
Lecture 15:
Filesystem Principles

CS343 – Operating Systems

Branden Ghena – Fall 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Today’s Goals

• Introduce the general concerns of filesystems.

• Revisit application-level view of filesystems.

• Explore tradeoffs in how filesystems track which blocks are
available and which blocks are in use by which files.

• Generally, understand the “design space” of filesystems.
• Implementations will be selections of these.

2

3

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline

Introducing file systems

4

I/O API and
syscalls

Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index., 4KB
Sector(s)

Sector(s)

Erasure Page

Translation from user to system view

What happens if user says: “give me bytes 2 – 12?”
• Fetch block corresponding to those bytes
• Return just the correct portion of the block

• What about writing bytes 2 – 12?
• Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size blocks
• Actual disk I/O happens in blocks
• read/write smaller than block size needs to translate and buffer

5

File
System

File
(Bytes)

Classic OS situation

• Take limited hardware interface (array of blocks) and provide a
more convenient/useful interface with:

1. Naming: Find file by name, not block numbers

2. Translation: Map files to blocks

3. Organization: Tree-based directory structure which holds all files

4. Protection: Enforce access restrictions

5. Reliability: Keep files intact despite crashes, hardware failures, etc.

• We combine all of this to create a filesystem
• Many different approaches and tradeoffs

• FAT32, NTFS, ext4, ZFS, etc.

6

Filesystem challenges

• Disk performance
• Sequential access is fast; random access is slow (for HDDs)

• Persistence of data
• Needs to tolerate sudden power loss without corruption

• Free space management
• Files are created and deleted

• Files grow and shrink in size

7

Hard drive disk (HDD) reminder

8

Western Digital Drive
http://www.storagereview.com/guide/

Solid state drive (SSD) reminder

• Flash memory

• No issues with
random access speed

• Writes are a concern though!
• Writes 10x slower than reads

• Limited write lifetime (~1-10k writes per page)

9

Host

Buffer
Manager
(software
Queue)

Flash
Memory

Controller

DRAM

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

SATA

10

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline

Application view of file system

• Directories
• Which are just a file where the data is pointers to other files

• Regular Files
• A handle with associated data

• “Type” of the file comes down to the data within it

• Reminder: “File extensions” in name of file are a convention, not a
necessity

• Special files
• Character and block devices!!

11

Binary file examples

12

Executable
File

Archive
(tar)

Syscalls to interact with files

• open (or create) a file with a given path (directories & name) and
set the file pointer to the beginning of the file

• read up to a certain number of bytes from an open file, and move
the file pointer for the next read.

• write an array of bytes to an open file (and move the pointer)

• close an open file

• lseek to move the file pointer to a certain index in the file

• fsync to push changes to disk immediately (flush dirty data)

14

Additional file syscalls

• stat/fstat gets file metadata (data about the data)

• rename to move a file

• unlink to remove a file

• mkdir to make a directory

• Linux:
• getdents to list the contents of a directory

• “get directory entries”

• Because “read” would be filesystem-specific to interpret

15

File/directory metadata

• Files also have attributes: readable, writeable, access time, etc.

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number (low-level name) */
mode_t st_mode; /* File type and mode (permissions) */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */
struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

};
16

Break + double xkcd

18
https://xkcd.com/2143/ https://xkcd.com/2531/

19

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline

Data structures on disk

• A bit different than data structures in memory

• Access must be in units of blocks at a time
• Can’t efficiently read/write a single word

• Instead must read/write entire block containing it

• Ideally want sequential access patterns (sequential accesses are fast)

• Durability
• File system hopefully should be in a meaningful state upon shutdown

• But, shutdown could happen at any moment so that guarantee is tricky!

20

Disk partitions

• Most computers have one physical disk,
• But they may require multiple filesystems.

• A disk partition is a contiguous chunk of the
disk that can be formatted to store a
filesystem.

• At left, we have:
• Three different Linux partitions: /boot, swap, /
• A Windows partition.
• Each of the partitions may be formatted differently.

• At bootup, initial boot code will present user
with a menu to choose Windows or Linux boot.

21

Disk A

(not drawn to scale)

Initial Boot Code

Partition Table

Partition 1: /boot

Partition 2: /

Partition 3: swap

Partition 4: Windows C:\

What does the filesystem need to track?

• Track free disk blocks (within partition)
• Need to know which are available for new data

• Track blocks containing data for files
• Need to know where to read a file from

• Track files in a directory
• Need to be able to walk the directory hierarchy to find files

• All this needs to be maintained in data structures on the disk itself

22

What goes within a partition?

• Generic view of any filesystem
• We’ll talk about specifics next lecture

1. Header

2. Free Space Tracking

3. File Tracking

4. File Data

23

Partition

Header

Free Space Tracking

File Tracking

File Data

What goes within a partition?

• Generic view of any filesystem
• We’ll talk about specifics next lecture

• Header (Superblock)
• Details about which filesystem this is

• Metadata about the filesystem

24

Partition

Header

Free Space Tracking

File Tracking

File Data

Tracking available blocks on a disk

• Free Space Tracking
• Track which blocks in “File Data” are in use

• List of block addresses would make sense…
• Assume block address is 32-bits and 4 KB block

• 1 TB disk -> 250,000,000 blocks

• 1 GB of block addresses

• More complex but space-efficient data structures
are possible

• Space-efficient is nice because we really
want to limit reads to disk

25

Partition

Header

Free Space Tracking

File Tracking

File Data

Bitmaps are a more space efficient tracking option

• Each block on disk is represented by a single bit
• 1 means free and 0 means used (or vice versa)
• Every block is listed in order

• 1 TB disk -> 250 million blocks -> 250 million bits -> 30 MB

• Bitmaps for tracking free blocks are a constant size for a
disk
• Upside: easy to work with
• Downside: more complex data structures could compress runs of

free/used blocks
• Depends whether disk is expected to be fragmented or not

• Bitmaps are typically used in practice

26

27

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline

What goes in the file data?

• Regular file data
• Just the file’s contents directly
• Attributes already handled in inode

• Directory data
• Structure listing files within this directory

• File name, permissions, first data block
• OR File name, inode

• Obvious implementation leads to a fixed maximum
file name size
• 8 characters in MS-DOS plus 3 for extension
• 14 characters in Unix v7
• This is the route of much evil abbreviation

28

Partition

Header

Free Space Tracking

File Tracking

File Data

Directory data structures

• (a) uses variable-
length structures for
each file

• (b) contains an extra
heap section for
holding filenames

• File attributes could
also go here instead of
in the inode

29

30

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline

Tracking available blocks on a disk

• File Tracking
• File attributes

• Ordered blocks where the file data is located

• Two common implementations
• Allocation Table

• FAT32

• Index Nodes (inodes)

• Unix File System, Fast File System,

• ext3/ext4, NTFS

31

Partition

Header

Free Space Tracking

File Tracking

File Data

Requiring contiguous blocks won’t work

• Need ability to map random blocks to file
• Files in contiguous blocks is definitely nice

• Sequential reads are fast

• But requiring it leads to lots of fragmentation (unusable gaps in disk)

32

Allocation table – an example file tracking solution

• Build a linked list of data blocks for each file
• But distribute that linked list across an array

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number
• Read tracking block first to determine which data blocks for the file

• Then you can only read the actual data blocks you want

34

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

Allocation table

35

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

• Build a linked list of data blocks for each file
• But distribute that linked list across an array

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number
• Read tracking block first to determine which data blocks for the file

• Then you can only read the actual data blocks you want

Allocation table

36

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

• Build a linked list of data blocks for each file
• But distribute that linked list across an array

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number
• Read tracking block first to determine which data blocks for the file

• Then you can only read the actual data blocks you want

Allocation table

37

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

• Build a linked list of data blocks for each file
• But distribute that linked list across an array

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number
• Read tracking block first to determine which data blocks for the file

• Then you can only read the actual data blocks you want

Allocation table

38

0 -1

1 -1

2 10

3 11

4 7

5 -1

6 3

7 2

8 -1

9 -1

10 12

11 14

12 -1

13 -1

14 -1

15 -1

Block Number

Next Block Example: File “A” starts at Block 4

5 total blocks
{4, 7, 2, 10, 12}

• Build a linked list of data blocks for each file
• But distribute that linked list across an array

• Treat “File Tracking” block as an array of block pointers
• Index into this array is the block number
• Read tracking block first to determine which data blocks for the file

• Then you can only read the actual data blocks you want

allocation-table-based system breakdown

• The allocation table tracks next pointers for each data block
• Contains one entry for each data block

• Each directory has zero or more data blocks
• The data blocks contain (filename, permissions, first data block) tuples for

each file it contains

• Each file has zero or more data blocks
• The data blocks contain the actual file data

39

Break + Check your understanding – Allocation table size

• If each block address is 32 bits, and blocks are 4 kB in size, how
big is the Allocation Table for a 2 TB drive?

40

Break + Check your understanding – Allocation table size

• If each block address is 32 bits, and blocks are 4 kB in size, how
big is the Allocation Table for a 2 TB drive?

• 2 TB / 4 KB = 500,000,000 blocks * 4 bytes = 2 GB

41

Problem 1: we really want the allocation table to fit in RAM

• Accessing the allocation table on disk would slow us down
• File blocks are not necessarily sequential

• You might end up having to load in multiple blocks worth of File Tracking

• Instead, at boot, load allocation table into RAM
• File accesses will require scanning the linked list in RAM,

but only a single disk access

• Writes should be sent back to disk occasionally for safety

• But 2 GB is a bit big to leave in RAM all the time…

42

Problem 2: file attributes should be more accessible

• Unclear where attributes should go for a file with allocation table
• Either in the first block of the file

• Or in the directory data

• Separation of attributes from block pointers is undesirable
• Would be nice to have both of them in a single disk read

• Or less than one read if they’re already in RAM

43

Index node (inode) – alternative file tracking solution

• Treat “File Tracking” as an array of inodes
• Each inode corresponds to a single file

• More files means more inodes

• inode contents
• File attributes

• Ordered list of pointers to data blocks for the file

• Many improvements have sprung up
• Optimization: coalesce contiguous blocks

• Optimization: for very small files, put data right in the inode!

44

inode

Hierarchical inodes allow for larger file sizes

• Each inode is ≤ one block in size
• So there would be a limit to how many blocks a file can have

• Apply tree structure to block pointers to solve this

45

File system access with inodes

• Open syscall: find inode and load it into memory

• Read/write syscalls: reference inode by file descriptor

46

(fd)

fd

inode

inode-based system breakdown

• Each file (regular file or directory) has one inode
• The inode has permissions and pointers to data blocks

• If the file is really big, the inode points to indirect blocks (which contain
additional data block pointers)

• Each directory has zero or more data blocks
• The data blocks contain (filename, inode) pairs for each file it contains

• Each file has zero or more data blocks
• The data blocks contain the actual file data

47

What can we observe about real-world file systems?

48

2007

1. Most files are small

49

2. Most bytes are spent on a few large files

50

Break + Broader Thinking

• Study was on 60,000 Windows PC file systems in a large
corporation from 2000-2004 (over twenty years ago)

1. Does this still apply today? Why or why not?

2. Can you think of systems where it especially might not apply?

51

Storage trace of my work desktop

• 4% JPGs
• 19,000 total
• Roughly 1.5 MB per

image

• 4% PDFs

• 2% MP4s

• 2% PPTX

• 2% Zips

• 45% for a VM
(which is really just a partition in disguise)

52

53

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Handling file data

• Tracking files

• Whole filesystem example

Outline

A trace through the filesystem

• Now we have enough knowledge to walk through an entire
filesystem access

• Here we assume
• Bitmap for marking free data blocks

• Bitmap for marking free inode blocks

• Inode for each file/directory

• One or more data blocks for each file/directory

• Exact ordering of some of these steps are up for debate
• Different implementations may swap ordering of some parts

54

Open and read example

55

open("/foo/bar")

ti
m

e

find file inode

Open and read example

56

open("/foo/bar")

ti
m

e

update attributes

Open and read example

57

open("/foo/bar")

ti
m

e

inode reads/writes from here
occur in memory rather than disk

Open and read example

58

open("/foo/bar")

ti
m

e

read next file block

Create and write a file

59

Create:

1. First, read the parent
directory to ensure that
name is not already used.

2. Find & claim a free inode.

3. Add <“bar”, inode#> to
parent directory.

4. Fill-in file metadata.

1

3

4

2

Create and write a file

60

Create:

1. First, read the parent
directory to ensure that
name is not already used.

2. Find & claim a free inode.

3. Add <“bar”, inode#> to
parent directory.

4. Fill-in file metadata.

Write:

1. Look for remaining space
in existing blocks first.

2. Find & claim a new data
block.

3. Write data to new block

4. Point to it in inode

1

3

4

2

1

2

3
4

61

• Introduction to filesystems

• Application view

• Parts of a file system
• Managing disk

• Tracking files

• Handling file data

• Whole filesystem example

Outline

	Default Section
	Slide 1: Lecture 15: Filesystem Principles

	Goals
	Slide 2: Today’s Goals

	Introduction
	Slide 3: Outline
	Slide 4: Introducing file systems
	Slide 5: Translation from user to system view
	Slide 6: Classic OS situation
	Slide 7: Filesystem challenges
	Slide 8: Hard drive disk (HDD) reminder
	Slide 9: Solid state drive (SSD) reminder

	Application View
	Slide 10: Outline
	Slide 11: Application view of file system
	Slide 12: Binary file examples
	Slide 14: Syscalls to interact with files
	Slide 15: Additional file syscalls
	Slide 16: File/directory metadata
	Slide 18: Break + double xkcd

	Managing Disk
	Slide 19: Outline
	Slide 20: Data structures on disk
	Slide 21: Disk partitions
	Slide 22: What does the filesystem need to track?
	Slide 23: What goes within a partition?
	Slide 24: What goes within a partition?
	Slide 25: Tracking available blocks on a disk
	Slide 26: Bitmaps are a more space efficient tracking option

	File Data
	Slide 27: Outline
	Slide 28: What goes in the file data?
	Slide 29: Directory data structures

	Tracking Files
	Slide 30: Outline
	Slide 31: Tracking available blocks on a disk
	Slide 32: Requiring contiguous blocks won’t work
	Slide 34: Allocation table – an example file tracking solution
	Slide 35: Allocation table
	Slide 36: Allocation table
	Slide 37: Allocation table
	Slide 38: Allocation table
	Slide 39: allocation-table-based system breakdown
	Slide 40: Break + Check your understanding – Allocation table size
	Slide 41: Break + Check your understanding – Allocation table size
	Slide 42: Problem 1: we really want the allocation table to fit in RAM
	Slide 43: Problem 2: file attributes should be more accessible
	Slide 44: Index node (inode) – alternative file tracking solution
	Slide 45: Hierarchical inodes allow for larger file sizes
	Slide 46: File system access with inodes
	Slide 47: inode-based system breakdown
	Slide 48: What can we observe about real-world file systems?
	Slide 49: 1. Most files are small
	Slide 50: 2. Most bytes are spent on a few large files
	Slide 51: Break + Broader Thinking
	Slide 52: Storage trace of my work desktop

	Whole Filesystem Example
	Slide 53: Outline
	Slide 54: A trace through the filesystem
	Slide 55: Open and read example
	Slide 56: Open and read example
	Slide 57: Open and read example
	Slide 58: Open and read example
	Slide 59: Create and write a file
	Slide 60: Create and write a file

	Wrapup
	Slide 61: Outline

