Lecture 08:
Advanced Scheduling

CS343 — Operating Systems
Branden Ghena — Spring 2022

Some slides borrowed from:
Wang Yi (Uppsala), and UC Berkeley CS5149 and CS162

Northwestern

Administrivia

» Midterm exam Thursday!
» Starts at 9:30am sharp

 Bring a pencil and one sheet of paper with notes

* How to prepare
 Lecture materials on Canvas homepage
 Practice exam on Canvas
» Discussion recording from Friday

Today’s Goals

 Describe real-time systems

« Understand scheduling policies based on deadlines

 Explore modern operating system schedulers

Outline

- Real Time Operating Systems
« Earliest Deadline First scheduling
 Rate Monotonic scheduling

« Modern Operating Systems

* Linux O(1) scheduler
« Lottery and Stride scheduling
* Linux Completely Fair Scheduler

Normal OSes don't cut it for all use cases

« Some environments need very specialized systems
* Flight controls
« Autonomous vehicles
« Space exploration

 In each of these scenarios
« Computer failures are unacceptable
« Humans can't intervene to resolve issues
« We're going to need a computer system with performance guarantees

Example: Pathfinder

Radiation-hardened IBM CPU

Pathfinder had periodic tasks that must be executed

Tasks to execute

Manage
Bus

Weather
Report

g

Scheduler
(kernel)

\

A\ 4
Manage Weather
Bus Report

time

10

Real-Time Operating Systems

« Goal: guaranteed performance
« Meet deadlines even if it means being unfair or slow
* Limit how bad the worst caseis
 Usually mathematically

« It's not about speed, it's about guaranteed performance
« Good turnaround and response time are nice, but insufficient
* Predictability is key to providing a guarantee

« RTOS is actually a whole other class worth of material
» Last taught by Peter Dinda in 2005...

11

Types of real-time schedulers

» Hard real-time:
» Meet all deadlines
» Otherwise decline to accept the job
» Ideally: determine in advance if deadlines will be met

« Soft real-time
« Attempt to meet deadlines with high probability
« Often good enough for many non-safety-critical applications
« Quadcopter software

12

Real-time example

* Preemptable jobs with known deadlines (D) and computation (C)
e Durations here are worst-case execution times

T = D l

13

Prior scheduling policies don't apply here

Round Robin example

T
12
T3

T4

Missed
. L deadline!!
b]

Need to

account for
deadlines!

Types of real-time jobs

 Aperiodic
 Jobs we are already accustomed to
« Unpredictable start times, no deadlines

» Periodic (we’ll focus on these)
« Recurs at a certain time interval
« Deadline for completion is before the start of the next time interval
* i.e. deadline equals the period
« Can decide feasibility of schedule at compile-time

 Sporadic
« Unpredictable start time, has a deadline
« Must decide feasibility at runtime and either accept or reject job

15

Outline

- Real Time Operating Systems
 Earliest Deadline First scheduling
 Rate Monotonic scheduling

« Modern Operating Systems

* Linux O(1) scheduler
« Lottery and Stride scheduling
* Linux Completely Fair Scheduler

Earliest Deadline First (EDF) Scheduling

» Priority scheduling with pre-emption

» Highest priority given to task with soonest deadline
 Task = (Period, Duration)

Initial arrival Deadline

T1=(4’1)T:::¢:::¢:::1:

T2=(5,2)T::::1::::1::::1:

T3=(7’2)T::::::¢::::::¢'

0 5 10 15

17

Earliest Deadline First (EDF) Scheduling

» Priority scheduling with pre-emption

» Highest priority given to task with soonest deadline
 Task = (Period, Duration)

Initial arrival Deadline

T1=(4’1).::¢:::¢:::1:

T2=(5,2)T::::1::::1::::1:

T3=(7’2)T::::::¢::::::¢'

0 5 10 15

18

Earliest Deadline First (EDF) Scheduling

» Priority scheduling with pre-emption

» Highest priority given to task with soonest deadline
 Task = (Period, Duration)

Initial arrival Deadline

T1=(4’1).::¢:::¢:::1:

T2=(5,2)T—-:¢::::1:::=11

T3=(7’2)T::-:¢::::::11

0 5 10 15

19

Earliest Deadline First (EDF) Scheduling

» Priority scheduling with pre-emption

» Highest priority given to task with soonest deadline
 Task = (Period, Duration)

Initial arrival Deadline

T-@ey W 1 - =
62 | 1
T3=(7’2)T — - -

0 5 10 15

ri;?

20

Schedulability test for EDF

« Guarantees schedule feasibility if total load is not more than 100%
* All deadlines will be met

 For ntasks with computation time Cand deadline (period) D
« A feasible schedule exists if utilization is less than or equal to one:

n
U—z) 4
_ e

—1

21

Check your understanding

« Can we schedule the following workload?
 Job A: period 3, computation 1
 Job B: period 5, computation 2
 Job C: period 15, computation 4

1!1!!1!!1

Check your understanding

« Can we schedule the following workload? =/
- Job A: period 3, computation 1 U= 2 (3}) =1
« Job B: period 5, computation 2 =1
 Job C: period 15, computation 4

1/3+2/5+4/15=1

1!1!!1!!1

Check your understanding

« Can we schedule the following workload?
 Job A: period 3, computation 1
 Job B: period 5, computation 2
 Job C: period 15, computation 4

.—!—-Itllilli

t o ¢,

—> > >

T —t— —t
0 5 10 15

Can't start a job before its period

1/3+2/5+4/15=1

24

Check your understanding

« Can we schedule the following workload?
 Job A: period 3, computation 1
 Job B: period 5, computation 2
 Job C: period 15, computation 4

.—4—.!.!1!!1

Tllrlllt

—> > >

TI — —t
0 ST 10 15

Earliest deadline changes,
preempting Job B

1/3+2/5+4/15=1

25

Check your understanding

« Can we schedule the following workload? Z
 Job A: period 3, computation 1 2
« Job B: period 5, computation 2 i
 Job C: period 15, computation 4

.—4—.!.!.‘—!—.%1%!

1/3+2/5+4/15=1

T::¢ Iﬁliiil
2-5-10 —

Schedule repeats at least common multiple

26

Check your understanding

« Can we schedule the following workload?
« Job A: period 2, computation 1
« Job B: period 3, computation 1
 Job C: period 4, computation 1

11!1!1!1!1!1!1.

Check your understanding

« Can we schedule the following workload?

* JO
* JO
* JO

D A: period 2, computation 1
0 B: period 3, computation 1

0 C: period 4, computation 1

1!1!1!1!1!1!1!1.

1/2+1/3+1/4=1.08

28

Check your understanding

« Can we schedule the following workload?

 Job A: period
 Job B: perioc

 Job C: period

2, computation 1
3, computation 1
4, computation 1

L BB

th 1:‘1::1

1:1:?

T — — -

10 T 15

Missed deadline!

1/2+1/3+1/4=1.08

29

Break + Thinking

« Where do the job deadlines come from? Provide an example.

30

Break + Thinking
« Where do the job deadlines come from? Provide an example.
 Real-world constraints!

« Autonomous vehicle:

« “If I don't finish the detection algorithm by time N,
then I will no longer be able to stop in time to avoid what it detects.”

* In this example, deadline might vary with velocity,
or maybe we just choose a deadline based on fastest velocity.

31

Outline

- Real Time Operating Systems
« Earliest Deadline First scheduling
- Rate Monotonic scheduling

« Modern Operating Systems

* Linux O(1) scheduler
« Lottery and Stride scheduling
* Linux Completely Fair Scheduler

Earliest Deadline First tradeoffs

Good qualities
 Simple concept and simple schedulability test
 Excellent CPU utilization

Bad qualities

« Hard to implement in practice
* Need to constantly recalculate task priorities
» CPU time spent in scheduler needs to be counted against load

 Unstable: Hard to predict which job will miss deadline
» Utilization was greater than 1, so we knew there was a problem
« But we had to work out the whole schedule to see Job C missed

33

Rate Monotonic Scheduling (RMS)

* Priority scheduling

« Assign fixed priority of 1/Period for each job
« Makes the scheduling algorithm simple and stable
* Only lowest priority jobs might miss deadlines

« If any fixed-priority scheduling algorithm can schedule a workload,
So can Rate Monotonic Scheduling

» There could be dynamic-priority systems that beat it
 But they would be more complicated and take more cycles to run

34

Rate Monotonic Scheduling example

« Schedule the following workload with RMS
 Job A: period 3, computation 1 -> Priority 1/3
 Job B: period 5, computation 2 -> Priority 1/5

35

Schedulability test for RMS

 Schedulability is more complicated for RMS unfortunately
 For a workload of mjobs with computation time € and period D

n

Ci 1 "
U = 2 (_l) < n (Zn . 1) Lower Bound on schedulability

i=1 D;
« U(1) =1.0
« U(2) = 0.828
. U(3) = 0.779

+ U(o0) = 0.693

36

RMS schedulability test is conservative

i()<n*(2n—1)

=1

°0SUSn*(Z%—1)
» Schedulable! (so less than 69% is always schedulable)

°n*(2%—1)<US1
« Maybe schedulable

e 1 < U
* Not schedulable

37

Check your understanding

« Can we schedule the following workload with RMS?
 Job A: period 3, computation 1
 Job B: period 5, computation 2
 Job C: period 15, computation 4

1!1!!1!!1

Check your understanding

« Can we schedule the following workload with RMS?
 Job A: period 3, computation 1

- - 1/3 + 2/5 + 4/15 = 1
- Job B: period 5, computation 2 /3 + 2[5+ 4/15

« Job C: period 15, computation 4 U=1
Maybe schedulable!

T 1 — 1 — 1 — 1 1

T | 1 | 1 1

T —+— | 1

0 5 10 15

39

Check your understanding

« Can we schedule the following workload with RMS?
 Job A: period 3, computation 1 -> Highest priority

» Job B: period 5, computation 2 -> Middle priority 13 +2/5+4/15=1

 Job C: period 15, computation 4 -> Lowest priority Uu=1
Maybe schedulable!

T:::-::-:::-

0 5 10 15

Rate Monotonic Scheduling tradeoffs

Upsides
« Still conceptually simple
« Easy to implement
« Stable (lower priority jobs will fail to meet deadlines in overload)

Downsides
« Lower CPU utilization
 Might not be able to utilize more than 70% of the processor
» Non-precise schedulability analysis

41

A problem with priority schedulers: priority inversion

 Other concepts from OS still apply when we're scheduling
» Particularly locks and synchronization

» Imagine Task 1 and Task 3 both need to share a lock

A R?Lecak\ Task 1 is

o[kt e &C]:g) waiting on
S | Task 2 loc'i 3! i§§ Task 21!
o o =
sy (I O
| | | | —
0 2 4 6 8 10

42

Priority inversion occurred on Pathfinder!

« Bus management missed deadlines while
waiting on meteorology because medium-
priority tasks were taking too long

» System rebooted when deadline was missed

2 g = 3! 8
S | comms g 2 g | £ &
o Q| \ a4t . = v
wo (N BB WB D
| | | | | |
| | | | | | >
0 2 4 6 8 10

43

Priority inheritance solution to priority inversion

* A solution is to temporarily increase priority for tasks holding
resources that high priority tasks need

————_Task 3 inherits priority of
Task 1 while holding
lock Task 1 needs

A

Task 1

Acquire

Priority

44

Break + Chat/Relax

» Let's take a mental break while switching sections

« If you really want guidance:
» Share one thing to remember to write on your notes sheet

45

Outline

 Real Time Operating Systems
« Earliest Deadline First scheduling
 Rate Monotonic scheduling

- Modern Operating Systems

* Linux O(1) scheduler
« Lottery and Stride scheduling
* Linux Completely Fair Scheduler

Priority scheduling policies

« Systems may try to set priorities according to some policy goal

 MLFQ Example:

* Give interactive jobs higher priority than long calculations
* Prefer jobs waiting on I/O to those consuming lots of CPU

 Try to achieve fairness:

« elevate priority of threads that don’t get CPU time
(ad-hoc, bad if system overloaded)

Priority 3 Job 1 Job 2 Job 3
Priority 2 Job 4

Priority 1
Priority O Job 5 Job 6 Job 7

47

Linux O(1) scheduler (Linux 2.6)

» Goals
 Keep the runtime of the scheduler itself short
 Avoid O(n) algorithms
 Instead only make adjustments to a single job when it is swapped
* Predictable algorithm
« Identify interactive versus noninteractive processes with heuristics
* Processes with long average sleep time get a priority boost

* Note my machines right now:
« Ubuntu VM: 332 processes (867 threads)
» Windows: 224 processes (2591 threads)
« MacOS: 430 processes (2249 threads)
« Major concern: many processes mean O(n) could be very long...

48

Priority in Linux O(1) scheduler

* MLFQ-Like Scheduler with 140 Priority Levels
« 40 for user tasks, 100 soft “realtime” tasks

 Timeslice depends on priority — linearly mapped onto timeslice
range

Kernel/Realtime Tasks User Tasks
0 100 139

Workings of the O(1) scheduler

* Round robin at priority
levels like MLFQ

CPU-X Expired CPU-X Active
—— — - Each priority level gets a

e T e W run quota
, = , e > reame wscpronies. © ON €Xpiration of quota
> L=~ o L7~ | » Recalculate priority
: [= [oy 10| « Insert in expired queue
2 & prowor| | 2 [F promyor | » When all jobs are gone
gl = i = U beeswo. from active queue

T s prionty 140 T prony 140 | » Swap expired and active

— queue pointers

50

https://www.ibm.com/developerworks/library/l-scheduler/index.html

Priorities can lead to starvation

* The policies we've studied so far:
* Always prefer to give the CPU to a prioritized job
« Non-prioritized jobs may never get to run

» But priorities were a means, not an end

* The goal was to serve a mix of CPU-bound, I/O bound, and
Interactive jobs effectively on common hardware

* Give the I/O bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

* Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

» Let the CPU bound ones grind away without too much disturbance

51

Idea: proportional-share scheduling

« Many of the policies we've studied always prefer to give CPU to a
prioritized job
« Non-prioritized jobs may never get to run

» Instead, we can share the CPU proportionally
 Give each job a share of the CPU according to its priority
 Low-priority jobs get to run less often
 But all jobs can at least make progress (no starvation)

52

Lottery Scheduling

* Give out "“tickets” according to proportion each job should receive

* Every quantum:
* Draw one ticket at random

» Schedule that job to run
]
o If there are N jobs, @ []
probability of pick a job is: —]
pTlOTlty(]Obl) .
Z? o priority(jobj) =
N
- Definitely not suitable for real-time systems! L

10

53

Stride Scheduling

« Same idea, but remove the random element

» Give each job a stride number inversely proportional to tickets
« A=100 tickets, B=50 tickets, C=250 tickets
« A=100 stride, B=200 stride, C= 40 stride

 Scheduler
* Pick job with lowest cumulative strides and run it
« Increment its cumulative strides by its stride number

 Essentially: low-stride (high-ticket) jobs get run more often

54

Stride scheduling in practice

is high priority (low stride)

is medium priority
Square is low priority (high stride)

e “Pass value” is the cumulative
stride count

* Each colored line is an
instance where a job runs

* And stride count is increased
afterwards

Pass Value

20 —
15 —

10 —

%
e

o/
o /J/

I T T T T I T
5 10

Time (quanta)

55

Proportional-share scheduling is impossible instantaneously

» Goal: each process gets an
equal share of processor

At anytime ¢t
we want to observe: - N threads “simultaneously”

[execute on 1/Nt of processor
CPU . . Z'//V

« Doesn’t work in the real world
 Jobs block on I/O
» OS needs to give out timeslices

Time

56

Linux Completely Fair Scheduler (CFS)

What if we make shares » Track pfrocessor time given to
proportional over a longer Job so far
period?

« Scheduling decision

* Choose thread with minimum
processor time to schedule

[« “Repairs” illusion of fairness
CPU Ty Z/N
Time - Update processor time when the
job finishes
 Timeslice expiration is a big
update

* Blocking I/O results in maintaining
small processor time

57

Linux CFS: responsiveness and throughput

 Constraint 1: target latency
« Want a maximum duration before a job gets some service
« Dynamically set timeslice based on number of jobs
* Quanta = Target_latency / N
« 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

58

Linux CFS: responsiveness and throughput

 Constraint 1: target latency
« Want a maximum duration before a job gets some service
« Dynamically set timeslice based on number of jobs
* Quanta = Target_latency / N
« 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

« Check your understanding. What's the problem here?

59

Linux CFS: responsiveness and throughput

 Constraint 1: target latency
« Want a maximum duration before a job gets some service
« Dynamically set timeslice based on number of jobs
* Quanta = Target_latency / N
« 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

« Check your understanding. What's the problem here?
« Timeslice needs to stay much greater than context switch time

60

Linux CFS: responsiveness and throughput

 Constraint 1: target latency
« Want a maximum duration before a job gets some service
« Dynamically set timeslice based on number of jobs
* Quanta = Target_latency / N
« 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

 Constraint 2: avoid excessive overhead
« Don’t want to spend all our time context switching if there are many jobs
« Set a minimum length for timeslices
* Quanta = max(Target_latency/N, minimum_length)

61

CFS priorities are applied as “virtual runtime”

A

B is higher

» Virtual runtime doesn't have to priority than A

match wall time Physical
CPU Time

» Change time to match priority

 Higher priority jobs have slower
virtual runtime %

« Lower priority have faster virtual
runtime Virtual

CPU Time

e Scheduler’s decisions on made
to evenly proportion virtual
runtime

62

Multicore scheduling

 Affinity scheduling: once a thread is scheduled on a CPU, OS tries
to reschedule it on the same CPU
« Cache reuse
« Grouping threads could help or hurt...

» Implementation-wise, helpful to have per-core scheduling data
structures
« Each core can make its own scheduling decisions
 Can steal work from other cores, if nothing to do

63

Active work in scheduling

» Getting scheduling right on multicore can be difficult

* No way to know whether a process will be more I/O or CPU bound in the
future

« Want to keep threads on the same core, but also not waste cores

« In 2016, researchers found issues in Linux scheduler
implementation that lead to 13%+ slowdown in jobs

« https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-
wasted-cores/

» Another metric: energy use

64

https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/

Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out
Average Turnaround Time Shortest Remaining Processing Time
Average Response Time Round Robin
Favoring Important Tasks Priority
Fair CPU Time Usage Linux CFS

Meeting Deadlines EDF or RMS

Outline

 Real Time Operating Systems
« Earliest Deadline First scheduling
 Rate Monotonic scheduling

« Modern Operating Systems

* Linux O(1) scheduler
« Lottery and Stride scheduling
* Linux Completely Fair Scheduler

