
Lecture 04:
Concurrency Control

CS343 – Operating Systems

Branden Ghena – Spring 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS61C and CS162

Today’s Goals

• Explore problems with concurrently shared memory.

• Introduce locks as a simple solution for correctness.
• Design of locks

• Implementation of locks

• Optimize locks to enforce fairness and increase performance.

2

Reminder on performance (SPEC benchmark)

3Copyright Elsevier Inc. 2019

Review: modern hardware capabilities

4

L1 Cache L1 Cache L1 Cache L1 Cache

L2 Cache L2 Cache L2 Cache L2 Cache

L3 Cache

Processor (also known as CPU)

5

• Interrupts

• Race Conditions

• Lock Design

• Basic Lock Implementation

• Lock Optimizations

Outline

Where else does concurrency come from?

• Processors introduce it for performance reasons by running
multiple processes and threads

• Interactions with the outside world introduce it because events
occur whenever they feel like it
• Network request arriving
• User presses a key
• Motion sensor triggers

• Also, we need some way to deal with errors the occur when
executing instructions
• No pathway for returning an error from an instruction

6

Interrupts

A way for the CPU to be, well, interrupted.

• CPU hardware switches to privileged mode
• Now any instruction can be executed, including privileged ones.

• Execution jumps to a predefined location
• Handler specified in the CPU’s interrupt vector table
• Lets the kernel deal with whatever the event was

• Used to support asynchronous I/O
• Lets a hardware device tell the CPU that some data is ready
• Remember that a disk operation is millions of times slower than an add.

• CPU has electrical pin(s) for hardware interrupts.

• There is also an instruction for software interrupts (like traps!)

Interrupt Vector Table

8

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt Vector Table

9

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Differences from traps

• When we performed a system call:
• We knew it was about to happen.

• Set up our registers in advance.

• Performed what looked sort of like a function call.

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order

execution, multiple cores and threads, and caches

10

Interrupt handlers

• Interrupt context
• Can’t just enter the kernel like we did with system calls
• Interrupt could have occurred while we were in the kernel

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire

core jumped to handling this interrupt

• Handled by the operating system
• Processes are interrupted, but otherwise not normally involved

11

Why are interrupts important to the kernel?

• Interrupts are a case where the kernel could have a data race with
itself!!
• Imagine being in the middle of an operation on a device

• When an interrupt comes in for that same device

• Data structures for the device could end up messed up

• Takeaway: concurrency isn’t just about processes and threads
• Many different software designs need to deal with it

12

13

• Interrupts

• Race Conditions

• Lock Design

• Basic Lock Implementation

• Lock Optimizations

Outline

Concurrency can create tricky problems

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin (counter = %d)\n",

counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d,

goal was %d)\n", counter, 2*LOOPS);

return 0;

}

• Start two threads, each of which increments a shared global counter variable 107 times.
• The volatile keyword tells the compiler that the counter variable may change unexpectedly (in

this case, changed by the other thread).
14

Concurrency can create tricky problems

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin (counter = %d)\n",

counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d,

goal was %d)\n", counter, 2*LOOPS);

return 0;

}

• Start two threads, each of which increments a shared global counter variable 107 times.
• The volatile keyword tells the compiler that the counter variable may change unexpectedly (in

this case, changed by the other thread).
15

Live example – data race

• Compile with “gcc -pthread -o race data_race.c”

[brghena@ubuntu race_condition] $./race

main: begin (counter = 0)

B: begin

A: begin

A: done

B: done

main: done with both (counter = 12161815, goal was 20000000)

• Different results each time you run it

16

zip with code linked on Canvas

What’s the problem?

• Which thread runs at a given time is unpredictable
• Might even be both simultaneously

• But is this a problem?

• Why does it matter who
increments the counter first?

• The net result should be
20,000,000 regardless, right?

• Actually, there is a serious bug

• It will yield a different result every time!

• To understand, we need to break the abstraction of C
• Think about the assembly instructions

• In short, the “counter++” operation is not atomic.

$./race
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both
(counter = 10416197, goal was 20000000)

17

Incrementing a number in assembly

• “counter++” has to:
1. Copy from the memory location of the counter variable to a register

2. Increment the register’s value

3. Copy from the register back to memory

• Assuming that “counter” is in memory location 0x8049a1c:
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

• The scheduler can interrupt the thread before or after the “add”
• This would cause both threads to read the same value, increment it to

the same value, and thus they would repeat work.

18

The increment failure in detail: 50 + 1 + 1 = 51!
Remember: each thread has its own unique registers

%RIP

Assume the scheduler is evil

• Remember that processes have no control over the scheduler.

• So, to protect against concurrency bugs, we must assume that the
scheduler can interrupt us at any time and schedule any other
process.

• In other words, assume that the scheduler is adversarial, and will
do the worst possible scheduling.

• To prevent weird and rare concurrency bugs,
your code must work correctly even when
faced with an evil scheduler.

21

Live example – data races when executing for less time

• What happens if we modify the loop duration?

[brghena@ubuntu race_condition] $./race

main: begin (counter = 0)

B: begin

B: done

A: begin

A: done

main: done with both (counter = 200, goal was 200)

• Thread is now completing its work before being re-scheduled
• The problem is not solved, it will just occur rarely (and be harder to debug)

22

Race Condition

• Two or more things are happening at the same time

• It’s not clear which will run when

• The result will be different depending on execution order

• Result becomes indeterminate (non-deterministic)

• Data race
• Two or more threads access shared memory at the same time

and at least one modifies it

23

Critical Section

• Code that interacts with a shared resource must not be executed
concurrently

• Part of code that accesses a shared resource is a Critical Section
• In other words, code that would lead to a data race

• May be multiple, unrelated critical sections for multiple shared resources

• Critical sections need to be addressed for correctness
• Races can be avoided by never overlapping multiple critical sections

• We must execute critical sections “atomically” (all or none)

24

Critical section occurs when shared memory is accessed

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin (counter = %d)\n",

counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d,

goal was %d)\n", counter, 2*LOOPS);

return 0;

}

25

When do critical sections occur?

• Critical sections often involve modification of multiple related data
• While the modifications are happening there is some inconsistency

• The inconsistency is eventually resolved before leaving the critical section

• For example:
• Inserting an element in the middle of a linked list

• Two pointers must change. List is broken if just one is changed.

• Swapping two values.

• Don’t have to worry about critical sections if:
• Program is single-threaded, OR

• The particular data is not shared among threads and modified, OR

• Operation is just one assembly instruction (CPU executes these atomically)

Check your understanding. Where is the critical section?

#include <stdio.h>

#include <pthread.h>

static volatile char* person1;

static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

int i;

for (i=0; i<LOOPS; i++) {

// swap

volatile char* tmp = person1;

person1 = person2;

person2 = tmp;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

person1 = "Jack";

person2 = "Jill";

printf("main: begin (%s, %s)\n",

person1, person2);

pthread_create(&p1, NULL,

mythread, "A");

pthread_create(&p2, NULL,

mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: end (%s, %s)\n",

person1, person2);

}

Buggy concurrent swap. What can go wrong?

#include <stdio.h>

#include <pthread.h>

static volatile char* person1;

static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

int i;

for (i=0; i<LOOPS; i++) {

// swap

volatile char* tmp = person1;

person1 = person2;

person2 = tmp;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

person1 = "Jack";

person2 = "Jill";

printf("main: begin (%s, %s)\n",

person1, person2);

pthread_create(&p1, NULL,

mythread, "A");

pthread_create(&p2, NULL,

mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: end (%s, %s)\n",

person1, person2);

}

Buggy concurrent swap. What can go wrong?

#include <stdio.h>

#include <pthread.h>

static volatile char* person1;

static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

int i;

for (i=0; i<LOOPS; i++) {

// swap

volatile char* tmp = person1;

person1 = person2;

person2 = tmp;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

person1 = "Jack";

person2 = "Jill";

printf("main: begin (%s, %s)\n",

person1, person2);

pthread_create(&p1, NULL,

mythread, "A");

pthread_create(&p2, NULL,

mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: end (%s, %s)\n",

person1, person2);

}

For a brief period in time:

person1: “Jill”
person2: “Jill”

Check your understanding. Is there a problem here?

#include <stdio.h>

#include <pthread.h>

static volatile int sum_amount = 2;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

int counter = 0;

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter += sum_amount;

}

printf("%s: done %d\n", (char*)arg,

counter);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin\n");

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done\n");

return 0;

}

30

Check your understanding. Is there a problem here?

#include <stdio.h>

#include <pthread.h>

static volatile int sum_amount = 2;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

int counter = 0;

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter += sum_amount;

}

printf("%s: done %d\n", (char*)arg,

counter);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin\n");

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done\n");

return 0;

}

31

This code will work!

All threads only read from
shared memory.

If at least one wrote to
shared memory, it would be
a problem.

32

• Interrupts

• Race Conditions

• Lock Design

• Basic Lock Implementation

• Lock Optimizations

Outline

Solution Requirements

We MUST stop data races from occurring in our programs.

1. No two processes may simultaneously be in their critical sections.

2. Processes outside of critical sections should have no impact.

3. No assumptions should be made about number of cores, speed
of cores, or scheduler choices.

33

Locks (also known as a mutex)

• Locks are the simplest mutual exclusion primitive
• Represent a resource that can be reserved and freed

• Acquire/lock:
• Used before a critical section to reserve the resource

• If the lock is free (unlocked), then lock it and proceed.

• If the lock is already taken (someone else called acquire/lock),
then wait until it’s free before proceeding.

• Release/unlock:
• Used at the end of a critical section to free the resource

• Only the thread holding the lock can release it

• Allows one waiting (or future) thread to acquire the lock

Two different metaphors & etymology

Lock

• Think about locking a bathroom
door

• Our virtual lock works as follows:
• Anyone can lock or unlock

(there is no “key”).

• Trying to enter (lock) if the lock is
already-locked will cause you to
wait until it’s unlocked.

Token

• Holding the token gives
you permission to do something.

• There is only one token.

• Thus, you:
1. Try to acquire the token (“lock”).

You have to wait your turn if
someone else is holding it.

2. When done, release the
token/lock.

• The token represents exclusive
access to a shared resource or a
critical section.

Locks prevent data races

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e7;

static pthread_mutex_t lock;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

pthread_mutex_lock(&lock);

counter++;

pthread_mutex_unlock(&lock);

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n",

counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d,

goal was %d)\n", counter, 2*LOOPS);

return 0;

}

36

Guidelines for implementing locks

Requirements for correctness

• Mutual Exclusion:
• Only one thread in critical section at a time

• Progress (deadlock-free):
• If several simultaneous requests, must allow one to proceed

• Bounded Wait (starvation-free):
• Must eventually allow every waiting thread to proceed

Additional goals

• Fairness – each thread waits for the same amount of time

• Performance – do the above in minimal execution time

38

39

• Interrupts

• Race Conditions

• Lock Design

• Basic Lock Implementation

• Lock Optimizations

Outline

1. Approach for single-core machines: disable interrupts

void lock() {

disable_interrupts();

}

void unlock() {

enable_interrupts();

}

40

• Disable interrupts to prevent preemption
during critical section
• Scheduler can’t run if the OS never takes

control

• Also stops data races in interrupt handlers

• Problems
• Doesn’t work on multicore machines

• Bad Idea™ to let processes disable the OS

• Process could freeze the entire computer

• Might screw up timing for interrupt handling

2. Algorithmic approach: Peterson’s Algorithm

• There are indeed several algorithmic approaches to create a lock!

• See textbook (or other sources) for Peterson’s Solution for two
threads

• Advantages:
• Algorithm, so it works on any platform no matter the hardware

• Disadvantages:
• Solution for N threads gets complicated

• Performance is slow

47

3. Hardware approach: atomic instructions

• Atomic instructions perform operations on memory in one
uninterruptable instruction
• Guarantees that all parts of the instruction occur before the next

instruction

• In multicore, guarantees that entire access to memory is serialized

• Commonly read, modify, and write in a single instruction

48

Atomic Instruction: Exchange

• Example atomic_exchange

int atomic_exchange(int* pointer, int new_value) {

int old_value = *pointer; // fetch old value from memory

*pointer = new_value; // write new value to memory

return old_value; // return old value

}

• atomic_exchange(destptr, newval)
• Write a new value to memory, and return the old one

• Also known as test-and-set when operating on boolean data

• x86-64 instruction: lock; xchg

49

pseudocode for the instruction: remember, this is actually in hardware NOT C

Atomic Instruction: Compare And Swap

• Example atomic_compare_and_swap (remember, this is pseudocode for hardware)

bool atomic_compare_and_swap (int* pointer, int expected_value, int new_value) {
int actual_value = *pointer;

if (actual_value == expected_value) {

*pointer = new_value;

return true;

}

return false;

}

• atomic_compare_and_swap(destptr, oldval, newval)
• x86-64 instruction: lock; cmpxchg

• Generalization of exchange

• Exchange(ptr, new) -> CompareAndSwap(ptr, *ptr, new)

50

Sequential memory consistency

• Memory barrier
• Guarantees that all load/stores before this line of code are completed

before any load/stores after this line of code are started

• Comes in software (compiler orders things) and hardware (processor
orders things) forms

• Both are necessary for correct execution!

• C wrappers for atomics allow you to specify a memory barrier

• Atomic Load/Store C-wrappers
• Guarantee sequential consistency

• Remember: memory could be reordered by compiler or processor!

51

Spinlock implementation

typedef struct {

int flag; // 0 indicates that mutex is available, 1 that it is held

} lock_t;

void mutex_init(lock_t* mutex) {

mutex->flag = 0; // lock starts available

}

void mutex_acquire(lock_t* mutex) {

while (atomic_exchange(&(mutex->flag), 1) == 1); // spin-wait until available

}

void mutex_release(lock_t* mutex) {

atomic_store(&(mutex->flag), 0); // make lock available

}

52

Approaches

1. Disable interrupts

2. Peterson’s Algorithm

3. Spinlocks (with atomic instructions)
• The simple solution we were looking for

53

Break + Question: did we need atomics?

// wait for lock released

while (lock != 0);

// lock == 0 now (unlocked)

// set lock

lock = 1;

// access shared resource ...

// release lock

lock = 0;

54

Initialization: bool lock = false;

Is this code sufficient?

Break + Question: did we need atomics?

// wait for lock released

while (lock != 0);

// lock == 0 now (unlocked)

// set lock

lock = 1;

// access shared resource ...

// release lock

lock = 0;

55

Initialization: bool lock = false;

Is this code sufficient?

No! lock is a shared
resource and reading
then writing it is not
atomic

56

• Interrupts

• Race Conditions

• Lock Design

• Basic Lock Implementation

• Lock Optimizations

Outline

Evaluating a lock

Requirements for correctness

• Mutual Exclusion:
• Only one thread in critical section at a time

• Progress (deadlock-free):
• If several simultaneous requests, must allow one to proceed

• Bounded Wait (starvation-free):
• Must eventually allow every waiting thread to proceed

Additional goals

• Fairness – each thread waits for the same amount of time

• Performance – do the above in minimal execution time

57

Spinlock evaluation - Correctness

• Mutual Exclusion and Progress Yes

• Bounded Wait No
• No guarantee that a thread will eventually get its turn (assume an infinite system)

58

Spinlock evaluation – Goals

• Fairness
• Doesn’t even guarantee no starvation
• No control at all over whether each thread waits an even amount

• Performance (uniprocessor)
• Process “spin”, repeatedly checking a variable that will not change
• Timeslice must expire before another thread is given a chance to unlock
• If N threads want the lock, then N timeslices are wasted spinning

• Performance (multiprocessor)
• Doesn’t waste entire timeslice anymore
• No calls to OS means process gets the lock as soon as it is free. So fast!

59

Addressing the bounded wait problem

• Need some way to track “whose turn it is” to take the lock

• You can have the lock when not held AND it’s no one else’s turn

• Idea: hand out numbered tickets

60

Atomic Instruction: Fetch and Add

• Example atomic_fetch_and_add (remember, in hardware not C)

int atomic_fetch_and_add(int* pointer, int increment) {

int old_value = *pointer;

*pointer = old_value + increment;

return old_value;

}

• atomic_fetch_and_add(destptr, incr)
• Add a new value to the current value in memory, and return the old one

• x86-64 instruction: lock; xadd

• List of C wrappers available here:
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

61

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

Ticket lock implementation

typedef struct {

int ticket; // current available ticket

int turn; // which ticket gets to proceed

} lock_t;

void mutex_init(lock_t* mutex) {

mutex->ticket = 0; mutex->turn = 0;

}

void mutex_lock(lock_t* mutex) {

int myturn = atomic_fetch_and_add(&(mutex->ticket), 1); // take a ticket

while (mutex->turn != myturn); // spin-wait until available

}

void mutex_unlock(lock_t* mutex) {

atomic_fetch_and_add(&(mutex->turn), 1); // next turn

} 62

• Each thread atomically
reserves its turn

• Unique turn numbers
prevent race
• Fails with 2^32 threads!

• When finished, set to next
turn

Prevents starvation with FIFO
ordering of access!

Ticket Lock Example

A lock(): Ticket 0, Turn 0

B lock(): Ticket 1, Turn 0

C lock(): Ticket 2, Turn 0

63

Ticket Lock Example

A lock(): Ticket 0, Turn 0

B lock(): Ticket 1, Turn 0

C lock(): Ticket 2, Turn 0

A unlock(): Turn 1

64

Ticket Lock Example

A lock(): Ticket 0, Turn 0

B lock(): Ticket 1, Turn 0

C lock(): Ticket 2, Turn 0

A unlock(): Turn 1

A lock(): Ticket 3, Turn 1

B unlock(): Turn 2

65

Ticket Lock Example

A lock(): Ticket 0, Turn 0

B lock(): Ticket 1, Turn 0

C lock(): Ticket 2, Turn 0

A unlock(): Turn 1

A lock(): Ticket 3, Turn 1

B unlock(): Turn 2

C unlock(): Turn 3

A unlock(): Turn 4 (Available ticket is turn 4 too, so next request goes immediately)
66

Ticket Lock Evaluation

Correctness: Mutual Exclusion, Progress, Bounded Wait Yes

Goals

• Fairness Yes
• FIFO ordering of threads

• Performance
• Similar positives and negatives as original spinlock

• One downside: on a release() all threads must check if it is their turn

67

Ticket lock still wastes time spinning

• B, C, and D are “busy waiting”
• Might be occupying an entire core in multicore

• Scheduler is fairly scheduling all threads, but ignorant of locks

• Idea: can we skip threads that are waiting on a lock?

68

Yield timeslice when not yet ready

• Yield syscall unschedules the
current thread
• sched_yield() in POSIX API

• Gives the user process just a
little control over the scheduler

69

• In acquire(), yield after
checking condition

• Might delay thread response
time in multicore scenario

void mutex_lock(lock_t* mutex) {

int myturn = atomic_fetch_and_add(&(mutex->ticket), 1); // take a ticket

while (mutex->turn != myturn) {

sched_yield(); // not ready yet

}

}

Yielding reduces busy-waiting

How much does yielding improve things?

• Performance better with yield(), but still doing a lot of unnecessary
context switches

• Wasted CPU cycles
• Without yield(): O(threads*timeslice)

• With yield(): O(threads*context_switch)

• Timeslice ~1 ms, Context switch: ~1 µs

• Still expensive if we expect many threads to be contending over
the lock

71

Building a blocking lock

• A more performant solution requires cooperation between thread’s
locks and the OS scheduler to block threads

• Some OSes (Solaris) have system calls to do so
• park() – blocks the current thread

• unpark(thread_id) – unblocks another thread, specified by thread ID

• Building locks on park/unpark
• If lock acquire fails, add own thread ID to waiting thread queue and park()

• Release dequeues the next waiting thread ID and calls unpark() on it

• Fairness: unlocking thread effectively decides which thread goes next

72

Linux Futex (fast userspace mutex) syscalls

• Similar to park/unpark, but the queue is in the kernel

• Key idea: only makes the kernel calls when you actually need to wait or
wake a sleeping thread

• futex_wait(int* pointer, int expected)
• Put thread to sleep if the value at address equals “expected”
• Used to build acquire()

• futex_wake(int* pointer)
• Unblock one thread waiting on “pointer”
• Used to build release()

• See https://eli.thegreenplace.net/2018/basics-of-futexes/

73

https://eli.thegreenplace.net/2018/basics-of-futexes/

Spinning versus Blocking

• Each approach is better under different circumstances

• Single core systems
• If waiting process is scheduled, then process holding lock is not
• Waiting process should always yield its time

• Multicore systems
• If waiting process is scheduled, then process holding lock could also be
• Spin or block depends how long until the lock is released

• If the lock is released quickly, spin wait
• If the lock is released slowly, block
• Where quick and slow are relative to context-switch cost

74

Two-phase waiting

• Problem: we can’t always know how long the wait will be
• Programmer might know…

• Library definitely can’t know

• Idea:
• Spin lock for a little while, and then give up and block

• Example: Linux Native POSIX Thread Library (NPTL)

• Check the lock at least three times before blocking with Futex

75

Summary on lock implementations

• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks
• Futex on Linux

• Sophisticated locks are more fair and do not waste processor time
“busy waiting”

• But also have unnecessary context-switch overhead if the lock is
only briefly and rarely held

76

77

• Interrupts

• Race Conditions

• Lock Design

• Basic Lock Implementation

• Lock Optimizations

Outline

