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Today’s Goals

 Explore problems with concurrently shared memory.

* Introduce locks as a simple solution for correctness.
 Design of locks
« Implementation of locks

 Optimize locks to enforce fairness and increase performance.
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Review: modern hardware capabilities
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Where else does concurrency come from?

» Processors introduce it for performance reasons by running
multiple processes and threads

 Interactions with the outside world introduce it because events
occur whenever they feel like it

« Network request arriving
« User presses a key
« Motion sensor triggers

- Also, we need some way to deal with errors the occur when
executing instructions

« No pathway for returning an error from an instruction



Interrupts

A way for the CPU to be, well, interrupted.

« CPU hardware switches to privileged mode
* Now any instruction can be executed, including privileged ones.

 Execution jumps to a predefined location
« Handler specified in the CPU’s interrupt vector table
* Lets the kernel deal with whatever the event was

 Used to support asynchronous I/0
 Lets a hardware device tell the CPU that some data is ready
« Remember that a disk operation is millions of times slower than an add.

« CPU has electrical pin(s) for hardware interrupts.
« There is also an instruction for software interrupts (like traps!)



Interrupt Vector Table

[Table 6-1. Exceptions and Interrupts

Vector No. | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpomnt INT 3 instruction.
4 #OF Overfiow INTO instruction.
5 #BR BOUND Range Excesded BOUND instruction.
6 |#UD Invalid Opcode {UnDefined Opcode) UD2 instruction or reserved opcode.!
7 H#NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction,
8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.
9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.
10 #1S Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment reqisters of accessing system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #OP General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 |#MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.
17 |#AC Alignment Check Any data reference in memory.>
18 #MC Machine Check Error codes (if any) and source are model dependent?
19 |#xM SIMD Fioating-Point Exception SIMD Floating-Point Instruction®
20-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.
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Example from Tock for SAM4L chip (in Rust)



Interrupt Vector Table

[Table 6-1. Exceptions and Interrupts

Vector No. | Mnemonic Description Source
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Differences from traps

« When we performed a system call:
» We knew it was about to happen.
 Set up our registers in advance.
 Performed what looked sort of like a function call.

* Interrupts can happen whenever.

 This can get extremely complicated on modern systems with out-of-order
execution, multiple cores and threads, and caches
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Interrupt handlers

* Interrupt context
« Can't just enter the kernel like we did with system calls
 Interrupt could have occurred while we were in the kernel

« Handler code
« Execute some guick processing to deal with the interrupt
 Return so the hardware can bring us back to our normal operation

« Cannot pause to wait for something else to finish first because the entire
core jumped to handling this interrupt

» Handled by the operating system
* Processes are interrupted, but otherwise not normally involved

11



Why are interrupts important to the kernel?

* Interrupts are a case where the kernel could have a data race with
itself!!
« Imagine being in the middle of an operation on a device
* When an interrupt comes in for that same device
 Data structures for the device could end up messed up

« Takeaway: concurrency isn‘t just about processes and threads
« Many different software designs need to deal with it

12
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Concurrency can create tricky problems

#include <stdio.h>
#include <pthread.h>

static volatile int counter = 0;
static const int LOOPS = 1le7;

void* mythread (void* arg) {
printf ("%$s: begin\n", (char*)arg);
for (int i=0; i<LOOPS; i++) {

counter++;

}
printf ("%$s: done\n", (char*)arqg);
return NULL;

}

int main(int argc, char* argv/[]) {
pthread t pl, p2;
printf ("main: begin (counter = %d)\n",
counter) ;
pthread create (&pl, NULL, mythread, "A");
pthread create (&p2, NULL, mythread, "B");

// wait for threads to finish

pthread join(pl, NULL);

pthread join (p2, NULL) ;

printf ("main: done with both (counter = %d,
goal was %d)\n", counter, 2*LOOPS);

return 0;

}

« Start two threads, each of which increments a shared global counter variable 107 times.
* The volatile keyword tells the compiler that the counter variable may change unexpectedly (in

this case, changed by the other thread).

14



Concurrency can create tricky problems

#include <stdio.h> int main (int argc, char* argv[]) {
#include <pthread.h> pthread t pl, p2;

printf ("main: begin (counter = %d)\n",
static volatile int counter = 0;
static const int LOOPS = le7; pthread create (&pl, NULL, mythread, "A");
pthread create (&p2, NULL, mythread, "B");

counter) ;

{

"$s: begin\n", (char*)arqg); // wait for threads to finish

void* mythread (void* arqg)

printf (
for (int i=0; i<LOOPS; i++) { pthread join(pl, NULL);
counter++; pthread join(p2, NULL);

} printf ("main: done with both (counter = %d,

printf (

"$s: done\n", (char*)arg); goal was %d)\n", counter, 2*LOOPS);

return NULL; return 0;

} }

« Start two threads, each of which increments a shared global counter variable 107 times.
« The volatile keyword tells the compiler that the counter variable may change unexpectedly (in

this case, changed by the other thread).

15



Live example — data race

zip with code linked on Canvas

« Compile with “gcc -pthread -o race data_race.c”

[brghena@ubuntu race_condition] $ ./race
main: begin (counter = 0)

B: begin

A: begin

A: done

B: done

main: done with both (counter = 12161815, goal was 20000000)

« Different results each time you run it

16




What's the problem?

« Which thread runs at a given time is unpredictable
» Might even be both simultaneously (¢ /race

 But is this a problem? main: begin (counter = )
« Why does it matter who 2 Eigiﬂ
increments the counter first? A: done
» The net result should be B: done
ZO’OOO’OOO regardless, right? Tiézr}t::ni ‘1’;226285? goal was 20000000)
 Actually, there is a serious bug
o It will yield a

« To understand, we need to break the abstraction of C
« Think about the assembly instructions
 In short, the “counter++" operation is not atomic.

17



Incrementing a number in assembly

 “counter++" has to:
1. Copy from the memory location of the counter variable to a register
2. Increment the register’s value
3. Copy from the register back to memory

« Assuming that “counter” is in memory location 0x8049alc:

mov 0x8049alc, %eaX
add $0x1, %eax
mov %eax, 0x8049alc

* The scheduler can interrupt the thread before or after the “add”

« This would cause both threads to . increment it to
the same value, and thus they would repeat work.

18



The increment failure in detail: 50+ 1 + 1 = 511
(ater instruction)

OS Thread 1 Thread 2 sRIP %Yeax counter
before critical section 100 0 50 '
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
interrupt
save T1's state
restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049alc 113 51 51
interrupt
save T2’s state
restore T1's state 108 51 51

mov %eax, 0x8049alc 113 51 51



Assume the scheduler is evil

 Remember that processes have no control over the scheduler.

» S0, to protect against concurrency bugs, we must assume that the

scheduler can interrupt us at any time and schedule any other
process.

 In other words, assume that the scheduler is adversarial, and will
do the worst possible scheduling.

 To prevent weird and rare concurrency bugs,
your code must work correctly even when
faced with an evi/ scheduler:

21



Live example — data races when executing for less time

« What happens if we modify the loop duration?

[brghena@ubuntu race condition] $ ./race

main: begin (counter = 0)

B: begin

B: done

A: begin

A: done

main: done with both (counter = 200, goal was 200)

« Thread is now completing its work before being re-scheduled
« The problem is not solved, it will just occur rarely (and be harder to debug)

22



Race Condition

« Two or more things are happening at the same time

* It's not clear which will run when

 The result will be different depending on execution order
 Result becomes indeterminate (non-deterministic)

e Data race

« Two or more threads access shared memory at the same time
and at least one modifies it

23



Critical Section

* Code that interacts with a shared resource must not be executed
concurrently

 Part of code that accesses a shared resource is a Critical Section
 In other words, code that would lead to a data race
« May be multiple, unrelated critical sections for multiple shared resources

« Critical sections need to be addressed for correctness
 Races can be avoided by never overlapping multiple critical sections
« We must execute critical sections “atomically” (all or none)

24



Critical section occurs when shared memory is accessed

#include <stdio.h> int main (int argc, char* argv[]) {
#include <pthread.h> pthread t pl, p2;
printf ("main: begin (counter = %d)\n",
static volatile int counter = 0; counter) ;
static const int LOOPS = 1le’/; pthread create (&pl, NULL, mythread, "A");

pthread create (&p2, NULL, mythread, "B");
void* mythread (void* arg) {

printf ("%s: begin\n", (char*)arqg):; // wait for threads to finish
for (int i=0; i<LOOPS; i++) { pthread join(pl, NULL);
counter++; pthread join (p2, NULL) ;
} printf ("main: done with both (counter = %d,
printf ("%$s: done\n", (char*)arqg); goal was %d)\n", counter, 2*LOOPS);

return NULL; return 0;




When do critical sections occur?

» Critical sections often involve modification of multiple related data
« While the modifications are happening there is some inconsistency
« The inconsistency is eventually resolved before leaving the critical section

* For example:
« Inserting an element in the middle of a linked list
 Two pointers must change. List is broken if just one is changed.
« Swapping two values.

« Don’t have to worry about critical sections if:
« Program is single-threaded, OR
» The particular data is not shared among threads and modified, OR
 Operation is just one assembly instruction (CPU executes these atomically)



Check your understanding. Where is the critical section?

#include <stdio.h>
#include <pthread.h>

static volatile char* personl;
static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread (void* arg) ({

printf ("%$s: begin\n", (char*)arg);
int 1i;
for (i=0; 1i<LOOPS; i++) {

// swap

volatile char* tmp = personl;
personl = person?Z;
personZ = tmp;
}
printf ("%$s: done\n", (char*)arg);
return NULL;

int main (int argc, char* argv/[]) {
pthread t pl, p2;
personl = "Jack";
personz2 = "Jill";

printf ("main: begin (%s,
personl, person2);
pthread create(&pl, NULL,
mythread, "A");
pthread create (&p2, NULL,
mythread, "B");

$s)\n",

// walit for threads to finish

pthread join(pl, NULL) ;
pthread join(p2, NULL) ;

printf ("main: end (%s, %s)\n",

personl, person2);



Buggy concurrent swap. What can go wrong?

#include <stdio.h>
#include <pthread.h>

static volatile char* personl;
static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread (void* arg) {

printf ("%$s: begin\n", (char*)arg);
int 1i;
for (i=0; 1i<LOOPS; i++) {
// swap
volatile char* tmp = personl;
personl = person?Z;
personZ = tmp;

}
printf ("$s: done\n", (char*)arg);
return NULL;

int main (int argc, char* argv/[]) {
pthread t pl, p2;
personl = "Jack";
personz2 = "Jill";

printf ("main: begin (%s,
personl, person2);
pthread create(&pl, NULL,
mythread, "A");
pthread create (&p2, NULL,
mythread, "B");

$s)\n",

// walit for threads to finish

pthread join(pl, NULL) ;
pthread join(p2, NULL) ;

printf ("main: end (%s, %s)\n",

personl, person2);



Buggy concurrent swap. What can go wrong?

#include <stdio.h> int main (int argc, char* argv/[]) {
#include <pthread.h> pthread t pl, p2;
rsonl = " k";
static volatile char* personl; oo 2 —-vﬁjéc "
static volatile char* person2; peFSCHl B .Jlll a
static const int LOOPS = le4; printf ("main: begin (%s, %s)\n",
personl, person?);
void* mythread (void* arg) { . : : . .
Brintf ("o begin\nn, (char<iarg); | | FOF @ brief period in time:
int i; l
for (i=0; 1i<LOOPS; i++) {
M A\ H I/
// swap 1personl: “Jill
volatile char* tmp personl; WLy
person2: "“Jill

personl personZ;l

person?Z tmp; ptnread joIn(pl, NULLT7;
} pthread join (p2, NULL) ;
: "wo o 1A * o -
prlntf( S o done\n ’ (Char )arg) ’ prlntf ("main: end (%S, %S) \H",

return NULL;

personl, person2);



Check your understanding. Is there a problem here?

#include <stdio.h>
#include <pthread.h>

static volatile int sum amount = 2;
static const int LOOPS = 1le7;

void* mythread (void* arg) {

int counter = 0;
printf ("%$s: begin\n", (char*)arg);
for (int i1i=0; 1i<LOOPS; i++) {

counter += sum_ amount;

}

printf ("%$s: done %d\n", (char*)arg,
counter) ;

return NULL;

int main(int argc, char* argv|[]) {
pthread t pl, p2;

printf ("main: begin\n");

pthread create (&pl, NULL, mythread,

pthread create (&p2, NULL, mythread,

// wait for threads to finish
pthread join(pl, NULL) ;
pthread join(p2, NULL);
printf ("main: done\n");

return 0;

"A" ) ;
"B" ) ;

30



Check your understanding. Is there a problem here?

#include <stdio.h>
#include <pthread.h>

This code will work!

static volatile int sum amount = 2;

static const int LOOPS = le7; A” threadS Only feadfrOm
void* mythread (void* arg) { Shared memorY'

int counter = 0;

rintf ("$s: begin\n", (char*)arqg):;

for (int i0; i-1ooPE; 1o ( If at least one wrote to

| counter += sum amount; <_Shared memory, |t WOUId be

printf ("$s: done %d\n", (char*)arg, d prOblem.

counter) ;

return NULL;
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Solution Requirements

We MUST stop data races from occurring in our programs.
1. No two processes may simultaneously be in their critical sections.
2. Processes outside of critical sections should have no impact.

3. No assumptions should be made about number of cores, speed
of cores, or scheduler choices.

33



Locks (also known as a mutex)

* Locks are the simplest mutual exclusion primitive
» Represent a resource that can be reserved and freed

» Used before a critical section to reserve the resource
o If the lock is free (unlocked), then lock it and proceed.

« If the lock is already taken (someone else called acquire/lock),
then wait until it’s free before proceeding.

» Used at the end of a critical section to free the resource
 Only the thread holding the lock can release it
« Allows one waiting (or future) thread to acquire the lock



Two different metaphors & etymology

Lock Token
* Thi i  Holding the token gives ™
gg:)nrk about locking a bathroom you permission to do something.
* There is only one token.

» Our virtual lock works as follows: Thus, you:

« Anyone can lock or unlock 1T . W[l
: w5 . Try to acquire the token (“lock™).
(there is no “key”). You have to wait your turn if

» Trying to enter (lock) if the lock is someone else is holding it.
already-locked will cause you to 2. When done, release the
wait until it’s unlocked. token/lock.

 The token represents exclusive
— | access to a shared resource or a
" (OCCUPIED critical section.




Locks prevent data races

#include <stdio.h>
#include <pthread.h>

static wvolatile int counter = 0;
static const int LOOPS = le7;
static pthread mutex t lock;

void* mythread (void* arg) {

"wo

%S (char*) arqg) ;

i++) |

begin\n",
1<LOOPS;
pthread mutex lock (&lock);

printf (
for (int 1=0;
counter++;
pthread mutex unlock (&lock) ;
}
printf (
return NULL;

"$s: done\n", (char*)arg);

int main(int argc, char* argv|[]) {
pthread t pl, p2;
0);

(counter =

pthread mutex init (&lock,
printf ("main: begin
counter) ;

pthread create (&pl, NULL, mythread,

pthread create (&p2, NULL, mythread,

// wait for threads to finish
pthread join(pl, NULL) ;
pthread join (p2, NULL) ;
done with both
2*LOOPS) ;

printf ("main:
goal was %d)\n", counter,

return 0;

%d) \n",

"A" ) ;
"B" ) ;

(counter =

s

d,
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Guidelines for implementing locks

Requirements for correctness

» Mutual Exclusion:
» Only one thread in critical section at a time

 Progress (deadlock-free):
« If several simultaneous requests, must allow one to proceed

» Bounded Wait (starvation-free):
« Must eventually allow every waiting thread to proceed

Additional goals
* Fairness — each thread waits for the same amount of time
» Performance — do the above in minimal execution time

38
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1. Approach for single-core machines: disable interrupts

void lock() { » Disable interrupts to prevent preemption
disable interrupts(); during critical section
} « Scheduler can’t run if the OS never takes
control
void unlock () { » Also stops data races in interrupt handlers

enable interrupts();

* Problems
« Doesn’t work on multicore machines
« Bad Idea™ to let processes disable the OS
 Process could freeze the entire computer
« Might screw up timing for interrupt handling

40



2. Algorithmic approach: Peterson’s Algorithm

* There are indeed several algorithmic approaches to create a lock!

 See textbook (or other sources) for Peterson’s Solution for two
threads

« Advantages:
 Algorithm, so it works on any platform no matter the hardware

» Disadvantages:
« Solution for N threads gets complicated
« Performance is slow

47



3. Hardware approach: atomic instructions

« Atomic instructions perform operations on memory in one
uninterruptable instruction

« Guarantees that all parts of the instruction occur before the next
Instruction

 In multicore, guarantees that entire access to memory is serialized

« Commonly read, modify, and write in a single instruction

48



Atomic Instruction: Exchange

» Example atomic_exchange

pseudocode for the instruction: remember, this is actually in hardware NOT C

int atomic_exchange(int* pointer, int new_value) {
int old value = *pointer; // fetch old value from memory
*pointer = new value; // write new value to memory
return old value; // return old value

 atomic_exchange(destptr, newval)
« Write a new value to memory, and return the old one

 Also known as test-and-set when operating on boolean data
» X86-64 instruction: lock; xchg
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Atomic Instruction: Compare And Swap

« Example atomic_compare_and_swap (remember, this is pseudocode for hardware)

bool atomic_compare and swap (int* pointer, int expected value, int new_value) {
int actual value = *pointer;

if (actual value == expected value) {
*pointer = new_value;
return true;

}

return false;

}

 atomic_compare_and_swap(destptr, oldval, newval)
« X86-64 instruction: lock; cmpxchg
 Generalization of exchange
« Exchange(ptr, new) -> CompareAndSwap(ptr, *ptr, new)
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Sequential memory consistency

« Memory barrier

« Guarantees that all load/stores before this line of code are completed
before any load/stores after this line of code are started

« Comes in software (compiler orders things) and hardware (processor
orders things) forms

« Both are necessary for correct execution!
« C wrappers for atomics allow you to specify a memory barrier

« Atomic Load/Store C-wrappers
« Guarantee sequential consistency
« Remember: memory could be reordered by compiler or processor!
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Spinlock implementation

typedef struct {

int flag; // © indicates that mutex is available, 1 that it is held
} lock t;

void mutex_init(lock_ t* mutex) {

mutex->flag = @; // lock starts available
}

void mutex_acquire(lock t* mutex) {
while (atomic_exchange(&(mutex->flag), 1) == 1); // spin-wait until available

}

void mutex release(lock t* mutex) {

atomic_store(&(mutex->flag), 0); // make lock available
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Approaches

1. Disable interrupts
2. Peterson’s Algorithm

3. Spinlocks (with atomic instructions)
« The simple solution we were looking for
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Break + Question: did we need atomics?

Initialization: bool lock = false;

// wait for lock released
while (lock != 0);
// lock == @ now (unlocked)

// set lock
lock = 1;

// access shared resource ...

// release lock
lock = 0;

Is this code sufficient?
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Break + Question: did we need atomics?

Initialization: bool lock = false;

// wait for lock released
while (lock != 0);
// lock == @ now (unlocked)

// set lock
lock = 1;

// access shared resource ...

// release lock
lock = 0;

Is this code sufficient?

No! lock is a shared
resource and reading
then writing it is not
atomic
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Outline

* Interrupts

« Race Conditions

* Lock Design

» Basic Lock Implementation

* Lock Optimizations




Evaluating a lock

Requirements for correctness

» Mutual Exclusion:
» Only one thread in critical section at a time

 Progress (deadlock-free):
« If several simultaneous requests, must allow one to proceed

» Bounded Wait (starvation-free):
« Must eventually allow every waiting thread to proceed

Additional goals
* Fairness — each thread waits for the same amount of time
» Performance — do the above in minimal execution time
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Spinlock evaluation - Correctness

» Mutual Exclusion and Progress Yes

* Bounded Wait No
* No guarantee that a thread will eventually get its turn (assume an infinite system)

unlock]| {lock| |[unlock]| (lock unlock| |lock|lunlock| |lock

Io_ck

spin

A B

spin

A B

spin

A B A B

0 20 40 60 80 100 120 140 160
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Spinlock evaluation — Goals

* Fairness
» Doesn’t even guarantee no starvation
* No control at all over whether each thread waits an even amount

 Performance (uniprocessor)
 Process “'spin”, repeatedly checking a variable that will not change
 Timeslice must expire before another thread is given a chance to unlock
 If N threads want the lock, then N timeslices are wasted spinning

 Performance (multiprocessor)
« Doesn’t waste entire timeslice anymore
* No calls to OS means process gets the lock as soon as it is free. So fast!
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Addressing the bounded wait problem

* Need some way to track “whose turn it is” to take the lock
* You can have the lock when not held AND it's no one else’s turn

» Idea: hand out numbered tickets - Number
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Atomic Instruction: Fetch and Add

« Example atomic_fetch_and_add (remember, in hardware not C)

int atomic fetch and add(int* pointer, int increment) {
int old value = *pointer;
*pointer = old value + increment;
return old value;

}

« atomic_fetch_and_add(destptr, incr)

« Add a new value to the current value in memory, and return the old one
« X86-64 instruction: lock; xadd

« List of C wrappers available here:
https://gcc.gnu.org/onlinedocs/gcc/ 005f 005fatomic-Builtins.html
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Ticket lock implementation

typedef struct {
int ticket; // current available ticket
int turn; // which ticket gets to proceed

} lock t;

void mutex_init(lock t* mutex) {
mutex->ticket = 0; mutex->turn = 0;

}

void mutex_ lock(lock t* mutex) {

int myturn =

« Each thread atomically
reserves its turn

« Unique turn numbers
prevent race
* Fails with 2732 threads!

« When finished, set to next
turn

atomic_fetch_and_add(&(mutex->ticket), 1); // take a ticket

while (mutex->turn != myturn); // spin-wait until available

}

void mutex_unlock(lock t* mutex) {

atomic_fetch_and_add(&(mutex->turn), 1); // next turn

Prevents starvation with FIFO
ordering of access!
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Ticket Lock Example

A lock(): Ticket O, Turn 0
ock(): Ticket 1, Turn O
C lock(): Ticket 2, Turn O

o
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Ticket Lock Example

A lock(): Ticket O, Turn 0
ock(): Ticket 1, Turn O
C lock(): Ticket 2, Turn O

o

A unlock(): Turn 1
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Ticket Lock Example

A lock(): Ticket O, Turn 0
ock(): Ticket 1, Turn O
C lock(): Ticket 2, Turn O

o

A unlock(): Turn 1

A lock(): Ticket 3, Turn 1
B unlock(): Turn 2
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Ticket Lock Example

A lock(): Ticket O, Turn 0
ock(): Ticket 1, Turn O
C lock(): Ticket 2, Turn O

o

A unlock(): Turn 1

A lock(): Ticket 3, Turn 1
B unlock(): Turn 2

C unlock(): Turn 3
A unlock(): Turn 4 (Available ticket is turn 4 too, so next request goes immediately)
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Ticket Lock Evaluation

Correctness: Mutual Exclusion, Progress, Bounded Wait Yes

Goals

 Fairness Yes
« FIFO ordering of threads

e Performance

» Similar positives and negatives as original spinlock
« One downside: on a release() all threads must check if it is their turn
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Ticket lock still wastes time spinning

B, C, and D are “"busy waiting”
« Might be occupying an entire core in multicore

 Scheduler is fairly scheduling all threads, but ignorant of locks
» Idea: can we skip threads that are waiting on a lock?

lock unlock| |lock

0 20 40 60 380 100 120 140 16
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Yield timeslice when not yet ready

* Yield syscall unschedules the  In acquire(), yield after
current thread checking condition
* sched_yield() in POSIX APL » Might delay thread response
* Gives the user process just a time in multicore scenario

[ittle control over the scheduler

void mutex_lock(lock t* mutex) {
int myturn = atomic_fetch_and _add(&(mutex->ticket), 1); // take a ticket
while (mutex->turn != myturn) {

sched yield(); // not ready yet
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Yielding reduces busy-waiting

no yield:

lock

A

spin
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spin
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spin

unlock
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How much does yielding improve things?

 Performance better with yield(), but still doing a lot of unnecessary
context switches g@ock

lock| =

lock

 Wasted CPU cycles B [
« Without yield(): O(threads*timeslice)

» With yield(): O(threads*context_switch) -7
« Timeslice ~1 ms, Context switch: ~1 ps 0 20 40 60 80

» Still expensive if we expect many threads to be contending over
the lock
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Building a blocking lock

« A more performant solution requires cooperation between thread’s
locks and the OS scheduler to block threads

« Some OSes (Solaris) have system calls to do so
 park() — blocks the current thread
« unpark(thread_id) — unblocks another thread, specified by thread ID

» Building locks on park/unpark
« If lock acquire fails, add own thread ID to waiting thread queue and park()
» Release dequeues the next waiting thread ID and calls unpark() on it
* Fairness: unlocking thread effectively decides which thread goes next
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Linux Futex (fast userspace mutex) syscalls

 Similar to park/unpark, but the queue is in the kernel

 Key idea: only makes the kernel calls when you actually need to wait or
wake a sleeping thread

« futex_wait(int* pointer, int expected)
 Put thread to sleep if the value at address equals “expected”
« Used to build acquire()

« futex_wake(int* pointer)
 Unblock one thread waiting on “pointer”
« Used to build release()

 See https://eli.thegreenplace.net/2018/basics-of-futexes/
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Spinning versus Blocking

« Each approach is better under different circumstances

* Single core systems
« If waiting process is scheduled, then process holding lock is not
» Waiting process should a/ways yield its time

 Multicore systems
« If waiting process is scheduled, then process holding lock could also be
« Spin or block depends how long until the lock is released
« If the lock is released quickly, spin wait
« If the lock is released slowly, block
« Where quick and slow are relative to context-switch cost
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Two-phase waiting

* Problem: we can't always know how long the wait will be
« Programmer might know...
« Library definitely can’t know

» Idea:
« Spin lock for a little while, and then give up and block
« Example: Linux Native POSIX Thread Library (NPTL)
« Check the lock at least three times before blocking with Futex
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Summary on lock implementations

* Spinlocks
» Ticket locks
* Yielding locks

* Queueing locks
e Futex on Linux

« Sophisticated locks are more fair and do not waste processor time
“busy waiting”

 But also have unnecessary context-switch overhead if the lock is
only briefly and rarely held
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