
Lecture 17:
Filesystem Principles

CS343 – Operating Systems

Branden Ghena – Spring 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Today’s Goals

• Introduce the general concerns of filesystems.

• Revisit application-level view of filesystems.

• Explore tradeoffs in how filesystems track which blocks are
available and which blocks are in use by which files.

• Generally, understand the “design space” of filesystems.
• Implementations will be selections of these.

2

3

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

Introducing file systems

4

I/O API and
syscalls

Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index., 4KB
Sector(s)

Sector(s)

Erasure Page

Classic OS situation

• Take limited hardware interface (array of blocks) and provide a
more convenient/useful interface with:

1. Naming: Find file by name, not block numbers

2. Organization: Organize file names with directories

3. Translation: Map files to blocks

4. Protection: Enforce access restrictions

5. Reliability: Keep files intact despite crashes, hardware failures, etc.

• We combine all of this to create a filesystem
• Many different approaches and tradeoffs

• FAT32, NTFS, ext4, ZFS, etc.

5

Filesystem challenges

• Disk performance
• Sequential access is fast; random access is slow (for HDDs)

• Persistence of data
• Needs to tolerate sudden power loss without corruption

• Free space management
• Files are created and deleted

• Files grow and shrink in size

6

Hard drive disk (HDD) reminder

7

Western Digital Drive
http://www.storagereview.com/guide/

Solid state drive (SSD) reminder

• Flash memory

• No issues with
random access speed

• Writes are a concern though!
• Writes 10x slower than reads

• Limited write lifetime (~1-10k writes per page)

8

Host

Buffer
Manager
(software
Queue)

Flash
Memory

Controller

DRAM

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

SATA

Translation from user to system view

What happens if user says: “give me bytes 2 – 12?”
• Fetch block corresponding to those bytes
• Return just the correct portion of the block

• What about writing bytes 2 – 12?
• Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size blocks
• Actual disk I/O happens in blocks
• read/write smaller than block size needs to translate and buffer

9

File
System

File
(Bytes)

10

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

Application view of file system

• Directories
• Which are just a file where the data is pointers to other files

• Files
• A handle with associated data

• “Type” of the file comes down to the data within it

• Reminder: “File extensions” in name of file are a convention, not a
necessity

• Special files
• Character and block devices!!

11

Binary file examples

12

Executable
File

Archive
(tar)

File command

• file in Linux command line can determine the type of a file
• https://github.com/file/file

13

https://github.com/file/file

Syscalls to interact with files

• open (or create) a file with a given path (directories & name) and
set the file pointer to the beginning of the file

• read up to a certain number of bytes from an open file, and move
the file pointer for the next read.

• write an array of bytes to an open file (and move the pointer)

• close an open file

• lseek to move the file pointer to a certain index in the file

• fsync to push changes to disk immediately (flush dirty data)

14

Additional file syscalls

• stat/fstat gets file metadata (data about the data)

• rename to move a file

• unlink to remove a file

• mkdir to make a directory

• Linux:
• getdents to list the contents of a directory

• “get directory entries”

• Because “read” would be filesystem-specific to interpret

15

File/directory metadata

• Files also have attributes: readable, writeable, access time, etc.

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number (low-level name) */
mode_t st_mode; /* File type and mode (permissions) */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */
struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

};
16

Filesystem links

• ln unix command creates a link to a file – like a pointer.
• Allows a file to exist in multiple paths without wasting space

• Hard link creates another entry in a directory referring to the
same disk address (inode number).

• Symbolic/Soft link is a special file whose contents is just the
string path of another file.
• Symlinks are much more common in modern practice (ln -s)
• Allow referring to file in other filesystems
• But may lead to a dangling reference – the referred-to file may be

deleted

17

Syscall tracing

• strace in Linux command line shows syscalls used by a process

• Live examples

strace –o OUTPUT ls

strace –o OUTPUT cat

strace –o OUTPUT git status

18

Break + double xkcd

19
https://xkcd.com/2143/ https://xkcd.com/2531/

20

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

Data structures on disk

• A bit different than data structures in memory

• Access must be in units of blocks at a time
• Can’t efficiently read/write a single word

• Instead must read/write entire block containing it

• Ideally want sequential access patterns (sequential accesses are fast)

• Durability
• File system hopefully should be in a meaningful state upon shutdown

21

Disk partitions

• Most computers have one physical disk,
• But they may require multiple filesystems.

• A disk partition is a contiguous chunk of the
disk that can be formatted to store a
filesystem.

• At left, we have:
• Three different Linux partitions: /boot, swap, /
• A Windows partition.
• Each of the partitions may be formatted differently.

• At bootup, initial boot code will present user
with a menu to choose Windows or Linux boot.

22

Disk A

(not drawn to scale)

What does the filesystem need to track?

• Track free disk blocks (within partition)
• Need to know which are available for new data

• Track blocks containing data for files
• Need to know where to read a file from

• Track files in a directory
• Need to be able to walk the directory hierarchy to find files

• All this needs to be maintained in data structures on the disk itself

23

What goes within a partition?

• Generic view of any filesystem
• We’ll talk about specifics next lecture

• Header (Superblock)
• Details about which filesystem this is

• Metadata about the filesystem

24

Partition

Header

Free Space Tracking

File Tracking

File Data

Tracking available blocks on a disk

• Free Space Tracking
• Track which blocks in “File Data” are in use

• Could be a list of block addresses
• Assume block address is 32-bits and 4 KB block

• 1 TB disk -> 250,000,000 blocks

• 1 GB of block addresses

• More complex but space-efficient data structures
are possible

• But we really want to limit reads to disk

25

Partition

Header

Free Space Tracking

File Tracking

File Data

Bitmaps are a more space efficient tracking option

• Each block on disk is represented by a single bit
• 1 means free and 0 means used (or vice versa)
• Every block is listed in order

• 1 TB disk -> 250,000,000 blocks ->
250,000,000 bits -> 30 MB

• Bitmaps for tracking free blocks are a constant size for a
disk
• Upside: easy to work with
• Downside: complex data structures could compress runs of

free/used blocks
• Depends whether disk is expected to be fragmented or not

• Bitmaps are typically used in practice

26

27

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

Tracking available blocks on a disk

• File Tracking
• File attributes

• Ordered blocks where the file data is located

• Allocation Table
• FAT32

• Index Nodes (inodes)
• Unix File System, Fast File System,

• ext3/ext4, NTFS

28

Partition

Header

Free Space Tracking

File Tracking

File Data

Requiring contiguous blocks won’t work

• Need ability to map random blocks to file
• Files in contiguous blocks sounds nice

• Sequential reads are fast

• But requiring it leads to lots of fragmentation (unusable gaps in disk)

29

Forcing sequential access also won’t work

• Linked list in File Data is undesirable too
• Must read each block in order to get next pointer

• No random access to file

• Appending requires reading through all of the
file’s blocks first

30

Partition

Header

Free Space Tracking

File Tracking

File Data

Allocation table

• Keep the linked list idea, but keep a table of block pointers

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number

31

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

Allocation table

• Keep the linked list idea, but keep a table of block pointers

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number

32

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

Allocation table

• Keep the linked list idea, but keep a table of block pointers

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number

33

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

Allocation table

• Keep the linked list idea, but keep a table of block pointers

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number

34

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

Allocation table

• Keep the linked list idea, but keep a table of block pointers

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number

35

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

5 total blocks
{4, 7, 2, 10, 12}

Break + Check your understanding – Allocation table size

• If each block address is 32 bits, and blocks are 4 kB in size, how
big is the Allocation Table for a 2 TB drive?

36

Break + Check your understanding – Allocation table size

• If each block address is 32 bits, and blocks are 4 kB in size, how
big is the Allocation Table for a 2 TB drive?

• 2 TB / 4 KB = 500,000,000 blocks * 4 bytes = 2 GB

37

We really want the allocation table to fit in RAM

• Accessing the allocation table on disk would slow us down
• File blocks are not necessarily sequential

• You might end up having to load in multiple blocks worth of File Tracking

• Instead, at boot, load allocation table into RAM
• File accesses will require scanning the linked list in RAM,

but only a single disk access

• Writes should be sent back to disk occasionally

• But 2 GB is a bit big to leave in RAM all the time…

38

File attributes should be more accessible

• Unclear where attributes should go for a file with allocation table
• Either in the first block of the file

• Or in the directory data

• Separation of attributes from block pointers is undesirable
• Would be nice to have both of them in a single disk read

• Or less than one read if they’re already in RAM

39

Index node (inode)

• Treat “File Tracking” as an array of inodes
• Each inode corresponds to a single file

• Size proportional to the number of files

• inode contents
• File attributes

• Ordered list of pointers to data blocks for the file

• Many improvements have sprung up
• Optimization: coalesce contiguous blocks

• Optimization: for very small files, put data right in the inode!

40

inode

Hierarchical inodes allow for larger file sizes

• Each inode is ≤ one block in size
• So there would be a limit to how many blocks a file can have

• Apply tree structure to block pointers to solve this

41

File system access with inodes

• Open syscall: find inode and load it into memory

• Read/write syscalls: reference inode by file descriptor

42

(fd)

fd

inode

What can we observe about real-world file systems?

43

2007

1. Most files are small

44

2. Most bytes are spent on a few large files

45

Break + Broader Thinking

• Study was on 60,000 Windows PC file systems in a large
corporation from 2000-2004

1. Does this still apply today? Why or why not?

2. Can you think of systems where it especially might not apply?

46

47

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

What goes in the file data?

• Normal files
• Just the file’s data
• Attributes already handled in inode

• Directories
• Structure listing files within this directory

• File name, inode

• Obvious route leads to a fixed maximum file
name size
• 8 characters in MS-DOS plus 3 for extension
• 14 characters in Unix v7
• This is the route of much evil abbreviation

48

Partition

Header

Free Space Tracking

File Tracking

File Data

Directory data structures

• (a) uses variable-
length structures for
each file

• (b) contains an extra
heap section for
holding filenames

• File attributes could
also go here instead of
in the inode

49

50

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

A trace through the filesystem

• Now we have enough knowledge to walk through an entire
filesystem access

• Here we assume
• Bitmap for marking free data blocks

• Bitmap for marking free inode blocks

• Inode for each file/directory

• One or more data blocks for each file/directory

51

Open and read example

52

open("/foo/bar")

ti
m

e

find file inode

Open and read example

53

open("/foo/bar")

ti
m

e

update attributes

Open and read example

54

open("/foo/bar")

ti
m

e

read next file block

Open and read example

55

open("/foo/bar")

ti
m

e

inode reads/writes
occur in memory

Create and write a file

56

Create:

1. First, read the parent
directory to ensure that
name is not already used.

2. Find & claim a free inode.

3. Add <“name”, inode#> to
parent directory.

4. Fill-in file metadata.

1

3

4

2

Create and write a file

57

Create:

1. First, read the parent
directory to ensure that
name is not already used.

2. Find & claim a free inode.

3. Add <“bar”, inode#> to
parent directory.

4. Fill-in file metadata.

Write:

1. Look for remaining space
in existing blocks first.

2. Find & claim a new data
block.

3. Write data to new block

4. Point to it in inode

1

3

4

2

1

2

3
4

58

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

