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Today’s Goals

« Understand about additional filesystem features
 Performance: disk caching
« Reliability: checking, journaling, and copy-on-write

 Explore real-world filesystem designs
« FAT, FFS, ext3/ext4, NTFS, ZFS



File systems abstractions

Variable-Size Buffer

I/0 API and
syscalls

Memory Address

Hardware
Devices

Physical Index,
512B or 4KB

HDD

Flash Trans. Layer

Phys. Block

SSD

Logical Index,
Typically 4 KB

Phys Index., 4KB



What goes within a partition?

Partition « Header (Superblock)
Header » Details about which filesystem this is
« Metadata about the filesystem

Free Space Tracking

| | - Free Space Tracking
AlE TR » Likely a bitmap of whether blocks are used/free

* File Tracking
File Data - Either allocation table or inodes

* File Data




Create and write a file

data inode | root foo  bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data[0] data[l] data[1]
read
read
read
read
create read
(/foo/bar) write
write
write
write
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write

write

write

First, read the parent
directory to ensure that
name is not already used.

Find & claim a free inode.

Add <“name”, inode#> to
parent directory.

Fill-in file metadata.



Create and write a file

data inode | root foo  bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data[0] data[l] data[1]
read
read
read
read
create read
(/foo/bar) write
write
write
write
read
read
write() write
write
write
read
read
write() write }
write | 3
write .
read
read
write() write

write

write

First, read the parent
directory to ensure that
name is not already used.

Find & claim a free inode.

Add <“bar”, inode#> to
parent directory.

Fill-in file metadata.

Write:

1.

2.

W

Look for remainincf; space
in existing blocks first.

Find & claim a new data
block.

Write data to new block
Point to it in inode



Outline

 Disk Caching

» Classical Filesystems
« FAT
« FFS

« Improving Reliability
« FSCK
» Journaling

» Journaling Filesystems
o ext3/ext4
« NTFS

« Copy-On-Write
« ZFS




Many disk interactions should be hitting memory instead

data inode
bitmap bitmap

root foo bar
inode inode inode

root foo bar bar bar
data data data[0] data[l] data[l]

read

/ Wwrite

inode reads/writes
Ooccur in memory

read
open("/foo/bar") read
read
read
g read
5 read() read
v write
read
read() read
write
read
read() read



Filesystem caching

* File I/O can be a significant bottleneck

« So keep useful parts of disk in RAM!
« Improves performance

» OS kernel does this automatically
 Using unused RAM to hold disk blocks

File descriptor

Pathname

Directory

Inode

Logging

Disk




Goals for filesystem caching

1. Cache popular blocks so the disk can be accessed less frequently.
 Recall that disk has 10,000x greater delay than RAM.

* Reads are faster if the disk block is already in memory from a recent
access.

« Writes can be aggregated.

« If a thread writes three times briefly to the same file, these can likely
be reduced to one write to disk if the writes are delayed.

« If a thread creates a new file and quickly deletes it, these writes can be
skipped altogether.

 Eventually, changes must be flushed to disk, but there is no rush.

2. Must be careful to prevent two threads from accessing different
unsynchronized copies of the disk block.

* i.e., make the cache coherent and avoid race conditions
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Unified Page Cache

 Page replacement policy can simultaneously consider both pages
from Virtual Memory and pages cached from disk

« May choose to evict either if needed

* Priority:
1. Unwritten disk files or unmodified memory pages
» Situational which is more important, but neither requires writeback

2. Written disk files
« Going to have to be written to disk eventually anyways

3. Modified memory pages
« Must go to swap space to be later read again
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Prefetching

« Any cache can “prefetch”, loading memory before it's needed

 Base idea: read multiple blocks from disk sequentially from each
access

« Advanced: load specific files based on usage patterns

* Need to balance prefetching requests with other disk access
« Don’t want to slow down real accesses with possibly needed prefetching
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Short break + Question

« What percentage of memory should an OS fill with disk pages?
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Short break + Question

« What percentage of memory should an OS fill with disk pages?

* As long as it can do it in the background, as much as possible!

» There’s no particular downside:

 As long as the page wasn’t written to,
the RAM can be repurposed later if needed
without requiring additional writes to disk

« (Maybe energy use is a downside?)
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Real OSes aggressively cache disk in unused RAM

Linux ate my ram!

/

Don't Panic!
Your ram is fine!

linuxatemyram.com
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linuxatemyram.com

Real OSes aggressively cache disk in unused RAM

top - 10:25:45 up 7 days, 48 min,

Tasks: 650 total,
Cpu(s): 0.0%us,

Mem:

0.0%sy,

Swap: 16383996k total,

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

:57.24 mysqld
dsm_om_connsvcd

9213 mysql
10001 root
9382 root
8304 apache
8302 apache
8298 apache
8299 apache
8303 apache
8300 apache
8301 apache
8305 apache
1386 apache
1387 apache
1122 sptl75
2615 root
9865 root

8737 postgres 20
2786 haldaemo 20

9956 root
990 root
1014 root
19701 root

@ 1263m 156m
@ 5748m 219m

337m
352m
339m
339m
339m
339m
339m
339m
339m
339m
339m
251m

(SIS IS I I I IS I ]

18m
19m
14m
14m
14m
14m
14m
14m
14m
14m
14m
14m

3 users,
1 running, 649 sleeping,
0.0%ni, 99.9%id,
132144848k total, 129331984k used,

14m S

14m S

11m S

10m S
7144 S
7140 S
7136 S
7136 S
7120 S
7120 S
7112 S
70% S
7084 S
6484 S

0 92996 6200 4816 S
0 1043m 23m 4680 S
© 219m 5380 4588 S
0 45448 5528 4320 S

o0

491m 7268 3280 S
103m 4188 3172 S
103m 4196 3172 S
103m 4244 3172 S

load average: 0.04, 0.06, 0.09

@ stopped, @ zombie

2812864k free, 37895660k buffers
430k used, 16383560k free, -45074412k cached

=
Ul w

[
~N
~N
N

()

NetworkManager
dsm_sa_datamgrd
postmaster

COWANDOTWHRWNNNOGO W

WoegLoNeOERBERERRRERBENG

dsm_sa_snmpd

SOOI SSSS
OO0 WOEOOODOOOOOOOOOOOOOW
OISO SSSS
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SSShSRisssS3sssssss
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» buffers and cached both

represent file data that is

being stored in memory

for improved performance
« Still available for programs

« Just being made useful for
now by caching disk

» Might be a lot of RAM’s

use for big systems
« Total RAM: 128 GB
* Disk cache: 83 GB
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Outline

» Disk Caching

 Classical Filesystems
. FAT
- FFS

« Improving Reliability
« FSCK
» Journaling

» Journaling Filesystems
o ext3/ext4
« NTFS

« Copy-On-Write
« ZFS




FAT (FAT/FAT12/FAT16/FAT32)

* File Allocation Table

 FAT: Microsoft system from before MS-DOS (1977)
« 8 MB max file size
* 9 character file names
* No subdirectories

« FAT32: Windows 2000 (introduced 1996)
« 2 GB max file size
255 character file names
 Supports up to 16 TB partitions
16 byte granularity for files
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FAT design choices

* Allocation table for tracking data blocks
« Requires four bytes per block in the disk
* File attributes need to be kept in the directory data block

e Still in use for embedded systems
 Simple to implement
« Still compatible with modern general-purpose OSes
« Works for small and relatively large files and disks
 Think SD cards
« Implements aggressive block caching
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Fast File System (FFS)

 Unix FileSystem (FS) from 1970
* inode-based design (combination of all the basic stuff covered last time)
 Simple and slow
* inodes are far from data blocks
« data blocks become fragmented over time

« BSD Fast File System (mid-1980s)

* First "Disk aware file system”
« Understands disk seek patterns and sequential access benefits
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FFS groups

y—\
super .
0

N e

» Split disk space into a set of “cylinder groups”
« Each group has its own bitmaps, inodes, and data
» Keeps data and inodes closer together

group | group 2 group 3
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FFS file placement strategy

« General theme: put related pieces of data near each other

* Rules
1. Put directory data near directory inodes
2. Put file inodes near directory data
3. Put data blocks near file inodes

« Example
 Each directory gets put in an empty group
« Keep all files within a directory in that single group
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FFS example

« Example:
 Directories: /, /a/, and /b/
« /a/ files: ¢, d, e

« /b/ files: f
group lnodes data
0 /————————- [———mm——-
1l acde————- accddee———
2 bf———————- bff-——————
3 ____________________
4 ____________________
5 ____________________
6 ____________________
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FFS large file problem

* A single large file can fill nearly all of a group
« S0 remaining files would have to be placed in other groups

group inodes data
0 /a———————- /aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a--————-——-—-—
1 __________________________________________________

» Instead, limit filesize per group and place remaining blocks in

other groups « Most files are small so

group inodes = data prioritize them
l ———- aaaaa-————— —————————— —————————— —————————— i .
S — 28388===== =—m=em==== —em—e—eeee oo - Rare, large files will have
PR S worse performance
< daaaa-————= —TT—T————— —oo——————— ———— e
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Outline

» Disk Caching

» Classical Filesystems
« FAT
« FFS

« Improving Reliability
« FSCK
« Journaling

» Journaling Filesystems
o ext3/ext4
« NTFS

« Copy-On-Write
« ZFS




Crash tolerance

» Filesystems are persistent and store important data

« They cannotrely on a graceful shutdown
« Power outages happen
 Kernel might panic
« USB plug might be yanked out

* File system structure updates are critical sections
» Not concerned about race conditions, but rather partial updates
 Transactions should be performed atomically, “all or none”

* All reads and writes aren’t necessarily guaranteed
« But system needs to stay consistent
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Crash example (writing to /foo/bar)

data inode
bitmap bitmap

root foo bar
inode inode inode

root foo bar
data data data[0]

read
write() write

time

read

write

write

e Crash before write to file’s inode could leak a data block
« Data bitmap was updated to reserve data block and data was written

« But the data block is not pointed to by any inode

 Block ends up wasted

 Other write order could be worse
 Inode points to a block that hasn’t been written and has garbage data
 Or block is still marked as free in the bitmap, and another file will overwrite it!!

27



File system checker (FSCK)

 After a crash, scan entire disk for contradictions and ™“fix”
« System pauses boot until FSCK completes

« Example: check data bitmap consistency
» Read every valid inode
« Any referenced data block should be marked as used
« Any used blocks that are not referenced can be marked free

 Also check
« Each inode should only be listed under one directory (without hard links)
« Two inodes should not share a data block
 All block addresses should be valid
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Problems with FSCK

1. FSCK makes disks consistent, not correct
« Not always obvious how best to fix file system image
« Trivial way to get consistency: reformat disk

2. FSCK is very slow

« Reading from disk is slow

« Reading ALL of disk takes a
long time, especially as disks
Increase in size

4500
g 4000+
& 3500
¢ 3000
© 2500 -
= 2000+
1500 -
1000

m

Checking

500 -
0

~ Phase 1 @ Phase 3 Phase 54176
% Phase 2 & Phase4 = = .0

----------

150GB 300GB 450GB 600GB
File system image size

Checking a 600GB disk takes ~70 minutes
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Filesystem transactions

 Goals
» Move reliability mechanism to continuous operations during runtime
« Some recovery after crash is fine, but not entire disk
« Don't just make file system consistent
« Guarantee correctness

 Solution: enforce atomic transactions
« Each transaction must be performed in its entirety or not at all
 Either all new data is visible
« Or all old data is visible
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Journaling Filesystems

 Write all transactions to journalinstead of actual locations

First, stage Later, make changes
changes in log permanent

A A
4 AY4 A\

boot|super log ihodes bit map data' 'data

0o 1 2

1. Write the blocks to the log, a reservec part of the disk.

« This makes a durable record of the transaction you plan to commit.
 Continue putting all writes to the log, until commit is called.

2. On commit, write a commit message to the log, then start
writing all of the logged writes where they belong on disk.
* Clear the log after everything is written again.
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Journaling example

Journal

 Current contents of 8 blocks of
disk and the journal
» Note that the journal is also on disk

e Kee

ding this a

* Blocks could

C

ata, or anyt

Dstract
e bitmaps, inodes,

Ning




Journaling example

Journal

 Write transaction start to journal
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Journaling example

Journal

Transaction Begin

Write Block 6, Data: Y

Write Block 7, Data: Z

0

0

 Write transaction start to journal

* Then actions for that transaction
 Along with the data

* Journal must be multiple blocks in
size



Journaling example

Journal

Transaction Begin

Write Block 6, Data: Y

Write Block 7, Data: Z » Write transaction start to journal
« Then actions for that transaction
Transaction End  Along with the data
* Journal must be multiple blocks in
0 size

« "Commit” by writing transaction

0
end




Journaling example

Journal

Transaction Begin

Write Block 6, Data: Y

Write Block 7, Data: Z

Transaction End

 Sometime after transaction is
written, data can actually be
recorded to disk



Journaling example

Journal

 Sometime after transaction is
written, data can actually be
recorded to disk

» And then journal can be cleared



Resolving crashes with journaling

* The next time the computer boots, OS resolves filesystem:

1. No transactions happening when crash occurred
 Journal is empty. Do nothing because there were no outstanding transactions.

2. Crash occurred before commit (before Transaction End):
* There is data in the journal, but no commit message.
 Just clear the log to roll back the transaction.

3. Crash occurred after commit, while writing data to main part of disk.

« We don’t know how much of the transaction was finished.
« However, the journal tells us exactly what must be done!
* Replay the transaction (from the beginning), then clear the journal.
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Break + Check your understanding — resolve after crash

Journal

Transaction Begin

Write Block 0, Data: Q

Write Block 1, Data: R « When did this crash occur?

Write Block 2, Data: S

« What steps should be taken?

Transaction End

0




Break + Check your understanding — resolve after crash

Journal

Transaction Begin

Write Block 0, Data: Q

Write Block 1, Data: R

Write Block 2, Data: S

Transaction End

0

 When did this crash occur?
e After commit

« Some data may have even been
written (impossible to know)

« What steps should be taken?

 Replay transaction and perform the
writes

40



Break + Check your understanding — resolve after crash again

Journal

Transaction Begin

Write Block 3, Data: B

Write Block 4, Data: C « When did this crash occur?

° « What steps should be taken?




Break + Check your understanding — resolve after crash again

Journal

; » When did this crash occur?
» Before transaction committed

« What steps should be taken?

 Delete partial transaction from
0 journal

* No need to edit disk blocks




Journaling performance

» Transactions only need to be written to the journal for writes

 Interactions with disk can still be cached as before
« Would be lost in a crash, but no consistency problems
« Several writes can be combined into one transaction

 Can avoid writing all disk blocks twice by only tracking metadata
» Writes to bitmaps, inodes, and directories are journaled
« Writes to file data blocks just happen whenever
* File could still be corrupted! But the filesystem is safe
« Likely only corrupted in units of whole blocks

43



Outline

» Disk Caching

» Classical Filesystems
+ FFS
. FAT

« Improving Reliability
« FSCK
» Journaling

- Journaling Filesystems
- ext3/ext4
- NTFS

« Copy-On-Write
« ZFS




ext2/ext3/ext4

 extended filesystem — default for Linux

« ext2 (1993)
» "Block groups” rather than cylinder groups, of arbitrary size

. ext3 (2001)
 Adds journaling

 Configuration options choose to journal either everything or metadata-only

« ext4 (2006)

 Extents, encryption
» Used on modern-day linux systems
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Extents reduce number of pointers to data blocks

» Extents
 Instead of raw block addresses
« Store starting block address and length
« Greatly compacts sequentially stored data pointers in inodes

» ext4 uses extents
« 4 extents per file
» Large, fragmented files use hierarchical system like original inodes

46



Other ext4 advances

* Encryption
« Encrypts a directory and all of its contents
* File names and file data
» AES encrypt/decrypt is performed on data blocks during read/write

* Directory data structure
 Htree (specialized B-tree)
 Enables large subdirectory chains and many files with good seek time

47



NTFS

* NT File System — modern Windows filesystem (1993)
« Designed for Windows NT (Windows 2000 and up)
 Uses Master File Table rather than Allocation Table

« Has grown to include many features we've seen
* Journaling
« Extents
* Encryption
* Directories using B-Trees

« Adds compression

48



NTFS Master File Table

« Master File Table
 Similar in practice to an array of inodes
 Except that a single file can claim multiple MFT records
 Additional records are indirected additional data block pointers

« Each MFT Record contains
« Standard attributes
« Name and pointer to parent directory
» Storage space

 Can
 Can
 Can

N0
N0

N0

C
C

C

extents to point to series of data blocks
pointers to additional MFT records (for more data blocks)
file data itself!! (if small enough)
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NTFS with medium-sized, mostly non-fragmented file

Start
Master File Table Length /l>
3|
i
™
=
0
MFT HECE‘I’d Start + Length
S Std. Info. | File Name Data (nonresident) (free)
Start
Length
i
m
o
-]

Start + Length
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NTFS with a small file

Master File Table

_ MFT Record (small file)

hhhh

Std. Info.

File Name

Data (resident)

(free)
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NTFS can automatically compress files

 Before write to disk, compress file data blocks
* Only write smaller compressed data

 After read from disk, decompress file data blocks

« Interesting tradeoff
« Read less total blocks from disk
« Spend more CPU time manipulating blocks
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Break + Extend Thinking

« In Windows 10, a service compresses infrequently used files
« What files will this work on and what won't this help with?

53



Break + Extend Thinking

« In Windows 10, a service compresses infrequently used files
« What files will this work on and what won't this help with?
* Text files are super compressible!!

 Code binaries are maybe compressible.

« Unfortunately, cant compress already compressed files
o Particularly: videos and music
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Outline

» Disk Caching

» Classical Filesystems
+ FFS
. FAT

« Improving Reliability
« FSCK
» Journaling

» Journaling Filesystems
o ext3/ext4
« NTFS

« Copy-On-Write
- ZFS




Adding file versioning through copy-on-write

 Correctness could also come with a bonus: ability to version files
* File could be rolled back to an older version from a prior point in time

« Method: instead of over-writing existing data block
« Write update to a brand new data block
 Create a new inode for the file that points to the new data block
 And still points to original data for the other unmodified blocks
* New inode points to new version of file
 Old inode points to old version of file

* No longer needs journal for correctness
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Reminder: hierarchical inodes

» Likely some bit in each
entry specifies whether it
points at:

1. A data block

2. A block with additional
data pointers

 This system can recurse
multiple layers deep

* Allows for really large files

Direct

Data Blocks

Inode

Information

1

2

3

Blocks of
Pointers

Indirect
Data Blocks

1

i
i

13

14

15

2

Blocks of

Pointers

Double Indirect
Data Blocks

128

L4
7’
4
rs
7’
7’
7’
s
N

T

128
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Copy-on-write example

old version new version

Inode —< o ‘0 e
o|e|
Indirect Block /
Pointers
, T ’ TX ,//.TK’. K
Data Blocks / / ’/ B

Write t
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ZFS

 Developed by Sun Microsystems, now Oracle (2006)

» Uses Copy-on-Write transactions

 Snapshots
« Enabled by copy-on-write
« Points in time for the filesystem can be “snapshot”
* Files can be returned to prior versions from the snapshot
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Pooled file system

« ZFS (and other filesystems) use a concept of pools of storage
* Flips around disk-filesystem relationship
 Instead of one filesystem per partition and multiple partitions per disk
« One filesystem manages multiple disks

 Replaces need for RAID by allowing filesystem to make choices

« Common design pattern in computer systems
 Abstractions make systems easy to use
 Breaking abstractions allows for improved performance
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Log-Structured File Systems

 Can go further along copy-on-write path
 Entire disk is just a log of updates to files and inodes

* No longer doing small writes all over disk
 Jumping between inodes and data blocks
« Small, random writes are bad for HDD seek

« Instead, treat disk as a circular buffer that updates are written to
« Write new data, then new inode after it, then next new data
* All writes end up occurring sequentially
« Garbage collect old file versions eventually when space gets low

61



Outline

» Disk Caching

» Classical Filesystems
+ FFS
. FAT

« Improving Reliability
« FSCK
» Journaling

» Journaling Filesystems
o ext3/ext4
« NTFS

« Copy-On-Write
« ZFS




