
Lecture 02:
Processes and Threads

CS343 – Operating Systems

Branden Ghena – Spring 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), Harsha Madhyastha (Michigan), and UC Berkeley CS61C and CS162

Administrivia

• Getting Started Lab
• Due on Thursday

• Purpose is to make sure that you’ve got everything set up right

• SSH login for EECS servers

• Github account and Git SSH access

• Ability to build the Nautilus Kernel

• Let us know if you’re having problems with this

• Should be easy to complete

2

Office Hours

• 14 hours planned per week

• All on gather.town
• Fill out queue form on

Canvas homepage

• Can schedule office hours
with my by request as well
• If times don’t work or for

special circumstances

3

Today’s Goals

• Understand the operating system’s view of a process.

• How does a process communicate with the OS?

• Explore a few process creation system calls.

• What are threads and why are they useful?

4

5

• Processes

• System Calls

• Process Creation

• Signals

• Threads

Outline

View of a process

• Process: program that is being executed

• Contains code, data, and a thread
• Thread contains registers, instruction pointer, and stack

6

• Registers

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer

• Condition Codes

• Stack

• Code and
Data

POSIX processes have file descriptors

• Integers specifying a file the process is interacting with
• Process contains a table linking integers to files (and permissions)

• Default file descriptors
• 0 - Standard input (stdin)
• 1 - Standard output (stdout)
• 2 - Standard error (stderr)

• Function calls to interact with files
• int open (const char *path, int oflag, ...);
• ssize_t read (int fildes, void *buf, size_t nbyte);
• ssize_t write (int fildes, const void *buf, size_t nbyte);

7

Example file descriptors

8

Also all of the code in the address space

9

Additional Process Contents

• Whatever else the OS thinks is useful
• Process ID

• Priority

• Time Used

• Process State

10

Processes are an abstraction provided by the OS

• The machine itself usually doesn’t support processes
• Just has a processor and a set of registers
• Memory is just arbitrary memory

• OS provides the abstraction
• Multiple processes can run at the “same time”
• Each has its own registers
• Each has its own isolated memory

• Processes enable
• Multiple functionalities on a computer
• Multiprogramming of a system

11

Processes don’t run all the time

• OS schedules processes
• Decides which of many competing

processes to run.

• A blocked process is not ready to
run.

• I/O means input/output –
anything other than computing.
• For example, reading/writing disk,

sending network packet, waiting for
keystroke, updating display.

• While waiting for results, the
process often cannot do anything,
so it blocks, and the OS schedules
a different process to run.

The three basic
process states:

Multiprogramming processes

13

• When one process is Blocked, OS
can schedule a different process
that is Ready

• Even with a single processor, the
OS can provide the illusion of
many processes running
simultaneously

• OS usually sets a maximum
runtime before switching limit for
processes (timeslice)

The three basic
process states:

Key difference between kernel and processes: privilege

• Processes have limited access to the computer
• Hardware supports different “modes” of execution (kernel and user)

• Kernel mode has access to physical memory and special instructions

• They run when the OS lets them

• They have access to the memory the OS gives them

• They cannot access many things directly
• Must ask the OS to do so for them

14

Break + Question

• Is it safe for two processes to have the same code section?

15

Break + Question

• Is it safe for two processes to have the same code section?

Usually yes!

• The OS can mark the code section as read-only

• Example: multiple instances of a shell share the same code

• Self-modifying code would be a problem…

16

17

• Processes

• System Calls

• Process Creation

• Signals

• Threads

Outline

Things a program cannot do itself

• Print “hello world”
• because the display is a shared resource.

• Download a web page
• because the network card is a shared resource.

• Save or read a file
• because the filesystem is a shared resource, and the OS wants to check

file permissions first.

• Launch another program
• because processes are managed by the OS

• Send data to another program
• because each program runs in isolation, one at a time

How does a process ask the OS to do something?

• Certain things can only be accessed from kernel mode
• All of memory, I/O devices, etc.

• Bad Idea to allow processes to switch into kernel mode
• We do NOT trust processes

• So there shouldn’t be any instruction that switches to kernel mode…

• Requirements
1. Switch execution to the kernel

2. Change into kernel mode

3. Inform the kernel what you want it to do

19

Hardware can save us!

• Solution: hardware instruction – trap
• Also known as exception or fault

• When instruction runs:
1. Mode is changed to kernel mode

AND

2. Instruction Pointer is moved to a known location in the kernel

• Same mechanism is used for other exceptions
• Division by zero, invalid memory access

• Also very similar to hardware interrupts

20

System call example

• System call: making a request of the OS from a process
• Uses exceptional control flow to enter OS kernel

• Returns back to process when complete

• Instruction after the system call

21

User code Kernel code

Exception

Do the thing

Returns

syscall

next instruction

System call steps (simplification)

1. Process loads parameters into registers (just like a function call)

2. Process executes trap instruction (int, syscall, svc, etc.)

3. Hardware changes PC to “handler” and switches to kernel mode

4. OS checks what the process wants to do from registers

5. OS decides whether the process is allowed to do so

6. OS sets process state to blocked

22

Returning from a system call (simplification)

• After OS finishes whatever operation it was asked to do
• And when the process is scheduled to run again

1. OS places return result in a register (just like a function call)

2. OS sets process state to running

3. OS changes mode to user mode (and sets virtual memory stuff)

4. OS sets Instruction Pointer to instruction after the system call

5. Process continues and can use results of system call

23

System calls trigger context switches

Diagram from Bryant & O’Hallaron book

• Context switch: the action of storing the state of a process so it
can be resumed later and entering into the kernel

Linux system calls

• Example system calls
• https://man7.org/linux/man-pages/man2/syscalls.2.html

25

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

https://man7.org/linux/man-pages/man2/syscalls.2.html

Many other system calls

• POSIX contains many others, for example time()
• And especially lots of old ones

• Windows or other operating systems will have entirely different
system calls
• Same basic idea though

26

27

• Processes

• System Calls

• Process Creation

• Signals

• Threads

Outline

Example system call usage

• Create new processes with system calls

• From process view:
• Just look like regular C functions

• Take arguments, return values

• Underneath:
• Function uses special assembly instruction to trigger exception

28

Process system calls

pid_t fork(void);

• Create a new process that is a copy of the current one

• Returns either PID of child process (parent) or 0 (child)

void _exit(int status);

• Exit the current process (exit(), the library call cleans things up first)

pid_t waitpid(pid_t pid, int *status, int options);

• Suspends the current process until a child (pid) terminates

int execve(const char *filename, char *const argv[], char *const envp[]);

• Execute a new program, replacing the existing one

29

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

printf("Child!\n");
} else {

printf("Parent!\n");
}

printf("Both!\n");
return 0;

}

30

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

printf("Child!\n");
} else {

printf("Parent!\n");
}

printf("Both!\n");
return 0;

}

31

Existential crisis

Executing a new program

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

execve("/bin/python3", ...);
} else {

printf("Parent!\n");
}

printf("Only parent!\n");
return 0;

}

32

Creating your own shell

void execute(char** args) {

if (strcmp(args[0], "exit") == 0) {

exit(); // exit the shell when requested

}

pid_t cpid = fork();

if (cpid == 0) {

if (execvp(args[0], args) < 0) { // child, execute new process

printf("command not found: %s\n", args[0]);
}

} else {

waitpid(cpid, & status, WUNTRACED); // parent, wait for process to be complete

}}

int main(){

char** args;

while(1){

printf("> ");

args = parse_incoming_text(); // complicated in C unfortunately

execute(args);

}}
33

https://danishpraka.sh/2018/01/15/write-a-shell.html

https://danishpraka.sh/2018/01/15/write-a-shell.html

Creating your own shell

void execute(char** args) {

if (strcmp(args[0], "exit") == 0) {

exit(); // exit the shell when requested

}

pid_t cpid = fork();

if (cpid == 0) {

if (execvp(args[0], args) < 0) { // child, execute new process

printf("command not found: %s\n", args[0]);
}

} else {

waitpid(cpid, & status, WUNTRACED); // parent, wait for process to be complete

}}

int main(){

char** args;

while(1){

printf("> ");

args = parse_incoming_text(); // complicated in C unfortunately

execute(args);

}}
34

https://danishpraka.sh/2018/01/15/write-a-shell.html

https://danishpraka.sh/2018/01/15/write-a-shell.html

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

while(1){

fork();

}

return 0;

}

35

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

while(1){

fork();

}

return 0;

}

36

• Creates a new process
• Then each process creates a

new process
• Then each of those creates a

new process…

• Known as a Fork bomb!
• Machine eventually runs out of

memory and processing power
and will stop working

• Defense: limit number of
processes per user

Fork bombs in various languages

• Python fork bomb

import os

while 1:

os.fork()

• Rust fork bomb

#[allow(unconditional_recursion)]

fn main() {

std::thread::spawn(main);

main();

}

37

• Bash fork bomb
:(){ :|:& };:

• With spacing and a clearer
function name

fork() {

fork | fork &

}

fork

38

• Processes

• System Calls

• Process Creation

• Signals

• Threads

Outline

Alerting processes of events

• How do we let a process know there was an event?
• Errors

• Termination

• User commands (like CTRL-C or CTRL-\)

• Events could happen whenever
• Need to interrupt process control flow and run an event handler

• Linux mechanism to do so is called “signals”

39

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

40

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

41

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Errors

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

42

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Termination

Sending signals

• OS sends signals when it needs to

• Processes can ask the OS send signals with a system call
• int kill(pid_t pid, int sig);

• Users send signals through OS from command line or keyboard
• Shell command: kill -9 pid (SIGKILL)

• CTRL-C (SIGINT)

43

Handling signals

• Programs can register a function to handle individual signals
• signal(int sig, sighandler_t handler);

• OS keeps track of signal handlers for each signal
• Calls that function when a signal occurs

• What is the process supposed to do about it?
• Do some quick processing to handle it

• Reset the process and try again

• Quit the process (default handler)

44

Example: catching a signal

void sighandler (int signum) {

printf("HA HA You can't kill me!\n");

}

int main (void) {

signal(SIGINT, sighandler);

printf("Starting\n");

while(true) {

printf("Going to sleep for a second...\n");

sleep(1);

}

return 0;

}

45

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>

#include <unistd.h>
#include <signal.h>

46

• Processes

• System Calls

• Process Creation

• Signals

• Threads

Outline

Software Tasks: Threads

Unit of execution within a process

Processes discussed so far have a single thread
• They “have a single thread of execution”
• They “are single-threaded”

But a single process could have multiple threads

47

Alternate view of a process

• A process could have multiple threads
• Each with its own registers and stack

48

• Code and
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables

Process address space with threads

49

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

%RIP (T1)

%RIP (T3)
%RIP (T2)

Data

Segment

Thread use case: web browser

Let’s say you’re implementing a web browser:

You want a tab for each web page you open:
• The same code loads each website (shared code section)

• The same global settings are shared by each tab (shared data section)

• Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

50

Thread use case: user interfaces

• Even if there is only a single processor core, threads are useful

• Single-threaded User Interface
• While processing actions, the UI is frozen

main() {

while(true) {

check_for_UI_interactions();

process_UI_actions(); // UI freezes while processing

}

}

51

Thread use case: web server

52

• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Disk I/O for request 1 finishes

Server responds to request 1

Server reads in request 2

• Easy to program, but slow
• Can’t overlap disk requests with computation

• Can’t overlap either with network sends and receives

53

time

Web server option 1: event-driven model

• Issue I/Os, but don’t wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes
Server responds to request 1

• Fast, but hard to program
• Must remember which requests are in flight and which I/O goes where
• Lots of extra state

54

time

Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!
• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…
55

Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1
Exit

Thread 2

Read in request 2
Start disk I/O

time

More Practical Motivation

4/5/2022 Kumar CS 162 at UC Berkeley, Summer 2020 56

Back to Jeff Dean’s
“Numbers
Everyone Should
Know”

Handle I/O in
separate thread,
avoid blocking
other progress

Models for thread libraries: User Threads

• Thread scheduling is implemented within the process
• OS only knows about the process, not the threads

• Upsides
• Works on any hardware or OS
• Performance is better when

creating and switching

• Downsides
• A system call in any thread

blocks all threads

57

Scheduler

OS
Kernel

Processes

Thread
Library

Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343

58

Scheduler

OS
Kernel

Processes

Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all

threads of the process.
• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by
reading/writing (shared)
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

60

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

• What happens when pthread_create() is called in a process?

61

Library:

int pthread_create(…) {
Do some work like a normal function
Put syscall number into register
Put args into registers
Special trap instruction

Get return values from regs
Do some more work like a normal function

};

Get args from regs
Do the work to spawn the new thread
Store return value in %eax

Kernel:

clone (56) syscall on Linux

Threads Example

62

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a
number, then
increments it, then exits

• Main process waits for
all of the threads to
finish

63

Threads Example

64

Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
created?

4. If we run the program again,
would the result change?

65

Check your understanding

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
would the result change?
Possibly!

66

67

• Processes

• System Calls

• Process Creation

• Signals

• Threads

Outline

