
Lecture 16:
Filesystem Implementations

CS343 – Operating Systems

Branden Ghena – Spring 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), Ed Lazowska (Washington), and UC Berkeley CS162



Today’s Goals

• Understand about additional filesystem features
• Performance: disk caching

• Reliability: checking, journaling, and copy-on-write

• Explore real-world filesystem designs
• FAT, FFS, ext3/ext4, NTFS, ZFS

2



File systems abstractions

3

I/O API and
syscalls

Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware 
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index., 4KB
Sector(s)

Sector(s)

Erasure Page



What goes within a partition?

• Header (Superblock)
• Details about which filesystem this is

• Metadata about the filesystem

• Free Space Tracking
• Likely a bitmap of whether blocks are used/free

• File Tracking
• Either allocation table or inodes

• File Data

4

Partition

Header

Free Space Tracking

File Tracking

File Data



Create and write a file

5

Create:

1. First, read the parent 
directory to ensure that 
name is not already used.

2. Find & claim a free inode.

3. Add <“name”, inode#> to 
parent directory.

4. Fill-in file metadata.

1

3

4

2



Create and write a file

6

Create:

1. First, read the parent 
directory to ensure that 
name is not already used.

2. Find & claim a free inode.

3. Add <“bar”, inode#> to 
parent directory.

4. Fill-in file metadata.

Write:

1. Look for remaining space 
in existing blocks first.

2. Find & claim a new data 
block.

3. Write data to new block

4. Point to it in inode

1

3

4

2

1

2

3
4



7

• Disk Caching

• Classical Filesystems
• FAT
• FFS

• Improving Reliability
• FSCK
• Journaling

• Journaling Filesystems
• ext3/ext4
• NTFS

• Copy-On-Write
• ZFS

Outline



Many disk interactions should be hitting memory instead

8

open("/foo/bar")

ti
m

e

inode reads/writes 
occur in memory



Filesystem caching

• File I/O can be a significant bottleneck

• So keep useful parts of disk in RAM!
• Improves performance

• OS kernel does this automatically
• Using unused RAM to hold disk blocks

9



Goals for filesystem caching

1. Cache popular blocks so the disk can be accessed less frequently.
• Recall that disk has 10,000× greater delay than RAM.
• Reads are faster if the disk block is already in memory from a recent 

access.
• Writes can be aggregated.

• If a thread writes three times briefly to the same file, these can likely 
be reduced to one write to disk if the writes are delayed.

• If a thread creates a new file and quickly deletes it, these writes can be 
skipped altogether.

• Eventually, changes must be flushed to disk, but there is no rush.

2. Must be careful to prevent two threads from accessing different 
unsynchronized copies of the disk block.
• i.e., make the cache coherent and avoid race conditions

10



Unified Page Cache

• Page replacement policy can simultaneously consider both pages 
from Virtual Memory and pages cached from disk
• May choose to evict either if needed

• Priority:
1. Unwritten disk files or unmodified memory pages

• Situational which is more important, but neither requires writeback

2. Written disk files
• Going to have to be written to disk eventually anyways

3. Modified memory pages
• Must go to swap space to be later read again

11



Prefetching

• Any cache can “prefetch”, loading memory before it’s needed

• Base idea: read multiple blocks from disk sequentially from each 
access

• Advanced: load specific files based on usage patterns

• Need to balance prefetching requests with other disk access
• Don’t want to slow down real accesses with possibly needed prefetching

12



Short break + Question

• What percentage of memory should an OS fill with disk pages?

13



Short break + Question

• What percentage of memory should an OS fill with disk pages?

• As long as it can do it in the background, as much as possible!

• There’s no particular downside:

• As long as the page wasn’t written to,
the RAM can be repurposed later if needed
without requiring additional writes to disk

• (Maybe energy use is a downside?)

14



Real OSes aggressively cache disk in unused RAM

15

linuxatemyram.com

linuxatemyram.com


Real OSes aggressively cache disk in unused RAM

• buffers and cached both 
represent file data that is 
being stored in memory 
for improved performance
• Still available for programs
• Just being made useful for 

now by caching disk

• Might be a lot of RAM’s 
use for big systems
• Total RAM: 128 GB
• Disk cache: 83 GB

16



17

• Disk Caching

• Classical Filesystems
• FAT
• FFS

• Improving Reliability
• FSCK
• Journaling

• Journaling Filesystems
• ext3/ext4
• NTFS

• Copy-On-Write
• ZFS

Outline



FAT (FAT/FAT12/FAT16/FAT32)

• File Allocation Table

• FAT: Microsoft system from before MS-DOS (1977)
• 8 MB max file size
• 9 character file names
• No subdirectories

• FAT32: Windows 2000 (introduced 1996)
• 2 GB max file size
• 255 character file names
• Supports up to 16 TB partitions
• 16 byte granularity for files

18



FAT design choices

• Allocation table for tracking data blocks
• Requires four bytes per block in the disk

• File attributes need to be kept in the directory data block

• Still in use for embedded systems
• Simple to implement

• Still compatible with modern general-purpose OSes

• Works for small and relatively large files and disks

• Think SD cards

• Implements aggressive block caching

19



Fast File System (FFS)

• Unix FileSystem (FS) from 1970
• inode-based design (combination of all the basic stuff covered last time)

• Simple and slow

• inodes are far from data blocks

• data blocks become fragmented over time

• BSD Fast File System (mid-1980s)
• First “Disk aware file system”

• Understands disk seek patterns and sequential access benefits

20



FFS groups

• Split disk space into a set of “cylinder groups”
• Each group has its own bitmaps, inodes, and data

• Keeps data and inodes closer together

21



FFS file placement strategy

• General theme: put related pieces of data near each other

• Rules
1. Put directory data near directory inodes

2. Put file inodes near directory data

3. Put data blocks near file inodes

• Example
• Each directory gets put in an empty group

• Keep all files within a directory in that single group

22



FFS example

• Example:
• Directories: /, /a/, and /b/

• /a/ files: c, d, e

• /b/ files: f

23



FFS large file problem

• A single large file can fill nearly all of a group
• So remaining files would have to be placed in other groups

• Instead, limit filesize per group and place remaining blocks in 
other groups

24

• Most files are small so 
prioritize them

• Rare, large files will have 
worse performance



25

• Disk Caching

• Classical Filesystems
• FAT
• FFS

• Improving Reliability
• FSCK
• Journaling

• Journaling Filesystems
• ext3/ext4
• NTFS

• Copy-On-Write
• ZFS

Outline



Crash tolerance

• Filesystems are persistent and store important data

• They cannot rely on a graceful shutdown
• Power outages happen

• Kernel might panic

• USB plug might be yanked out

• File system structure updates are critical sections
• Not concerned about race conditions, but rather partial updates

• Transactions should be performed atomically, “all or none”

• All reads and writes aren’t necessarily guaranteed
• But system needs to stay consistent

26



Crash example (writing to /foo/bar)

• Crash before write to file’s inode could leak a data block
• Data bitmap was updated to reserve data block and data was written
• But the data block is not pointed to by any inode
• Block ends up wasted

• Other write order could be worse
• Inode points to a block that hasn’t been written and has garbage data
• Or block is still marked as free in the bitmap, and another file will overwrite it!!

27

ti
m

e

Crash here!



File system checker (FSCK)

• After a crash, scan entire disk for contradictions and “fix”
• System pauses boot until FSCK completes

• Example: check data bitmap consistency
• Read every valid inode
• Any referenced data block should be marked as used
• Any used blocks that are not referenced can be marked free

• Also check
• Each inode should only be listed under one directory (without hard links)
• Two inodes should not share a data block
• All block addresses should be valid

28



Problems with FSCK

1. FSCK makes disks consistent, not correct
• Not always obvious how best to fix file system image

• Trivial way to get consistency: reformat disk

2. FSCK is very slow
• Reading from disk is slow

• Reading ALL of disk takes a
long time, especially as disks
increase in size

29



Filesystem transactions

• Goals
• Move reliability mechanism to continuous operations during runtime

• Some recovery after crash is fine, but not entire disk

• Don’t just make file system consistent

• Guarantee correctness

• Solution: enforce atomic transactions
• Each transaction must be performed in its entirety or not at all

• Either all new data is visible

• Or all old data is visible

30



Journaling Filesystems

• Write all transactions to journal instead of actual locations

1. Write the blocks to the log, a reserved part of the disk.
• This makes a durable record of the transaction you plan to commit.
• Continue putting all writes to the log, until commit is called.

2. On commit, write a commit message to the log, then start 
writing all of the logged writes where they belong on disk.
• Clear the log after everything is written again.

31

First, stage 
changes in log

Later, make changes 
permanent



Journaling example

Journal

32

• Current contents of 8 blocks of 
disk and the journal
• Note that the journal is also on disk

• Keeping this abstract
• Blocks could be bitmaps, inodes, 

data, or anything

A 0 0 B C 0 0 0

0 1 2 3 4 5 6 7

0

0

0

0

0

0



Journaling example

Journal

33

• Write transaction start to journal

A 0 0 B C 0 0 0

0 1 2 3 4 5 6 7

Transaction Begin

0

0

0

0

0



Journaling example

Journal

34

• Write transaction start to journal

• Then actions for that transaction
• Along with the data

• Journal must be multiple blocks in 
size

A 0 0 B C 0 0 0

0 1 2 3 4 5 6 7

Transaction Begin

Write Block 6, Data: Y

Write Block 7, Data: Z

0

0

0



Journaling example

Journal

35

• Write transaction start to journal

• Then actions for that transaction
• Along with the data

• Journal must be multiple blocks in 
size

• “Commit” by writing transaction 
end

A 0 0 B C 0 0 0

0 1 2 3 4 5 6 7

Transaction Begin

Write Block 6, Data: Y

Write Block 7, Data: Z

Transaction End

0

0



Journaling example

Journal

36

• Sometime after transaction is 
written, data can actually be 
recorded to disk

A 0 0 B C 0 Y Z

0 1 2 3 4 5 6 7

Transaction Begin

Write Block 6, Data: Y

Write Block 7, Data: Z

Transaction End

0

0



Journaling example

Journal

37

• Sometime after transaction is 
written, data can actually be 
recorded to disk

• And then journal can be cleared

A 0 0 B C 0 Y Z

0 1 2 3 4 5 6 7

0

0

0

0

0

0



Resolving crashes with journaling

• The next time the computer boots, OS resolves filesystem:

1. No transactions happening when crash occurred
• Journal is empty. Do nothing because there were no outstanding transactions.

2. Crash occurred before commit (before Transaction End):
• There is data in the journal, but no commit message.

• Just clear the log to roll back the transaction.

3. Crash occurred after commit, while writing data to main part of disk.
• We don’t know how much of the transaction was finished.

• However, the journal tells us exactly what must be done!

• Replay the transaction (from the beginning), then clear the journal.

38



Break + Check your understanding – resolve after crash

Journal

39

• When did this crash occur?

• What steps should be taken?

Q R 0 B C 0 Y Z

0 1 2 3 4 5 6 7

Transaction Begin

Write Block 0, Data: Q

Write Block 1, Data: R

Write Block 2, Data: S

Transaction End

0



Break + Check your understanding – resolve after crash

Journal

40

• When did this crash occur?
• After commit
• Some data may have even been 

written (impossible to know)

• What steps should be taken?
• Replay transaction and perform the 

writes

Q R S B C 0 Y Z

0 1 2 3 4 5 6 7

Transaction Begin

Write Block 0, Data: Q

Write Block 1, Data: R

Write Block 2, Data: S

Transaction End

0



Break + Check your understanding – resolve after crash again

Journal

41

• When did this crash occur?

• What steps should be taken?

Q R 0 B C 0 Y Z

0 1 2 3 4 5 6 7

Transaction Begin

Write Block 3, Data: B

Write Block 4, Data: C

0

0

0



Break + Check your understanding – resolve after crash again

Journal

42

• When did this crash occur?
• Before transaction committed

• What steps should be taken?
• Delete partial transaction from 

journal

• No need to edit disk blocks

Q R 0 B C 0 Y Z

0 1 2 3 4 5 6 7

0

0

0

0

0

0



Journaling performance

• Transactions only need to be written to the journal for writes

• Interactions with disk can still be cached as before
• Would be lost in a crash, but no consistency problems

• Several writes can be combined into one transaction

• Can avoid writing all disk blocks twice by only tracking metadata
• Writes to bitmaps, inodes, and directories are journaled

• Writes to file data blocks just happen whenever

• File could still be corrupted! But the filesystem is safe

• Likely only corrupted in units of whole blocks

43



44

• Disk Caching

• Classical Filesystems
• FFS
• FAT

• Improving Reliability
• FSCK
• Journaling

• Journaling Filesystems
• ext3/ext4
• NTFS

• Copy-On-Write
• ZFS

Outline



ext2/ext3/ext4

• extended filesystem – default for Linux

• ext2 (1993)
• “Block groups” rather than cylinder groups, of arbitrary size

• ext3 (2001)
• Adds journaling
• Configuration options choose to journal either everything or metadata-only

• ext4 (2006)
• Extents, encryption
• Used on modern-day linux systems

45



Extents reduce number of pointers to data blocks

• Extents
• Instead of raw block addresses

• Store starting block address and length

• Greatly compacts sequentially stored data pointers in inodes

• ext4 uses extents
• 4 extents per file

• Large, fragmented files use hierarchical system like original inodes

46



Other ext4 advances

• Encryption
• Encrypts a directory and all of its contents

• File names and file data

• AES encrypt/decrypt is performed on data blocks during read/write

• Directory data structure
• Htree (specialized B-tree)

• Enables large subdirectory chains and many files with good seek time

47



NTFS

• NT File System – modern Windows filesystem (1993)
• Designed for Windows NT (Windows 2000 and up)

• Uses Master File Table rather than Allocation Table

• Has grown to include many features we’ve seen
• Journaling

• Extents

• Encryption

• Directories using B-Trees

• Adds compression

48



NTFS Master File Table

• Master File Table
• Similar in practice to an array of inodes

• Except that a single file can claim multiple MFT records

• Additional records are indirected additional data block pointers

• Each MFT Record contains
• Standard attributes

• Name and pointer to parent directory

• Storage space

• Can hold extents to point to series of data blocks

• Can hold pointers to additional MFT records (for more data blocks)

• Can hold file data itself!! (if small enough)

49



NTFS with medium-sized, mostly non-fragmented file

50



NTFS with a small file

51



NTFS can automatically compress files

• Before write to disk, compress file data blocks
• Only write smaller compressed data

• After read from disk, decompress file data blocks

• Interesting tradeoff
• Read less total blocks from disk

• Spend more CPU time manipulating blocks

52



Break + Extend Thinking

• In Windows 10, a service compresses infrequently used files
• What files will this work on and what won’t this help with?

53



Break + Extend Thinking

• In Windows 10, a service compresses infrequently used files
• What files will this work on and what won’t this help with?

• Text files are super compressible!!

• Code binaries are maybe compressible.

• Unfortunately, can’t compress already compressed files

• Particularly: videos and music

54



55

• Disk Caching

• Classical Filesystems
• FFS
• FAT

• Improving Reliability
• FSCK
• Journaling

• Journaling Filesystems
• ext3/ext4
• NTFS

• Copy-On-Write
• ZFS

Outline



Adding file versioning through copy-on-write

• Correctness could also come with a bonus: ability to version files
• File could be rolled back to an older version from a prior point in time

• Method: instead of over-writing existing data block
• Write update to a brand new data block

• Create a new inode for the file that points to the new data block

• And still points to original data for the other unmodified blocks

• New inode points to new version of file

• Old inode points to old version of file

• No longer needs journal for correctness

56



Reminder: hierarchical inodes

• Likely some bit in each 
entry specifies whether it 
points at:

1. A data block

2. A block with additional 
data pointers

• This system can recurse 
multiple layers deep
• Allows for really large files

57



Copy-on-write example

58

Write 

old version new version

Inode

Indirect Block 
Pointers

Data Blocks



ZFS

• Developed by Sun Microsystems, now Oracle (2006)

• Uses Copy-on-Write transactions

• Snapshots
• Enabled by copy-on-write

• Points in time for the filesystem can be “snapshot”

• Files can be returned to prior versions from the snapshot

59



Pooled file system

• ZFS (and other filesystems) use a concept of pools of storage
• Flips around disk-filesystem relationship

• Instead of one filesystem per partition and multiple partitions per disk

• One filesystem manages multiple disks

• Replaces need for RAID by allowing filesystem to make choices

• Common design pattern in computer systems
• Abstractions make systems easy to use

• Breaking abstractions allows for improved performance

60



Log-Structured File Systems

• Can go further along copy-on-write path
• Entire disk is just a log of updates to files and inodes

• No longer doing small writes all over disk
• Jumping between inodes and data blocks

• Small, random writes are bad for HDD seek

• Instead, treat disk as a circular buffer that updates are written to
• Write new data, then new inode after it, then next new data

• All writes end up occurring sequentially

• Garbage collect old file versions eventually when space gets low

61



62

• Disk Caching

• Classical Filesystems
• FFS
• FAT

• Improving Reliability
• FSCK
• Journaling

• Journaling Filesystems
• ext3/ext4
• NTFS

• Copy-On-Write
• ZFS

Outline


