
Lecture 03: Concurrency
Sources and Challenges

CS343 – Operating Systems

Branden Ghena – Spring 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), and UC Berkeley CS61C and CS162

Administrivia

• PCLab release will be delayed a couple days
• I plan to release it sometime late on Saturday (instead of late today)

• Tuesday’s lecture will cover what you need to get started

• Also I want to make some improvements to it

• Partner survey on Campuswire
• Fill it out only if you do NOT have a partner, but want one

2

Today’s Goals

• Describe where and why concurrency and parallelism are involved
in computing.

• Be disappointed by performance limits on concurrency.

• Understand purpose and challenges of interrupts and signals.

• Introduce concept of data races as a concurrency problem.

3

4

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Processes and threads

• A process could have multiple threads
• Each with its own registers and stack

5

• Code and
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables

Thread use case: web server

6

• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!
• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…
7

Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1
Exit

Thread 2

Read in request 2
Start disk I/O

time

More Practical Motivation

4/7/2022 Kumar CS 162 at UC Berkeley, Summer 2020 8

Back to Jeff Dean’s
“Numbers
Everyone Should
Know”

Handle I/O in
separate thread,
avoid blocking
other progress

Models for thread libraries: User Threads

• Thread scheduling is implemented within the process
• OS only knows about the process, not the threads

• Upsides
• Works on any hardware or OS
• Performance is better when

creating and switching

• Downsides
• A system call in any thread

blocks all threads

9

Scheduler

OS
Kernel

Processes

Thread
Library

Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343

10

Scheduler

OS
Kernel

Processes

Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all

threads of the process.
• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by
reading/writing (shared)
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

12

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

• What happens when pthread_create() is called in a process?

13

Library:

int pthread_create(…) {
Do some work like a normal function
Put syscall number into register
Put args into registers
Special trap instruction

Get return values from regs
Do some more work like a normal function

};

Get args from regs
Do the work to spawn the new thread
Store return value in %eax

Kernel:

clone (56) syscall on Linux

Threads Example

14

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a
number, then
increments it, then exits

• Main process waits for
all of the threads to
finish

15

Threads Example

16

Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
created?

4. If we run the program again,
would the result change?

17

Check your understanding

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
would the result change?
Possibly!

18

19

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?

20

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do? Take a vacation

21

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

How? Transistors are getting
exponentially smaller!

How small? Today: 7nm!
(maybe smaller, kind of complicated)
< ½ the size of most viruses!

22

Processors kept getting faster too

23

Power is a major limiting factor on speed

• We could make processors go very fast
• But doing so uses more and more power

• More power means more heat generated
• And chips typically work up to around 100°C

• Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool
• But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed

24

Denard Scaling

• Moore’s Law corollary: Denar Scaling
• As transistors get smaller, the power density stays the same

• Which is to say that the power-per-transistor decreases!

• Making the processor clock speed faster uses more power
• But the two balance out for roughly net even power

• So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:
• In two years, new hardware would run the existing software twice as fast

25

Then they stopped getting faster

26

~2006: Leakage
current becomes
significant

Now smaller
transistors doesn’t
mean lower power

So… now what?

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better by
waiting for clock speeds to increase.

How do we continue to get better computation performance?

27

Exploit parallelism!

28

Parallelism Analogy

• I want to peel 100 potatoes as fast as possible:

• I can learn to peel potatoes faster

OR

• I can get 99 friends to help me

• Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!

29

Parallelism versus Concurrency Two processes A and B

30

BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active

31

B

A
OR

time time

OR

time

32

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

What are the hardware sources of concurrency?

33

Model of a processor

34

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Instruction
Fetch

Instruction
Decode

Execute Memory Writeback

CPU

But instructions don’t always have to be executed in order

movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
addq %rcx, %rbx

We can apply the multiprogramming approach of executing this
addq while the movq is waiting on memory.

35

Doesn’t have to go after the
movq instructions because it
uses different registers

Out-of-order machines

Fetch many
instructions at
once!

Read register file,
handle data
dependencies with
register renaming

Reorder instructions
to make best use of
CPU Commit, or

“write back”
data to memory
and regfile in
the order the
programmer
expects

Generally: looks for independent
instructions it can execute early

Out-of-order processors obey normal execution results

• Initial thoughts on out-of-order execution
• 😱

• The processor could be executing my program in order it feels like?!!

• How do I possibly reason about anything?

• Answer: the processor promises to have the same results as if
things were done in the normal order.

37

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print?

38

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print? Could be 42. Could be 0.

39

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

This can be
addressed with
memory barriers

How else do processors employ concurrency?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

40

How else do processors employ concurrency?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

41

Multiprocessor Systems (in pictures)

42

Processor 0

Control

Datapath
PC

Registers

(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers

(ALU)

Processor 1
Memory
Accesses

Multiprocessor Systems (in words)

• A computer system with at least 2 processors or cores
• Each core has its own registers
• Each core executes independent instruction streams
• Processors share the same system memory

• But use different parts of it
• Communication possible through memory accesses

• Deliver high throughput for independent jobs via task-level
parallelism

43

Multiprocessor Example

Run Chrome and Spotify simultaneously
• Each are separate programs
• Each has a different memory space
• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,
but hardware can make it actually simultaneous

44

How else do processors employ concurrency?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

45

Multithreading processors

Basic idea: Processor resources are expensive and should not
be left idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while

waiting for cache miss

• Cost of thread context switch must be much less than cache miss
latency

• Switching threads is less expensive than processes because they
share memory

46

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

• Two copies of PC and Registers inside
processor hardware
• Looks like two processors to software
(hardware thread 0, hardware thread 1)
• Control logic decides which thread to
execute an instruction from next

47

Hardware support for multithreading

Multithreading versus Multicore

• Multithreading => Better utilization
• ≈5% more hardware for ≈1.3x better performance?

• Gets to share ALUs, caches, memory controller

• Multicore => Duplicate processors
• ≈50% more hardware for ≈2x better performance?

• Share some caches (L2 cache, L3 cache), memory controller

• Modern machines do both
• Multiple cores with multiple threads per core

48

My desktop computer

49

4 total cores
Each capable of 2 threads

≈ 8 processors

Quad core processor

• One thread per core

• 3-way superscalar pipeline
• L1 Cache

• 32 KiB 2-way set associative data cache
• 48 KiB 3-way set associative instruction cache
• Per core

• L2 Cache
• 512 KiB to 4 MiB (shared)

• RAM 1-4 GB

$35
Literally all computers
are doing parallelism
these days

Raspberry Pi 4

50

Back up to the OS perspective

• Modern operating systems must manage concurrency
• Both parallel operation and interleaving operations

• Concurrency is valuable
• Performance gains are the reason

51

Break + Open Question

• How many cores/threads does your processor support?
• Windows: Task Manager -> Performance -> CPU

• MacOS: About this Mac -> System Report -> Hardware

• M1 processor only does 1 thread per core

• Linux: In terminal: lscpu

• Android/iOS: You’ll need to google it

52

53

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

54

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

55

Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

95 s 5 s

Speedup Example

56

95 s 5 s

Speedup from improvements

57

Speedup with
Improvement

=

Execution time without
improvement

Execution time with
improvement

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s: Speedup = 100/96 = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

Speedup =

F = Fraction of execution time speed up
S = Scale of improvement

(1 - F) + F
SNon-speed-up part Speed-up part

1

1
0.75 + 0.25

2

1
0.75 + 0.125

= = 1.14

Example: 2x improvement to 25% of the program

Equivalent to
prior equationAmdahl’s Law

58

Parallel speedup example Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

59

• Consider an improvement which runs 20 times faster but is only
usable 15% of the time

Speedup with
improvement

=
1

0.85 + (0.15/20) = 1.166

Speedup with
improvement

=
1

0.75 + (0.25/20) = 1.311

• What if it’s usable 25% of the time?

Nowhere near
20x speedup!

Amdahl’s (heartbreaking) Law (in pictures)

• The amount of speedup that can be achieved through parallelism is
limited by the non-parallel portion of your program!

60

Parallel
portion

Serial
portion

Time

Number of Processors
1 2 3 4 5

Sp
e

e
d

u
p

Number of Processors

Amdahl’s (heartbreaking) Law (in words)

• Amdahl’s Law tells us that to achieve linear speedup with more
processors:

• none of the original computation can be serial (non-parallelizable)

• To get a speedup of 90 from 100 processors, the percentage of
the original program that could be scalar would have to be 0.1%
or less

Speedup = 1/(.001 + .999/100) = 90.99

61

Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

62

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

63

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Speedup = 1 / [(1 - F) + (F/S)]

2 = 1 / [(1 - 0.5) + (0.5/S)]

S = 0.5 / ((1/2) – 0.5) = ∞

The square root would need to decrease
to nothing before you got 2x speedup

64

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

65

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

66

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count += 1;

}

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.
67

Thread 1:

void thread_fn(){

mov $0x8049a1c, %edi

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

}

Thread 2:

void thread_fn(){

mov $0x8049a1c, %edi

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

}

Assuming “count” is
in memory location
0x8049a1c

Data race example

68

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Final value of count: 2 Final value of count: 1

Assuming “count” is
in memory location
pointed to by %edi

Data race explanation

• Thread scheduling is non-deterministic
• There is no guarantee that any thread will go first or last or

not be interrupted at any point

• If different threads write to the same variable
• The final value of the variable is also non-deterministic
• This is a data race

69

Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

70

Thread 1:

void main(){
count += 2;

}

Thread 2:

void main(){
count -= 2;

}

Thread 3:

void main(){
count += 3;

}

Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count? -2, 0, 1, 2, 3, 5

How are you supposed to reason about this?!
Need mechanisms for sharing memory.

71

Thread 1:

void main(){
count += 2;

}

Thread 2:

void main(){
count -= 2;

}

Thread 3:

void main(){
count += 3;

}

72

• Threads

• Need for Parallelism

• Processor Concurrency

• Concurrency Challenges

• Amdahl’s Law

• Data Races

Outline

