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Today’s Goals

• Introduce the general concerns of filesystems.

• Revisit application-level view of filesystems.

• Explore tradeoffs in how filesystems track which blocks are 
available and which blocks are in use by which files.

• Generally, understand the “design space” of filesystems.
• Implementations will be selections of these.
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• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline



Introducing file systems
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Translation from user to system view

What happens if user says: “give me bytes 2 – 12?”
• Fetch block corresponding to those bytes
• Return just the correct portion of the block

• What about writing bytes 2 – 12?
• Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size blocks
• Actual disk I/O happens in blocks
• read/write smaller than block size needs to translate and buffer
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Classic OS situation

• Take limited hardware interface (array of blocks) and provide a 
more convenient/useful interface with:

1. Naming: Find file by name, not block numbers

2. Translation: Map files to blocks

3. Organization: Tree-based directory structure which holds all files

4. Protection: Enforce access restrictions

5. Reliability: Keep files intact despite crashes, hardware failures, etc.

• We combine all of this to create a filesystem
• Many different approaches and tradeoffs

• FAT32, NTFS, ext4, ZFS, etc.
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Filesystem challenges

• Disk performance
• Sequential access is fast; random access is slow (for HDDs)

• Persistence of data
• Needs to tolerate sudden power loss without corruption

• Free space management
• Files are created and deleted

• Files grow and shrink in size
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Hard drive disk (HDD) reminder
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Solid state drive (SSD) reminder

• Flash memory

• No issues with
random access speed

• Writes are a concern though!
• Writes 10x slower than reads

• Limited write lifetime (~1-10k writes per page)
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• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline



Application view of file system

• Directories
• Which are just a file where the data is pointers to other files

• Regular Files
• A handle with associated data

• “Type” of the file comes down to the data within it

• Reminder: “File extensions” in name of file are a convention, not a 
necessity

• Special files
• Character and block devices!!
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Binary file examples
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Syscalls to interact with files

• open (or create) a file with a given path (directories & name) and 
set the file pointer to the beginning of the file

• read up to a certain number of bytes from an open file, and move 
the file pointer for the next read.

• write an array of bytes to an open file (and move the pointer)

• close an open file

• lseek to move the file pointer to a certain index in the file

• fsync to push changes to disk immediately (flush dirty data)
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Additional file syscalls

• stat/fstat gets file metadata (data about the data)

• rename to move a file

• unlink to remove a file

• mkdir to make a directory

• Linux:
• getdents to list the contents of a directory

• “get directory entries”

• Because “read” would be filesystem-specific to interpret
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File/directory metadata

• Files also have attributes: readable, writeable, access time, etc.

struct stat {
dev_t     st_dev;         /* ID of device containing file */
ino_t     st_ino;         /* Inode number (low-level name) */
mode_t    st_mode;        /* File type and mode (permissions) */
nlink_t   st_nlink;       /* Number of hard links */
uid_t     st_uid;         /* User ID of owner */
gid_t     st_gid;         /* Group ID of owner */
dev_t     st_rdev;        /* Device ID (if special file) */
off_t     st_size;        /* Total size, in bytes */
blksize_t st_blksize;     /* Block size for filesystem I/O */
blkcnt_t  st_blocks;      /* Number of 512B blocks allocated */
struct timespec st_atim;  /* Time of last access */
struct timespec st_mtim;  /* Time of last modification */
struct timespec st_ctim;  /* Time of last status change */

};
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Break + double xkcd

18
https://xkcd.com/2143/ https://xkcd.com/2531/



19

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline



Data structures on disk

• A bit different than data structures in memory

• Access must be in units of blocks at a time
• Can’t efficiently read/write a single word

• Instead must read/write entire block containing it

• Ideally want sequential access patterns (sequential accesses are fast)

• Durability
• File system hopefully should be in a meaningful state upon shutdown

• But, shutdown could happen at any moment so that guarantee is tricky!
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Disk partitions

• Most computers have one physical disk,
• But they may require multiple filesystems.

• A disk partition is a contiguous chunk of the 
disk that can be formatted to store a 
filesystem.

• At left, we have:
• Three different Linux partitions: /boot, swap, /
• A Windows partition.
• Each of the partitions may be formatted differently.

• At bootup, initial boot code will present user 
with a menu to choose Windows or Linux boot.
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What does the filesystem need to track?

• Track free disk blocks (within partition)
• Need to know which are available for new data

• Track blocks containing data for files
• Need to know where to read a file from

• Track files in a directory
• Need to be able to walk the directory hierarchy to find files

• All this needs to be maintained in data structures on the disk itself
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What goes within a partition?

• Generic view of any filesystem
• We’ll talk about specifics next lecture

1. Header

2. Free Space Tracking

3. File Tracking

4. File Data
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What goes within a partition?

• Generic view of any filesystem
• We’ll talk about specifics next lecture

• Header (Superblock)
• Details about which filesystem this is

• Metadata about the filesystem
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Tracking available blocks on a disk

• Free Space Tracking
• Track which blocks in “File Data” are in use

• List of block addresses would make sense…
• Assume block address is 32-bits and 4 KB block

• 1 TB disk -> 250,000,000 blocks

• 1 GB of block addresses

• More complex but space-efficient data structures 
are possible

• Space-efficient is nice because we really 
want to limit reads to disk
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Bitmaps are a more space efficient tracking option

• Each block on disk is represented by a single bit
• 1 means free and 0 means used (or vice versa)
• Every block is listed in order

• 1 TB disk -> 250 million blocks -> 250 million bits -> 30 MB

• Bitmaps for tracking free blocks are a constant size for a 
disk
• Upside: easy to work with
• Downside: more complex data structures could compress runs of 

free/used blocks
• Depends whether disk is expected to be fragmented or not

• Bitmaps are typically used in practice
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• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline



What goes in the file data?

• Regular file data
• Just the file’s contents directly
• Attributes already handled in inode

• Directory data
• Structure listing files within this directory

• File name, permissions, first data block
• OR File name, inode

• Obvious implementation leads to a fixed maximum 
file name size
• 8 characters in MS-DOS plus 3 for extension
• 14 characters in Unix v7
• This is the route of much evil abbreviation
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Directory data structures

• (a) uses variable-
length structures for 
each file

• (b) contains an extra 
heap section for 
holding filenames

• File attributes could 
also go here instead of 
in the inode
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• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline



Tracking available blocks on a disk

• File Tracking
• File attributes

• Ordered blocks where the file data is located

• Two common implementations
• Allocation Table

• FAT32

• Index Nodes (inodes)

• Unix File System, Fast File System,

• ext3/ext4, NTFS
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Requiring contiguous blocks won’t work

• Need ability to map random blocks to file
• Files in contiguous blocks is definitely nice

• Sequential reads are fast

• But requiring it leads to lots of fragmentation (unusable gaps in disk)
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Allocation table – an example file tracking solution

• Build a linked list of data blocks for each file
• But distribute that linked list across an array

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number
• Read tracking block first to determine which data blocks for the file

• Then you can only read the actual data blocks you want
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Allocation table
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Allocation table
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Allocation table
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Allocation table
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allocation-table-based system breakdown

• The allocation table tracks next pointers for each data block
• Contains one entry for each data block

• Each directory has zero or more data blocks
• The data blocks contain (filename, permissions, first data block) tuples for 

each file it contains

• Each file has zero or more data blocks
• The data blocks contain the actual file data
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Break + Check your understanding – Allocation table size

• If each block address is 32 bits, and blocks are 4 kB in size, how 
big is the Allocation Table for a 2 TB drive?
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Break + Check your understanding – Allocation table size

• If each block address is 32 bits, and blocks are 4 kB in size, how 
big is the Allocation Table for a 2 TB drive?

• 2 TB / 4 KB = 500,000,000 blocks * 4 bytes = 2 GB
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Problem 1: we really want the allocation table to fit in RAM

• Accessing the allocation table on disk would slow us down
• File blocks are not necessarily sequential

• You might end up having to load in multiple blocks worth of File Tracking

• Instead, at boot, load allocation table into RAM
• File accesses will require scanning the linked list in RAM,

but only a single disk access

• Writes should be sent back to disk occasionally for safety

• But 2 GB is a bit big to leave in RAM all the time…
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Problem 2: file attributes should be more accessible

• Unclear where attributes should go for a file with allocation table
• Either in the first block of the file

• Or in the directory data

• Separation of attributes from block pointers is undesirable
• Would be nice to have both of them in a single disk read

• Or less than one read if they’re already in RAM
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Index node (inode) – alternative file tracking solution

• Treat “File Tracking” as an array of inodes
• Each inode corresponds to a single file

• More files means more inodes

• inode contents
• File attributes

• Ordered list of pointers to data blocks for the file

• Many improvements have sprung up
• Optimization: coalesce contiguous blocks

• Optimization: for very small files, put data right in the inode!
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Hierarchical inodes allow for larger file sizes

• Each inode is ≤ one block in size
• So there would be a limit to how many blocks a file can have

• Apply tree structure to block pointers to solve this
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File system access with inodes

• Open syscall: find inode and load it into memory

• Read/write syscalls: reference inode by file descriptor
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inode-based system breakdown

• Each file (regular file or directory) has one inode
• The inode has permissions and pointers to data blocks

• If the file is really big, the inode points to indirect blocks (which contain 
additional data block pointers)

• Each directory has zero or more data blocks
• The data blocks contain (filename, inode) pairs for each file it contains

• Each file has zero or more data blocks
• The data blocks contain the actual file data

47



What can we observe about real-world file systems?
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1. Most files are small
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2. Most bytes are spent on a few large files
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Break + Broader Thinking

• Study was on 60,000 Windows PC file systems in a large 
corporation from 2000-2004 (over twenty years ago)

1. Does this still apply today? Why or why not?

2. Can you think of systems where it especially might not apply?
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Storage trace of my work desktop

• 4% JPGs
• 19,000 total
• Roughly 1.5 MB per 

image

• 4% PDFs

• 2% MP4s

• 2% PPTX

• 2% Zips

• 45% for a VM
(which is really just a partition in disguise)

52



53

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline



A trace through the filesystem

• Now we have enough knowledge to walk through an entire 
filesystem access

• Here we assume
• Bitmap for marking free data blocks

• Bitmap for marking free inode blocks

• Inode for each file/directory

• One or more data blocks for each file/directory

• Exact ordering of some of these steps are up for debate
• Different implementations may swap ordering of some parts
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Open and read example
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Open and read example
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Open and read example
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Open and read example
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Create and write a file
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Create:

1. First, read the parent 
directory to ensure that 
name is not already used.

2. Find & claim a free inode.

3. Add <“bar”, inode#> to 
parent directory.

4. Fill-in file metadata.
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Create and write a file

60

Create:

1. First, read the parent 
directory to ensure that 
name is not already used.

2. Find & claim a free inode.

3. Add <“bar”, inode#> to 
parent directory.

4. Fill-in file metadata.

Write:

1. Look for remaining space 
in existing blocks first.

2. Find & claim a new data 
block.

3. Write data to new block

4. Point to it in inode
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