. Switch to process mode instead of kernel mode
AND jump to next instruction in process
AND enable exceptions again

• https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L370

20

https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L276
https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L300
https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L336
https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L370

Processes run until an exception occurs

• While the process is running, the OS is NOT running
• In a single-core environment at least

• So, when does the OS kernel get to run again?
• Whenever an exception occurs

• Hardware can be a source of this
• Random device event occurring
• Timer expiring (source of the process timeslice)

• Software can also cause this
• System calls

21

22

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

Control flow

23

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

• Processors do only one thing:
• From startup to shutdown, a CPU simply reads and executes (interprets) a

sequence of instructions, one at a time

• This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Altering control flow

• Instructions that change control flow allow software to react
changes in program state
• Jumps/branches
• Call/return

• Also need to react to changes in system state
• Data arrives at network adapter
• Instruction divides by zero
• User hits Ctrl-C on the keyboard
• System timer expires

• These mechanisms are known as “exceptional control flow”

24

Exceptional control flow

• Mechanisms that could cause exceptional control flow
• Exceptions: events cause execution to jump to OS handler

• Context switch: request or timeout causes execution to jump to OS

• Signals: event plus OS causes execution to jump to process handler

25

Running process Other code (usually OS)

Exception
Exception processing
by exception handler

•Return to I_next

Event I_current
I_next

Exceptions

• Hardware detects an event that OS software needs to resolve immediately

• Could be an error
• Invalid memory access
• Invalid instruction

• Could just be something the OS should handle (known as interrupts)
• Page fault
• USB device detected

• OS has a table of “exception handlers”, which are functions that handle
each exception class (also known as interrupt handlers)
• Hardware jumps execution to the proper handler

26

Tock exception vector

• Array of functions for each exception type
• In Tock, most are “unhandled” which just crashes the system
• Some are device interrupts (which don’t matter for today’s lecture

• Interrupt “vector”
• https://github.com/tock/tock/blob/master/chips/nrf52/src/crt1.rs#L31

• SVC is a “service call” instruction
• It’s used by processes to request an action from the OS
• SVC_Handler is a function to handle those requests

• https://github.com/tock/tock/blob/master/arch/cortex-
v7m/src/lib.rs#L76

27

https://github.com/tock/tock/blob/master/chips/nrf52/src/crt1.rs#L31
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L76
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L76

28

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

How does a process ask the OS to do something?

• Certain things can only be accessed from kernel mode
• All of memory, I/O devices, etc.
• Kernel: the portion of the OS that is running and in memory

• Bad Idea to allow processes to just enter kernel mode
• We do NOT trust processes
• So there shouldn’t be any instruction that switches to kernel mode unless

that instruction also switches to kernel code

• Requirements
1. Switch execution to the kernel
2. Change into kernel mode
3. Inform the kernel what you want it to do

29

Hardware can save us!

• Solution: trigger an exception to run an OS handler
• Hardware instruction: trap

• When instruction runs:
1. Mode is changed to kernel mode

AND

2. Instruction Pointer is moved to a known location in the kernel

• Same mechanism is used for other exceptions
• Division by zero, invalid memory access

• Also very similar to hardware interrupts

30

System call example

• System call: making a request of the OS from a process
• Uses exceptional control flow to enter OS kernel

• Returns back to process when complete

• Instruction after the system call

31

User code Kernel code

Exception

Do the thing

Returns

syscall

next instruction

Switch to Kernel

• Assume the process wants to switch to the kernel, what occurs?

• High-level steps for switching to the kernel
1. Process executes a system call

2. Processor enters kernel mode and runs an exception handler

3. Save process registers

4. Restore kernel registers

5. Figure out why a context switch occurred

32

Tock ARM Implementation: Switch to Kernel

• Tock ARM-v7m implementation
1. Process executes a system call

• https://github.com/tock/libtock-c/blob/master/libtock/tock.c#L257

2. Processor enters kernel mode and runs an exception handler

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L76

3. Bonus: return to switch_to_user implementation

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L135

4. Save process registers

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L264

5. Restore kernel registers

• https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L272

6. Figure out why a context switch occurred

• https://github.com/tock/tock/blob/master/arch/cortex-m/src/syscall.rs#L262

33

https://github.com/tock/libtock-c/blob/master/libtock/tock.c#L257
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L76
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L135
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L264
https://github.com/tock/tock/blob/master/arch/cortex-v7m/src/lib.rs#L272
https://github.com/tock/tock/blob/master/arch/cortex-m/src/syscall.rs#L262

Tock RISC-V Implementation: Switch to Kernel

• Tock rv32i implementation
1. Process executes a system call

• https://github.com/tock/libtock-c/blob/master/libtock/tock.c#L485

2. Processor enters kernel mode and runs an exception handler

• https://github.com/tock/tock/blob/master/arch/rv32i/src/lib.rs#L335

3. Save process registers

• https://github.com/tock/tock/blob/master/arch/rv32i/src/lib.rs#L358

4. Bonus: return to switch_to_process implementation

• https://github.com/tock/tock/blob/master/arch/rv32i/src/lib.rs#L437

5. Restore kernel registers

• https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L382

6. Figure out why a context switch occurred

• https://github.com/tock/tock/blob/master/arch/cortex-m/src/syscall.rs#L262

34

https://github.com/tock/libtock-c/blob/master/libtock/tock.c#L485
https://github.com/tock/tock/blob/master/arch/rv32i/src/lib.rs#L335
https://github.com/tock/tock/blob/master/arch/rv32i/src/lib.rs#L358
https://github.com/tock/tock/blob/master/arch/rv32i/src/lib.rs#L437
https://github.com/tock/tock/blob/master/arch/rv32i/src/syscall.rs#L382
https://github.com/tock/tock/blob/master/arch/cortex-m/src/syscall.rs#L262

Handling the system call

• Now the kernel is running again AND it knows why it was running

• If a fault occurred crash the process or something

• If a syscall occurred, read why from the process’s registers
• Which are saved in some data structure somewhere

• Then figure out what to do about that request

35

Switching between process and kernel is a context switch

Diagram from Bryant & O’Hallaron book

• Context switch: switching from process to kernel or kernel to
process
• Vague term. Sometimes refer to there-and-back as a context switch

36

Break + Question

• Context switches are expensive
• Lots of context switches lead to poor performance

• Why?

37

Break + Question

• Context switches are expensive
• Lots of context switches lead to poor performance
• Why?

• Lots of memory manipulation
• Saving and restoring registers
• All cached data is almost certainly invalid

• Triggering an exception isn’t exactly quick
• Processor needs to stop everything and jump somewhere

• OS needs to figure out what’s going on and respond to it
• The figuring it out part can be a lot of code

38

39

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

Things a program cannot do itself

• Print “hello world”
• because the display is a shared resource.

• Download a web page
• because the network card is a shared resource.

• Save or read a file
• because the filesystem is a shared resource, and the OS wants to check

file permissions first.

• Launch another program
• because processes are managed by the OS

• Send data to another program
• because each program runs in isolation, one at a time

40

Linux system calls

• Example system calls
• https://man7.org/linux/man-pages/man2/syscalls.2.html

41

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

https://man7.org/linux/man-pages/man2/syscalls.2.html

Many other system calls

• POSIX contains many others, for example time()
• And especially lots of old ones

• Windows or other operating systems will have entirely different
system calls
• Same basic idea for how they function though

42

Example system call usage

• Create new processes with system calls

• From process view:
• Just look like regular C functions

• Take arguments, return values

• Underneath:
• Function uses special assembly instruction to trigger exception

43

Process system calls

pid_t fork(void);

• Create a new process that is a copy of the current one

• Returns either PID of child process (parent) or 0 (child)

void _exit(int status);

• Exit the current process (exit(), the library call cleans things up first)

pid_t waitpid(pid_t pid, int *status, int options);

• Suspends the current process until a child (pid) terminates

int execve(const char *filename, char *const argv[], char *const envp[]);

• Execute a new program, replacing the existing one

44

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
 if(fork() == 0) {
 printf("Child!\n");
 } else {
 printf("Parent!\n");
 }

 printf("Both!\n");
 return 0;
}

45

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
 if(fork() == 0) {
 printf("Child!\n");
 } else {
 printf("Parent!\n");
 }

 printf("Both!\n");
 return 0;
}

46

Existential crisis

Executing a new program

#include <stdio.h>
#include <unistd.h>

int main(){
 if(fork() == 0) {
 execve("/bin/python3", ...);
 } else {
 printf("Parent!\n");
 }

 printf("Only parent!\n");
 return 0;
}

47

Creating your own shell

void execute(char** args) {

 if (strcmp(args[0], "exit") == 0) {

 exit(); // exit the shell when requested

 }

 pid_t cpid = fork();

 if (cpid == 0) {

 if (execvp(args[0], args) < 0) { // child, execute new process

 printf("command not found: %s\n", args[0]);
 }

 } else {

 waitpid(cpid, & status, WUNTRACED); // parent, wait for process to be complete

}}

int main(){

 char** args;

 while(1){

 printf("> ");

 args = parse_incoming_text(); // complicated in C unfortunately

 execute(args);

}}
48

https://danishpraka.sh/2018/01/15/write-a-shell.html

https://danishpraka.sh/2018/01/15/write-a-shell.html

Creating your own shell

void execute(char** args) {

 if (strcmp(args[0], "exit") == 0) {

 exit(); // exit the shell when requested

 }

 pid_t cpid = fork();

 if (cpid == 0) {

 if (execvp(args[0], args) < 0) { // child, execute new process

 printf("command not found: %s\n", args[0]);
 }

 } else {

 waitpid(cpid, & status, WUNTRACED); // parent, wait for process to be complete

}}

int main(){

 char** args;

 while(1){

 printf("> ");

 args = parse_incoming_text(); // complicated in C unfortunately

 execute(args);

}}
49

https://danishpraka.sh/2018/01/15/write-a-shell.html

https://danishpraka.sh/2018/01/15/write-a-shell.html

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

 while(1){

 fork();

 }

 return 0;

}

50

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

 while(1){

 fork();

 }

 return 0;

}

51

• Creates a new process
• Then each process creates a

new process
• Then each of those creates a

new process…

• Known as a Fork bomb!
• Machine eventually runs out of

memory and processing power
and will stop working

• Defense: limit number of
processes per user

Fork bombs in various languages

• Python fork bomb

import os

while 1:

 os.fork()

• Rust fork bomb

#[allow(unconditional_recursion)]

fn main() {

 std::thread::spawn(main);

 main();

}

52

• Bash fork bomb
:(){ :|:& };:

• Bash with spacing and a
clearer function name

fork() {

 fork | fork &

}

fork

53

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

Alerting processes of events

• How do we let a process know there was an event?
• Errors

• Termination

• User commands (like CTRL-C or CTRL-\)

• Events could happen whenever
• Need to interrupt process control flow and run an event handler

• Linux mechanism to do so is called “signals”

54

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

55

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

56

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Errors

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

57

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Termination

Sending signals

• OS sends signals when it needs to

• Processes can ask the OS send signals with a system call
• int kill(pid_t pid, int sig);

• Users send signals through OS from command line or keyboard
• Shell command: kill -9 pid (SIGKILL)

• CTRL-C (SIGINT)

58

Handling signals

• Programs can register a function to handle individual signals
• signal(int sig, sighandler_t handler);

• OS keeps track of signal handlers for each signal
• Calls that function when a signal occurs

• What is the process supposed to do about it?
• Do some quick processing to handle it

• That needs to be “reentrant” safe

• Reset the process and try again

• Quit the process (default handler)

59

https://wiki.sei.cmu.edu/confluence/display/c/SIG30-C.+Call+only+asynchronous-safe+functions+within+signal+handlers

Examples: sending a signal

> kill -11 pid (11 is SIGSEGV – a.k.a segfault)

61

62

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

Software Tasks: Threads

Unit of execution within a process

Processes discussed so far have a single thread
• They “have a single thread of execution”
• They “are single-threaded”

But a single process could have multiple threads

63

Alternate view of a process

• A process could have multiple threads
• Each with its own registers and stack

64

• Code and
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables

Process address space with threads

65

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

%RIP (T1)

%RIP (T3)
%RIP (T2)

Data

Segment

Thread use case: web browser

Let’s say you’re implementing a web browser:

You want a tab for each web page you open:
• The same code loads each website (shared code section)

• The same global settings are shared by each tab (shared data section)

• Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

66

Thread use case: user interfaces

• Even if there is only a single processor core, threads are useful

• Single-threaded User Interface
• While processing actions, the UI is frozen

main() {

 while(true) {

 check_for_UI_interactions();

 process_UI_actions(); // UI freezes while processing

 }

}

67

Thread use case: web server

68

• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Disk I/O for request 1 finishes

Server responds to request 1

Server reads in request 2

• Easy to program, but slow
• Can’t overlap disk requests with computation

• Can’t overlap either with network sends and receives

69

time

Web server option 1: event-driven model

• Issue I/Os, but don’t wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes
Server responds to request 1

• Fast, but hard to program
• Must remember which requests are in flight and which I/O goes where
• Lots of extra state

70

time

Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!
• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…
71

Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1
Exit

Thread 2

Read in request 2
Start disk I/O

time

More Practical Motivation

72

Back to Jeff Dean’s
“Numbers
Everyone Should
Know”

Handle I/O in
separate thread,
avoid blocking
other progress

Models for thread libraries: User Threads

• Thread scheduling is implemented within the process
• OS only knows about the process, not the threads

• Upsides
• Works on any hardware or OS
• Performance is better when

creating and switching

• Downsides
• A system call in any thread

blocks all threads

73

Scheduler

OS
Kernel

Processes

Thread
Library

Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343

74

Scheduler

OS
Kernel

Processes

Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all

threads of the process.
• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by
reading/writing (shared)
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

75

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

76

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

• What happens when pthread_create() is called in a process?

77

Library:

int pthread_create(…) {
 Do some work like a normal function
 Put syscall number into register
 Put args into registers
 Special trap instruction

Get return values from regs
 Do some more work like a normal function
};

Get args from regs
 Do the work to spawn the new thread
 Store return value in %eax

Kernel:

clone (56) syscall on Linux

78

• Processes

• Context Switching
• Running a Process
• Exceptions
• Running the Kernel

• System Calls

• Signals

• Threads

Outline

79

• Bonus: Thread example

Threads Example

80

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a
number, then
increments it, then exits

• Main process waits for
all of the threads to
finish

81

Threads Example

82

Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
created?

4. If we run the program again,
would the result change?

83

Check your understanding

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
would the result change?
Possibly!

84

	Default Section
	Slide 1: Lecture 02: Processes and Threads

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Processes
	Slide 4: Outline
	Slide 5: View of a process
	Slide 6: POSIX processes also have file descriptors
	Slide 7: Example file descriptors
	Slide 8: Also the code files mapped to the address space
	Slide 9: Additional process contents
	Slide 10: Processes are an abstraction provided by the OS
	Slide 11: Processes don’t run all the time
	Slide 12: Multiprogramming processes
	Slide 13: Key difference between kernel and processes: privilege
	Slide 14: Break + Question
	Slide 15: Break + Question

	Running a Process
	Slide 16: Outline
	Slide 17: Context: Tock Operating System
	Slide 18: Switch to Process
	Slide 19: Tock ARM implementation: Switch to Process
	Slide 20: Tock RISC-V implementation: Switch to Process
	Slide 21: Processes run until an exception occurs

	Exceptions
	Slide 22: Outline
	Slide 23: Control flow
	Slide 24: Altering control flow
	Slide 25: Exceptional control flow
	Slide 26: Exceptions
	Slide 27: Tock exception vector

	Running the Kernel
	Slide 28: Outline
	Slide 29: How does a process ask the OS to do something?
	Slide 30: Hardware can save us!
	Slide 31: System call example
	Slide 32: Switch to Kernel
	Slide 33: Tock ARM Implementation: Switch to Kernel
	Slide 34: Tock RISC-V Implementation: Switch to Kernel
	Slide 35: Handling the system call
	Slide 36: Switching between process and kernel is a context switch
	Slide 37: Break + Question
	Slide 38: Break + Question

	System Calls
	Slide 39: Outline
	Slide 40: Things a program cannot do itself
	Slide 41: Linux system calls
	Slide 42: Many other system calls
	Slide 43: Example system call usage
	Slide 44: Process system calls
	Slide 45: Creating a new process
	Slide 46: Creating a new process
	Slide 47: Executing a new program
	Slide 48: Creating your own shell
	Slide 49: Creating your own shell
	Slide 50: Break + Question
	Slide 51: Break + Question
	Slide 52: Fork bombs in various languages

	Signals
	Slide 53: Outline
	Slide 54: Alerting processes of events
	Slide 55: Signals are asynchronous messages to processes
	Slide 56: Signals are asynchronous messages to processes
	Slide 57: Signals are asynchronous messages to processes
	Slide 58: Sending signals
	Slide 59: Handling signals
	Slide 61: Examples: sending a signal

	Threads
	Slide 62: Outline
	Slide 63: Software Tasks: Threads
	Slide 64: Alternate view of a process
	Slide 65: Process address space with threads
	Slide 66: Thread use case: web browser
	Slide 67: Thread use case: user interfaces
	Slide 68: Thread use case: web server
	Slide 69: Web server option 1: handle one request at a time
	Slide 70: Web server option 1: event-driven model
	Slide 71: Web server option 3: multi-threaded web server
	Slide 72: More Practical Motivation
	Slide 73: Models for thread libraries: User Threads
	Slide 74: Models for thread libraries: Kernel Threads
	Slide 75: Threads versus Processes
	Slide 76: POSIX Threads Library: pthreads
	Slide 77: Pthread system call example

	Wrapup
	Slide 78: Outline

	Thread example
	Slide 79
	Slide 80: Threads Example
	Slide 81: Threads Example
	Slide 82: Threads Example
	Slide 83: Check your understanding
	Slide 84: Check your understanding

