Lecture 11:
Virtual Memory

CS343 — Operating Systems
Branden Ghena — Fall 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS61C and CS5162

Northwestern

Resources the OS manages

* Processor
 Scheduling

e Devices
* Device Drivers

 Memory
 Virtual Memory

* Files
* File systems

Today’s Goals

* Discuss OS management of process memory with virtual memory

 Understand two virtual memory mechanisms:
segmentation and paging

 Explore optimizations to memory paging

Outline

* Address Spaces

« Methods of address translation
» Segmentation
* Paging

The reality of memory in a computer

Process A

Process B

Process C

CPU

Y
w
ProcessA ¢
RAM
Process B

Process C

A process’s view of the memory

* The Address Space of the process

* The illusion:

» Processes run alone on the computer

« They have full access to every memory
address

« 264 bytes of memory available to them

* The reality:
» There are many processes
» There is only so much RAM available

~ FFFF FFFF,,,

Ohex

static data

code

Virtual memory enables this illusion

Virtual Addresses Physical Addresses
~ FFFF FFFF,,, stack ~ FFFF FFFF,,,
— — -
Q Process A
O
(% /
ol _1__ _ =
& heap < | ProcessB
=
£ | static data
code OS
~0hex ~0hex

Why is this illusion important?

« We want to compile our programs at set addresses
« There are alternatives to this, such as Position Independent code
 But those alternatives often have performance costs

« But we can’t know which addresses will be available

« How would developers know which addresses Chrome could use safely or
which addresses Powerpoint intended to use?

* Plus, the amount of RAM on systems varies widely
 Old laptop with 512 MB, Desktop with 16 GB, Server with 256 GB
o If they run x86-64 Linux, the same program will work on all of them
» Specialized systems, like embedded, might not need this requirement

Goals of virtual memory

1. Independence from other programs running
2. Independence from machine hardware

3. Security

* Applications shouldnt be able to even read other memory much less write

4. Efficiency
 Allow reuse of some parts of memory
« Code sections for threads, duplicate processes, or shared libraries
* Don't slow down the system too much by enabling the above

Virtual memory is how the OS controls memory accesses

» I/O operations are controlled by system calls
» CPU usage is controlled by the scheduler (and interrupts)

» How can the OS control memory accesses?

 Context switch for each memory read/write is too high of a cost
« Hardware needs to automatically handle most requests

10

Memory Management Unit (MMU) supports virtual memory

1. Translation: hardware support for common case reads/writes
 Configured by the OS

2. Faults: trap to OS to handle uncommon errors

Virtual Physical
Addresses Addresses

Translation
CPU

and aults
Memory
Management
Unit

11

Short Break + Question

« Which is bigger in practice: virtual memory or physical memory?

12

Short Break + Question

« Which is bigger in practice: virtual memory or physical memory?

« 264 bytes worth of addresses in both
 Both could hold up to 18 Exabytes (~18000 Petabytes, ~18000000 Terabytes)

* Virtual memory: practically there isn’t a limit
 Physical memory: practically limited to amount of RAM installed
« So, likely measured in Gigabytes

* On almost any real system: Virtual Memory is MUCH larger

13

Outline

« Address Spaces

« Methods of address translation
- Segmentation
* Paging

Share memory by splitting between whole processes

Virtual Addresses Physical Addresses
~ FFFF FFFF,, stack ~ FFFF FFFF,,,
— = S -
Q Process A
(O
2 /'W
ol — 1 _ =
& heap < | ProcessB
=
< | static data
code OS
~ Opex ~ 0hex

15

Address translation with a base register

* Divide RAM into segments, each with a separate “base” address
 Processes each get their own individual segment
 Takes advantage of processes usually being smaller than RAM

 To get a physical address from a virtual one, add to base value

Memory Management Unit

Virtual Address Physical Address

base

Adding protection creates "Base and Bound” translation

« Add a "bound” register with maximum value of the segment
« Memory accesses greater than bound trigger a fault
« No need to worry about lower bound, since minimum address is 0+base

Memory Management Unit

Virtual Address Physical Address

Base and bounds evaluation

» Advantages
 Provides protection between address spaces
« Supports dynamic relocation of processes (even at runtime)
 Simple, inexpensive hardware implementation

 Disadvantages
 Process must be allocated contiguous physical memory
» Including memory between sections that might never be used
« Large allocations end up wasting a lot of space through fragmentation
 No partial sharing of memory

18

Memory fragmentation example

Process A

Process B

Process C

Process A

CPU

Process B

Process C

19

Memory fragmentation example

Process A

Process C

Process A

CPU

RAM

Process C

20

Memory fragmentation example

Process A
Process A
Process C
Process D N RAM__— Process D
CPU

Hmm... There’s

enough space, Process C

but not all

together!

21

Check your understanding — base and bound

« What are the results of the following memory reads? (16-bit)
 Base: O0xCO00 Bound: Ox1FFF

 Read 0x0010
 Read 0x1400
 Read 0xD000

22

Check your understanding — base and bound

« What are the results of the following memory reads? (16-bit)
 Base: O0xCO00 Bound: Ox1FFF

« Read 0x0010 -> O0xC010
« Read 0x1400 -> 0xD400
« Read 0xD00O -> Fault (translates to 0x19000)

23

What if we split the code into multiple base/bound segments?

Physical Addresses

stack ~ FFFF FFFF,
— — S —
Y code
> /W tock
N S
w1 _ _ =
§ heap 5 heap
=
£ | static data static data
code 0S
~0hex ~0h

24

Segmentation design

 Select some number of “segments” that processes may have
« Separate base and bound register for each one

* Need to distinguish which accesses correspond to which segment
« Solution: use top few bits of the virtual address, log,(number of segments)
* 00 -> segment O
* 01 -> segment 1
. etc.
» Only add remaining lower bits to the base register

25

Memory Management Unit for segmentation

 Similar comparison and addition hardware as before

* New segment table to select correct base and bounds
« Bits from virtual address decide on the correct segment
« Segment decides the proper base and bound selection
 Can also apply permissions to individual segments

Segment Base Bound Permissions
0 0x2000 Ox06FF Read/Execute
1 0x0000 Ox04FF Read/Write

2 0x3000 OxOFFF Read/Write

3 0x0000 0x0000 None

Example
<«— (Code
<+— Stack

<+— Data
<+— Unused

26

OS management of processes with segmentation

* On context switch
» Hardware changes to kernel mode and deactivates the MMU
« Save process’s segment table with the rest of the process data
 Load new process’s segment table into the MMU
» Change to user mode and jump to new process

« X86 example
« No table, but rather registers for each segment
 Stack Segment, Code Segment, Data Segment
« Extra Segment, F Segment, G Segment

27

Segmentation evaluation

» Advantages
 Sparse allocation of address space (most of it goes in no segment at all)
» Stack and heap segments can grow
» Different protection for different segments
« Only execute or write where it makes sense to
» Still possible to do dynamic relocation and hardware still relatively simple

 Disadvantages
« Still results in fragmentation of memory
* Entire section must fit
 But sections are irregularly sized

28

Quick question — segmentation (16-bit address space)

* How many bits are
used for the segment?

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

29

Quick question — segmentation (16-bit address space)

* How many bits are
used for the segment?

 Three bits (8 choices)

* Placed as most
significant bits

* Lower 13 bits are
added to base

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

30

Break + Practice — segmentation (16-bit address space)

« Which segment is each?

« Read 0x0200
« Read 0x0500
« Write 0x0410
» Read 0x4004
« Write 0x5004

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

31

Break + Practice — segmentation (16-bit address space)

« Which segment is each?
Segment 0

« Read 0x0200

« Read 0x0500

 Write 0x0410

Segment 2

* Read 0x4004
* Write 0x5004

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

32

Break + Practice — segmentation (16-bit address space)

* Do full translation
Segment 0

« Read 0x0200

« Read 0x0500

« Write 0x0410

Segment 2

* Read 0x4004
* Write 0x5004

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

33

Break + Practice — segmentation (16-bit address space)

e Do full translation Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
Segment 0 1 0x0700 0X02FF Read/Write
« Read 0x0200 -> 0x0200 |2 0x3C00 OxO1FF Read/Write
3 0x1800 Ox01FF Read/Execute
* Read 0x0500 -> 0x0500 |3 0x4200 0x0400 Read/Execute
« Write 0x0410 -> Fault 5 0X0000 0x0000 None
(Permission) |6 0x0000 0x0000 None
7 0x0000 0x0000 None

Segment 2

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

* Read 0x4004

» Write 0x5004

34

Break + Practice — segmentation (16-bit address space)

e Do full translation Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
Segment 0 1 0x0700 0X02FF Read/Write
« Read 0x0200 -> 0x0200 |2 0x3C00 OxO1FF Read/Write
3 0x1800 Ox01FF Read/Execute
* Read 0x0500 -> 0x0500 |3 0x4200 0x0400 Read/Execute
« Write 0x0410 -> Fault 5 0X0000 0x0000 None
(Permission) |6 0x0000 0x0000 None
7 0x0000 0x0000 None

Segment 2

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

 Read 0x4004 -> 0x3C04

« Write 0x5004 -> Fault (Bound) [0x1004 > Ox01FF]

35

Outline

« Address Spaces

- Methods of address translation
» Segmentation
- Paging

Improving upon segmentation
« Segmentation had some good features

« Address space does not need to be contiguous
« Segments can grow when needed

 But irregularly-sized segments lead to fragmentation

Many Some New process doesn't fit!
PFOCtesdses processes RAM is available, but only
create

complete in fragments.

q

RAM | —

Solution to fragmentation: pages of memory

 Divide memory into small, fixed-sized pages

 Pages of virtual memory map to pages
of physical memory

* Like segments were mapped,
but many more pages than segments

 Processes and their sections
can be mapped to any
place in memory

P

Process | Process 2 Process 3

38

Page table translates virtual addresses to physical addresses

 Use topmost bits of virtual
address to select page tableentry

« One page table entry per each " 211 o
virtual page '

« Combine address at page table
entry with bottommost bits -

* Actually just concatenate the two —‘E

32-bit Physical Address

« Just like segment tables, there Tobie
will be a different page table for
each process

Paging versus segmentation

 Every page of virtual memory maps to a page of physical memory
« No need for a bound anymore
« Above a bound would just be within the bounds of some other page

« We don't pick the number of pages, we pick page size
« Number of pages = Size of memory / Size of Page

» Result: Way more pages than there were segments
« 4 kB pages with 4 GB of RAM -> ~1 million pages
* Need to keep page table in memory rather than hardware registers
« Hardware register points at the base of the page table

40

Process A

Process B

Process B Page Table

VPN PPN Valid?

0

Virtual Memory
(Process B Only!)

Process B

1

2

CPU

Process B

Process B

Virtual Memory
(Process B Only!)

— Physical Memory (RAM)
Process A | 0
Process B 1
, Process A | 1
Process B Page Table
VPN PPN Valid? 3 Process B 2
Process B
0 2 1 P A 3
— rocess
1 CPU 4
2 : Process B | 4
3 6 1
4 . Process A | >
5
6
6 Process B #7 Hrocessib
7 4 1
8 - 8

Virtual Memory
(Process B Only!)

— Physical Memory (RAM)
Process A |0
Process B 1
, Process A |1
Process B Page Table
VPN PPN Valid? 3 Process B 2
Process B
0 2 1 3
, y - CPU _ 4 Process A
2 X : Process B | 4
3 6 1
4 X 0 . Process A | 5
5 X 0 P B 6
6 X 0 Process B 77 noldets
7 4 1
8 X 0 — 8

neck your understanding — virtual address translation

Virtual Address

Virtual Page Number

Offset

Physical Page Number

Offset

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

44

neck your understanding — virtual address translation

Virtual Address

Virtual Page Number

Offset

Physical Page Number

Offset

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

No. Those are
used to determine
word/byte within
the page.

45

Steps to translating virtual addresses with paging

1) Index
into PT
using VPN

Important:

offset
1

| Pa,ge Table 3) Combine
V | AR PPN and

| | offset

| ,
@: 2) Check —| "Lt

| | Validand |

| | Access | Physical

i | Rights bits Address

| | 4) Use PA to

dCCeSssS memory

This is all done in hardware!! OS is not involved unless it faults

46

Break + Virtual Memory Practice

Assume "a starts at 0x3000 (virtual)

lanore instruction fetches and Virtual Address Physical Address
atcoss to i and sum (they're in registers) |Accesses Accesses

Code oad 0x3000 oad 0x100C
oad 0x3004 oad 0x7000
int sum = 0O; oad 0x3008 oad 0x100C
for(int i=0; i<N; i++){ oad 0x300C oad 0x7004
sum += a[i]; oad 0x100C
} oad 0x7008
. . . . 5 oad 0x100C
Which physical address is within the page table: oad 0x700C

- At what physical address does "a start?

47

Break + Virtual Memory Practice

Assume "a starts at 0x3000 (virtual)

Ignore instruction fetches and _
accessto i and sum (they're in registers)

Code

int sum = 0©;
for(int i=0; i<N; i++){
sum += a[i];

}

Virtual Address
Accesses

oad 0x3000
oad 0x3004
oad 0x3008
oad 0x300C

« Which physical address is within the page table? 0x100C

 All accesses are within the same Page

At what physical address does "a start? 0x7000
» Accesses to the array step by 4 byte increments

Physical Address
Accesses

oad 0x100C
oad 0x7000
oad 0x100C
oad 0x7004
oad 0x100C
oad 0x7008
oad 0x100C
oad 0x700C

48

How the OS deals with memory in a paging system

1. How do the OS and program agree on addresses?
« Each program can use any virtual addresses it wants
« Some default for compiler/OS pairing
« OS controls physical memory layout in RAM and maps the two

2. How does the OS move memory around without messing up
programs?
 Just update the record in the page table
* Process doesn’t know the difference

3. How to protect OS and process memory from other processes?
« Ensure that virtual pages from a process never map to physical pages for another
» But we can share physical pages for threads or shared libraries if we want!

49

Dealing with processes bigger than memory

 Paging allows the OS to support processes larger than RAM
» Just leave the virtual pages unmapped
« When a load occurs to the unmapped page, a fault triggers the OS
« Which can then load the needed page into RAM from disk
* (and push some other page onto disk)

50

Virtual Memory
(Process B Only!)

— Physical Memory (RAM)
Process B Shared
Process A Process B | ©
Process B
1
Process B Process B ' Process B
\ Process B | 2
Process B
Process B |3
CPU Process B
Process B | 4
' Process B | 5
Process B | 6
Process B
Process B

51

OS management of processes with paging

« When loading a process
 OS places actual memory into physical pages in RAM
 OS creates page table for the process
« OS decides access permissions to different pages
« OS connects to shared libraries already in RAM

« When a context switch occurs
« OS changes which page table is in use (%CR3 register in x86)

« When a fault occurs
« OS decides how to handle it. (Invalid access or missing page?)

52

Paging evaluation

» Advantages
« Still sparse allocation of address space and growing segments as needed
« Still different protection for different segments
« Only execute or write where it makes sense to
» Still possible to do dynamic relocation and hardware still relatively simple
« No fragmentation of main memory
« Pages can fit anywhere they need to
 Can load processes bigger than main memory!

53

Paging evaluation (continued)

 Disadvantages
« More work on the part of the OS to set up a process
« Only a problem if we create processes frequently

 Page tables are slow to access
 Page tables need to be stored in memory due to size
« MMU only holds the base address of the page table and reads from it
« Two memory loads per load!!!
« Going to have to fix this...

 Page tables require a lot of storage space
« Mapping must exist for each virtual page, even if unused
« Becomes a serious issue on 64-bit systems

54

Outline

« Address Spaces

« Methods of address translation
» Segmentation
* Paging

	Default Section
	Slide 1: Lecture 11: Virtual Memory

	Goals
	Slide 2: Resources the OS manages
	Slide 3: Today’s Goals

	Address Spaces
	Slide 4: Outline
	Slide 5: The reality of memory in a computer
	Slide 6: A process’s view of the memory
	Slide 7: Virtual memory enables this illusion
	Slide 8: Why is this illusion important?
	Slide 9: Goals of virtual memory
	Slide 10: Virtual memory is how the OS controls memory accesses
	Slide 11: Memory Management Unit (MMU) supports virtual memory
	Slide 12: Short Break + Question
	Slide 13: Short Break + Question

	Segmentation
	Slide 14: Outline
	Slide 15: Share memory by splitting between whole processes
	Slide 16: Address translation with a base register
	Slide 17: Adding protection creates “Base and Bound” translation
	Slide 18: Base and bounds evaluation
	Slide 19: Memory fragmentation example
	Slide 20: Memory fragmentation example
	Slide 21: Memory fragmentation example
	Slide 22: Check your understanding – base and bound
	Slide 23: Check your understanding – base and bound
	Slide 24: What if we split the code into multiple base/bound segments?
	Slide 25: Segmentation design
	Slide 26: Memory Management Unit for segmentation
	Slide 27: OS management of processes with segmentation
	Slide 28: Segmentation evaluation
	Slide 29: Quick question – segmentation (16-bit address space)
	Slide 30: Quick question – segmentation (16-bit address space)
	Slide 31: Break + Practice – segmentation (16-bit address space)
	Slide 32: Break + Practice – segmentation (16-bit address space)
	Slide 33: Break + Practice – segmentation (16-bit address space)
	Slide 34: Break + Practice – segmentation (16-bit address space)
	Slide 35: Break + Practice – segmentation (16-bit address space)

	Paging
	Slide 36: Outline
	Slide 37: Improving upon segmentation
	Slide 38: Solution to fragmentation: pages of memory
	Slide 39: Page table translates virtual addresses to physical addresses
	Slide 40: Paging versus segmentation
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Check your understanding – virtual address translation
	Slide 45: Check your understanding – virtual address translation
	Slide 46: Steps to translating virtual addresses with paging
	Slide 47: Break + Virtual Memory Practice
	Slide 48: Break + Virtual Memory Practice
	Slide 49: How the OS deals with memory in a paging system
	Slide 50: Dealing with processes bigger than memory
	Slide 51
	Slide 52: OS management of processes with paging
	Slide 53: Paging evaluation
	Slide 54: Paging evaluation (continued)

	Wrapup
	Slide 55: Outline

