
Lecture 08:
Advanced Scheduling

CS343 – Operating Systems

Branden Ghena – Spring 2022

Some slides borrowed from:
Wang Yi (Uppsala), and UC Berkeley CS149 and CS162

Administrivia

• Midterm exam Thursday!
• Starts at 9:30am sharp

• Bring a pencil and one sheet of paper with notes

• How to prepare

• Lecture materials on Canvas homepage

• Practice exam on Canvas

• Discussion recording from Friday

2

Today’s Goals

• Describe real-time systems

• Understand scheduling policies based on deadlines

• Explore modern operating system schedulers

3

4

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Normal OSes don’t cut it for all use cases

• Some environments need very specialized systems
• Flight controls

• Autonomous vehicles

• Space exploration

• In each of these scenarios
• Computer failures are unacceptable

• Humans can’t intervene to resolve issues

• We’re going to need a computer system with performance guarantees

5

Example: Pathfinder

6

Radiation-hardened IBM CPU

Pathfinder had periodic tasks that must be executed

10

Tasks to execute

time

Scheduler
(kernel)Manage

Bus

Comms

Weather

Report

Comms
Manage

Bus

Weather

Report

Real-Time Operating Systems

• Goal: guaranteed performance
• Meet deadlines even if it means being unfair or slow

• Limit how bad the worst case is

• Usually mathematically

• It’s not about speed, it’s about guaranteed performance
• Good turnaround and response time are nice, but insufficient

• Predictability is key to providing a guarantee

• RTOS is actually a whole other class worth of material
• Last taught by Peter Dinda in 2005…

11

Types of real-time schedulers

• Hard real-time:
• Meet all deadlines

• Otherwise decline to accept the job

• Ideally: determine in advance if deadlines will be met

• Soft real-time
• Attempt to meet deadlines with high probability

• Often good enough for many non-safety-critical applications

• Quadcopter software

12

Real-time example

• Preemptable jobs with known deadlines (D) and computation (C)
• Durations here are worst-case execution times

13

Prior scheduling policies don’t apply here

14

Round Robin example
Need to
account for
deadlines!

Types of real-time jobs

• Aperiodic
• Jobs we are already accustomed to
• Unpredictable start times, no deadlines

• Periodic (we’ll focus on these)
• Recurs at a certain time interval
• Deadline for completion is before the start of the next time interval

• i.e. deadline equals the period
• Can decide feasibility of schedule at compile-time

• Sporadic
• Unpredictable start time, has a deadline
• Must decide feasibility at runtime and either accept or reject job

15

16

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

17

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

18

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

19

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

20

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Schedulability test for EDF

• Guarantees schedule feasibility if total load is not more than 100%
• All deadlines will be met

• For n tasks with computation time C and deadline (period) D
• A feasible schedule exists if utilization is less than or equal to one:

𝑈 = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

21

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

22

0 5 10 15

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

23

0 5 10 15

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

1/3 + 2/5 + 4/15 = 1

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

24

0 5 10 15

1/3 + 2/5 + 4/15 = 1

Can’t start a job before its period

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

25

0 5 10 15

Earliest deadline changes,
preempting Job B

1/3 + 2/5 + 4/15 = 1

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

26

0 5 10 15

Schedule repeats at least common multiple

1/3 + 2/5 + 4/15 = 1

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

27

0 5 10 15

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

28

0 5 10 15

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

1/2 + 1/3 + 1/4 = 1.08

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

29

0 5 10 15

U = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Missed deadline!

1/2 + 1/3 + 1/4 = 1.08

Break + Thinking

• Where do the job deadlines come from? Provide an example.

30

Break + Thinking

• Where do the job deadlines come from? Provide an example.

• Real-world constraints!

• Autonomous vehicle:

• “If I don’t finish the detection algorithm by time N,
then I will no longer be able to stop in time to avoid what it detects.”

• In this example, deadline might vary with velocity,
or maybe we just choose a deadline based on fastest velocity.

31

32

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Earliest Deadline First tradeoffs

Good qualities

• Simple concept and simple schedulability test

• Excellent CPU utilization

Bad qualities

• Hard to implement in practice
• Need to constantly recalculate task priorities
• CPU time spent in scheduler needs to be counted against load

• Unstable: Hard to predict which job will miss deadline
• Utilization was greater than 1, so we knew there was a problem
• But we had to work out the whole schedule to see Job C missed

33

Rate Monotonic Scheduling (RMS)

• Priority scheduling

• Assign fixed priority of 1/Period for each job
• Makes the scheduling algorithm simple and stable

• Only lowest priority jobs might miss deadlines

• If any fixed-priority scheduling algorithm can schedule a workload,
So can Rate Monotonic Scheduling
• There could be dynamic-priority systems that beat it

• But they would be more complicated and take more cycles to run

34

Rate Monotonic Scheduling example

• Schedule the following workload with RMS
• Job A: period 3, computation 1 -> Priority 1/3

• Job B: period 5, computation 2 -> Priority 1/5

35

0 5 10 15

Schedulability test for RMS

• Schedulability is more complicated for RMS unfortunately
• For a workload of n jobs with computation time C and period D

𝑈 = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 𝑛 ∗ (2
1
𝑛 − 1)

• U(1) = 1.0

• U(2) = 0.828

• U(3) = 0.779

…

• U(∞) = 0.693

36

Lower Bound on schedulability

RMS schedulability test is conservative

𝑈 = ෍

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 𝑛 ∗ (2
1
𝑛 − 1)

• 0 ≤ 𝑈 ≤ 𝑛 ∗ (2
1

𝑛 − 1)
• Schedulable! (so less than 69% is always schedulable)

• 𝑛 ∗ (2
1

𝑛 − 1) < 𝑈 ≤ 1
• Maybe schedulable

• 1 < 𝑈
• Not schedulable

37

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

38

0 5 10 15

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

39

0 5 10 15

1/3 + 2/5 + 4/15 = 1

U = 1
Maybe schedulable!

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1 -> Highest priority

• Job B: period 5, computation 2 -> Middle priority

• Job C: period 15, computation 4 -> Lowest priority

40

0 5 10 15

1/3 + 2/5 + 4/15 = 1

U = 1
Maybe schedulable!

Rate Monotonic Scheduling tradeoffs

Upsides
• Still conceptually simple

• Easy to implement

• Stable (lower priority jobs will fail to meet deadlines in overload)

Downsides
• Lower CPU utilization

• Might not be able to utilize more than 70% of the processor

• Non-precise schedulability analysis

41

A problem with priority schedulers: priority inversion

• Other concepts from OS still apply when we’re scheduling
• Particularly locks and synchronization

• Imagine Task 1 and Task 3 both need to share a lock

42

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Task 3

Task 2

Task 1

P
ri
o
ri
ty Acquire

lock

p
re

e
m

p
t

re
le

a
se

d
o
n
e

Release
lock Task 1 is

waiting on
Task 2!!

Priority inversion occurred on Pathfinder!

• Bus management missed deadlines while
waiting on meteorology because medium-
priority tasks were taking too long
• System rebooted when deadline was missed

43

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Weather

Comms

Manage Bus

P
ri
o
ri
ty

p
re

e
m

p
t

re
le

a
se

d
o
n
e

Priority inheritance solution to priority inversion

• A solution is to temporarily increase priority for tasks holding
resources that high priority tasks need

44

Preempted
by Task 3

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Task 3

Task 2

Task 1

P
ri
o
ri
ty Acquire

lock

At Priority 1

re
le

a
se

d
o
n
e

Release
lock

d
o
n
e

Task 3 inherits priority of
Task 1 while holding
lock Task 1 needs

Break + Chat/Relax

• Let’s take a mental break while switching sections

• If you really want guidance:
• Share one thing to remember to write on your notes sheet

45

46

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Priority scheduling policies

• Systems may try to set priorities according to some policy goal

• MLFQ Example:
• Give interactive jobs higher priority than long calculations

• Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness:
• elevate priority of threads that don’t get CPU time

(ad-hoc, bad if system overloaded)

47

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Linux O(1) scheduler (Linux 2.6)

• Goals
• Keep the runtime of the scheduler itself short

• Avoid O(n) algorithms
• Instead only make adjustments to a single job when it is swapped

• Predictable algorithm
• Identify interactive versus noninteractive processes with heuristics

• Processes with long average sleep time get a priority boost

• Note my machines right now:
• Ubuntu VM: 332 processes (867 threads)
• Windows: 224 processes (2591 threads)
• MacOS: 430 processes (2249 threads)
• Major concern: many processes mean O(n) could be very long…

48

Priority in Linux O(1) scheduler

• MLFQ-Like Scheduler with 140 Priority Levels
• 40 for user tasks, 100 soft “realtime” tasks

• Timeslice depends on priority – linearly mapped onto timeslice
range

49

Kernel/Realtime Tasks User Tasks

0 100 139

Workings of the O(1) scheduler

• Round robin at priority
levels like MLFQ

• Each priority level gets a
run quota

• On expiration of quota
• Recalculate priority

• Insert in expired queue

• When all jobs are gone
from active queue
• Swap expired and active

queue pointers

50

https://www.ibm.com/developerworks/library/l-scheduler/index.html

Priorities can lead to starvation

• The policies we’ve studied so far:
• Always prefer to give the CPU to a prioritized job

• Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• The goal was to serve a mix of CPU-bound, I/O bound, and
Interactive jobs effectively on common hardware
• Give the I/O bound ones enough CPU to issue their next file operation and

wait (on those slow discs)

• Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

• Let the CPU bound ones grind away without too much disturbance

51

Idea: proportional-share scheduling

• Many of the policies we’ve studied always prefer to give CPU to a
prioritized job
• Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally
• Give each job a share of the CPU according to its priority

• Low-priority jobs get to run less often

• But all jobs can at least make progress (no starvation)

52

Lottery Scheduling

• Give out “tickets” according to proportion each job should receive

• Every quantum:
• Draw one ticket at random
• Schedule that job to run

• If there are N jobs,
probability of pick a job is:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑖)

σ𝑗=0
𝑛−1 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑗)

• Definitely not suitable for real-time systems!

53

1

10

Stride Scheduling

• Same idea, but remove the random element

• Give each job a stride number inversely proportional to tickets
• A=100 tickets, B=50 tickets, C=250 tickets

• A=100 stride, B=200 stride, C= 40 stride

• Scheduler
• Pick job with lowest cumulative strides and run it

• Increment its cumulative strides by its stride number

• Essentially: low-stride (high-ticket) jobs get run more often

54

Stride scheduling in practice

Triangle is high priority (low stride)

Circle is medium priority

Square is low priority (high stride)

• “Pass value” is the cumulative
stride count

• Each colored line is an
instance where a job runs
• And stride count is increased

afterwards

55

Proportional-share scheduling is impossible instantaneously

• Goal: each process gets an
equal share of processor

• N threads “simultaneously”
execute on 1/Nth of processor

• Doesn’t work in the real world
• Jobs block on I/O

• OS needs to give out timeslices

56

At any time t
we want to observe:

CPU
Time

T1 T2 T3

t/N

Linux Completely Fair Scheduler (CFS)

• Track processor time given to
job so far

• Scheduling decision
• Choose thread with minimum

processor time to schedule
• “Repairs” illusion of fairness

• Update processor time when the
job finishes
• Timeslice expiration is a big

update
• Blocking I/O results in maintaining

small processor time

57

CPU
Time T1

T2
T3

t/N

What if we make shares
proportional over a longer
period?

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

58

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?

59

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?
• Timeslice needs to stay much greater than context switch time

60

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Constraint 2: avoid excessive overhead
• Don’t want to spend all our time context switching if there are many jobs

• Set a minimum length for timeslices

• Quanta = max(Target_latency/N, minimum_length)

61

CFS priorities are applied as “virtual runtime”

• Virtual runtime doesn’t have to
match wall time

• Change time to match priority
• Higher priority jobs have slower

virtual runtime

• Lower priority have faster virtual
runtime

• Scheduler’s decisions on made
to evenly proportion virtual
runtime

62

Physical
CPU Time B

A

Virtual
CPU Time

B A

B is higher
priority than A

Multicore scheduling

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries
to reschedule it on the same CPU
• Cache reuse

• Grouping threads could help or hurt…

• Implementation-wise, helpful to have per-core scheduling data
structures
• Each core can make its own scheduling decisions

• Can steal work from other cores, if nothing to do

63

Active work in scheduling

• Getting scheduling right on multicore can be difficult
• No way to know whether a process will be more I/O or CPU bound in the

future

• Want to keep threads on the same core, but also not waste cores

• In 2016, researchers found issues in Linux scheduler
implementation that lead to 13%+ slowdown in jobs
• https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-

wasted-cores/

• Another metric: energy use

64

https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/

Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out

Average Turnaround Time Shortest Remaining Processing Time

Average Response Time Round Robin

Favoring Important Tasks Priority

Fair CPU Time Usage Linux CFS

Meeting Deadlines EDF or RMS

65

66

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

