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Resources the OS manages

* Processor
 Scheduling

e Devices
* Device Drivers

 Memory
 Virtual Memory

* Files
* File systems



Today’s Goals

* Discuss OS management of process memory with virtual memory

 Understand two virtual memory mechanisms:
segmentation and paging

 Explore optimizations to memory paging



Outline

* Address Spaces

« Methods of address translation
» Segmentation
* Paging




The reality of memory in a computer
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A process’s view of the memory

* The Address Space of the process

* The illusion:

» Processes run alone on the computer

« They have full access to every memory
address

« 264 bytes of memory available to them

* The reality:
» There are many processes
» There is only so much RAM available
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Virtual memory enables this illusion
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Why is this illusion important?

« We want to compile our programs at set addresses
« There are alternatives to this, such as Position Independent code
 But those alternatives often have performance costs

« But we can’t know which addresses will be available

« How would developers know which addresses Chrome could use safely or
which addresses Powerpoint intended to use?

* Plus, the amount of RAM on systems varies widely
 Old laptop with 512 MB, Desktop with 16 GB, Server with 256 GB
o If they run x86-64 Linux, the same program will work on all of them
» Specialized systems, like embedded, might not need this requirement



Goals of virtual memory

1. Independence from other programs running
2. Independence from machine hardware

3. Security

* Applications shouldnt be able to even read other memory much less write

4. Efficiency
 Allow reuse of some parts of memory
« Code sections for threads, duplicate processes, or shared libraries
* Don't slow down the system too much by enabling the above



Virtual memory is how the OS controls memory accesses

» I/O operations are controlled by system calls
» CPU usage is controlled by the scheduler (and interrupts)

» How can the OS control memory accesses?

 Context switch for each memory read/write is too high of a cost
« Hardware needs to automatically handle most requests
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Memory Management Unit (MMU) supports virtual memory

1. Translation: hardware support for common case reads/writes
 Configured by the OS

2. Faults: trap to OS to handle uncommon errors

Virtual Physical
Addresses Addresses

Translation
CPU

and aults
Memory
Management
Unit
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Short Break + Question

« Which is bigger in practice: virtual memory or physical memory?
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Short Break + Question

« Which is bigger in practice: virtual memory or physical memory?

« 264 bytes worth of addresses in both
 Both could hold up to 18 Exabytes (~18000 Petabytes, ~18000000 Terabytes)

* Virtual memory: practically there isn’t a limit
 Physical memory: practically limited to amount of RAM installed
« So, likely measured in Gigabytes

* On almost any real system: Virtual Memory is MUCH larger
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Outline

« Address Spaces

« Methods of address translation
- Segmentation
* Paging




Share memory by splitting between whole processes
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Address translation with a base register

* Divide RAM into segments, each with a separate “base” address
 Processes each get their own individual segment
 Takes advantage of processes usually being smaller than RAM

 To get a physical address from a virtual one, add to base value

Memory Management Unit

Virtual Address Physical Address

base




Adding protection creates "Base and Bound” translation

« Add a "bound” register with maximum value of the segment
« Memory accesses greater than bound trigger a fault
« No need to worry about lower bound, since minimum address is 0+base

Memory Management Unit

Virtual Address Physical Address




Base and bounds evaluation

» Advantages
 Provides protection between address spaces
« Supports dynamic relocation of processes (even at runtime)
 Simple, inexpensive hardware implementation

 Disadvantages
 Process must be allocated contiguous physical memory
» Including memory between sections that might never be used
« Large allocations end up wasting a lot of space through fragmentation
 No partial sharing of memory
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Memory fragmentation example
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Memory fragmentation example
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Memory fragmentation example

Process A
Process A
Process C
Process D N RAM__— Process D
CPU

Hmm... There’s

enough space, Process C

but not all

together!
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Check your understanding — base and bound

« What are the results of the following memory reads? (16-bit)
 Base: O0xCO00 Bound: Ox1FFF

 Read 0x0010
 Read 0x1400
 Read 0xD000
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Check your understanding — base and bound

« What are the results of the following memory reads? (16-bit)
 Base: O0xCO00 Bound: Ox1FFF

« Read 0x0010 -> O0xC010
« Read 0x1400 -> 0xD400
« Read 0xD00O -> Fault (translates to 0x19000)
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What if we split the code into multiple base/bound segments?
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Segmentation design

 Select some number of “segments” that processes may have
« Separate base and bound register for each one

* Need to distinguish which accesses correspond to which segment
« Solution: use top few bits of the virtual address, log,(number of segments)
* 00 -> segment O
* 01 -> segment 1
. etc.
» Only add remaining lower bits to the base register
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Memory Management Unit for segmentation

 Similar comparison and addition hardware as before

* New segment table to select correct base and bounds
« Bits from virtual address decide on the correct segment
« Segment decides the proper base and bound selection
 Can also apply permissions to individual segments

Segment Base Bound Permissions
0 0x2000 Ox06FF Read/Execute
1 0x0000 Ox04FF Read/Write

2 0x3000 OxOFFF Read/Write

3 0x0000 0x0000 None

Example
<«— (Code
<+— Stack

<+— Data
<+— Unused
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OS management of processes with segmentation

* On context switch
» Hardware changes to kernel mode and deactivates the MMU
« Save process’s segment table with the rest of the process data
 Load new process’s segment table into the MMU
» Change to user mode and jump to new process

« X86 example
« No table, but rather registers for each segment
 Stack Segment, Code Segment, Data Segment
« Extra Segment, F Segment, G Segment
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Segmentation evaluation

» Advantages
 Sparse allocation of address space (most of it goes in no segment at all)
» Stack and heap segments can grow
» Different protection for different segments
« Only execute or write where it makes sense to
» Still possible to do dynamic relocation and hardware still relatively simple

 Disadvantages
« Still results in fragmentation of memory
* Entire section must fit
 But sections are irregularly sized
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Quick question — segmentation (16-bit address space)

* How many bits are
used for the segment?

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None
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Quick question — segmentation (16-bit address space)

* How many bits are
used for the segment?

 Three bits (8 choices)

* Placed as most
significant bits

* Lower 13 bits are
added to base

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None
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Break + Practice — segmentation (16-bit address space)

« Which segment is each?

« Read 0x0200
« Read 0x0500
« Write 0x0410
» Read 0x4004
« Write 0x5004

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base
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Break + Practice — segmentation (16-bit address space)

« Which segment is each?
Segment 0

« Read 0x0200

« Read 0x0500

 Write 0x0410

Segment 2

* Read 0x4004
* Write 0x5004

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base
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Break + Practice — segmentation (16-bit address space)

* Do full translation
Segment 0

« Read 0x0200

« Read 0x0500

« Write 0x0410

Segment 2

* Read 0x4004
* Write 0x5004

Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
1 0x0700 Ox02FF Read/Write

2 0x3C00 Ox01FF Read/Write

3 0x1800 Ox01FF Read/Execute
4 0x4200 0x0400 Read/Execute
5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base
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Break + Practice — segmentation (16-bit address space)

e Do full translation Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
Segment 0 1 0x0700 0X02FF Read/Write
« Read 0x0200 -> 0x0200 |2 0x3C00 OxO1FF Read/Write
3 0x1800 Ox01FF Read/Execute
* Read 0x0500 -> 0x0500 |3 0x4200 0x0400 Read/Execute
« Write 0x0410 -> Fault 5 0X0000 0x0000 None
(Permission) |6 0x0000 0x0000 None
7 0x0000 0x0000 None

Segment 2

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

* Read 0x4004

» Write 0x5004
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Break + Practice — segmentation (16-bit address space)

e Do full translation Segment Base Bound Permissions
0 0x0000 Ox06FF Read/Execute
Segment 0 1 0x0700 0X02FF Read/Write
« Read 0x0200 -> 0x0200 |2 0x3C00 OxO1FF Read/Write
3 0x1800 Ox01FF Read/Execute
* Read 0x0500 -> 0x0500 |3 0x4200 0x0400 Read/Execute
« Write 0x0410 -> Fault 5 0X0000 0x0000 None
(Permission) |6 0x0000 0x0000 None
7 0x0000 0x0000 None

Segment 2

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

 Read 0x4004 -> 0x3C04

« Write 0x5004 -> Fault (Bound) [0x1004 > Ox01FF]
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Outline

« Address Spaces

- Methods of address translation
» Segmentation
- Paging




Improving upon segmentation
« Segmentation had some good features

« Address space does not need to be contiguous
« Segments can grow when needed

 But irregularly-sized segments lead to fragmentation

Many Some New process doesn't fit!
PFOCtesdses processes RAM is available, but only
create

complete in fragments.

q

RAM | —




Solution to fragmentation: pages of memory

 Divide memory into small, fixed-sized pages

 Pages of virtual memory map to pages
of physical memory

* Like segments were mapped,
but many more pages than segments

 Processes and their sections
can be mapped to any
place in memory

P

Process | Process 2 Process 3
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Page table translates virtual addresses to physical addresses

 Use topmost bits of virtual
address to select page tableentry

« One page table entry per each " 211 o
virtual page '

« Combine address at page table
entry with bottommost bits -

* Actually just concatenate the two —‘E

32-bit Physical Address

« Just like segment tables, there Tobie
will be a different page table for
each process



Paging versus segmentation

 Every page of virtual memory maps to a page of physical memory
« No need for a bound anymore
« Above a bound would just be within the bounds of some other page

« We don't pick the number of pages, we pick page size
« Number of pages = Size of memory / Size of Page

» Result: Way more pages than there were segments
« 4 kB pages with 4 GB of RAM -> ~1 million pages
* Need to keep page table in memory rather than hardware registers
« Hardware register points at the base of the page table
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Process A

Process B

Process B Page Table

VPN PPN Valid?

0

Virtual Memory
(Process B Only!)

Process B

1

2

CPU

Process B

Process B




Virtual Memory
(Process B Only!)

— Physical Memory (RAM)
Process A | 0
Process B 1
, Process A | 1
Process B Page Table
VPN PPN Valid? 3 Process B 2
Process B
0 2 1 P A 3
— rocess
1 CPU 4
2 : Process B | 4
3 6 1
4 . Process A | >
5
6
6 Process B #7 Hrocessib
7 4 1
8 - 8




Virtual Memory
(Process B Only!)

— Physical Memory (RAM)
Process A |0
Process B 1
, Process A |1
Process B Page Table
VPN PPN Valid? 3 Process B 2
Process B
0 2 1 3
, y - CPU _ 4 Process A
2 X : Process B | 4
3 6 1
4 X 0 . Process A | 5
5 X 0 P B 6
6 X 0 Process B 77 noldets
7 4 1
8 X 0 — 8




neck your understanding — virtual address translation

Virtual Address

Virtual Page Number

Offset

Physical Page Number

Offset

Physical Address

Do we need to
translate the
lower bits of a
virtual address?
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neck your understanding — virtual address translation

Virtual Address

Virtual Page Number

Offset

Physical Page Number

Offset

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

No. Those are
used to determine
word/byte within
the page.
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Steps to translating virtual addresses with paging

1) Index
into PT
using VPN

Important:

offset
1

| Pa,ge Table 3) Combine
V | AR PPN and

| | offset

| ,
@: 2) Check —| "Lt

| | Validand |

| | Access | Physical

i | Rights bits Address

| | 4) Use PA to

dCCeSssS memory

This is all done in hardware!! OS is not involved unless it faults
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Break + Virtual Memory Practice

Assume "a starts at 0x3000 (virtual)

lanore instruction fetches and Virtual Address Physical Address
atcoss to i and sum (they're in registers) |Accesses Accesses

Code oad 0x3000 oad 0x100C
oad 0x3004 oad 0x7000
int sum = 0O; oad 0x3008 oad 0x100C
for(int i=0; i<N; i++){ oad 0x300C oad 0x7004
sum += a[i]; oad 0x100C
} oad 0x7008
. . . . 5 oad 0x100C
Which physical address is within the page table: oad 0x700C

- At what physical address does "a start?

47



Break + Virtual Memory Practice

Assume "a starts at 0x3000 (virtual)

Ignore instruction fetches and _
accessto i and sum (they're in registers)

Code

int sum = 0©;
for(int i=0; i<N; i++){
sum += a[i];

}

Virtual Address
Accesses

oad 0x3000
oad 0x3004
oad 0x3008
oad 0x300C

« Which physical address is within the page table? 0x100C

 All accesses are within the same Page

At what physical address does "a start? 0x7000
» Accesses to the array step by 4 byte increments

Physical Address
Accesses

oad 0x100C
oad 0x7000
oad 0x100C
oad 0x7004
oad 0x100C
oad 0x7008
oad 0x100C
oad 0x700C
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How the OS deals with memory in a paging system

1. How do the OS and program agree on addresses?
« Each program can use any virtual addresses it wants
« Some default for compiler/OS pairing
« OS controls physical memory layout in RAM and maps the two

2. How does the OS move memory around without messing up
programs?
 Just update the record in the page table
* Process doesn’t know the difference

3. How to protect OS and process memory from other processes?
« Ensure that virtual pages from a process never map to physical pages for another
» But we can share physical pages for threads or shared libraries if we want!
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Dealing with processes bigger than memory

 Paging allows the OS to support processes larger than RAM
» Just leave the virtual pages unmapped
« When a load occurs to the unmapped page, a fault triggers the OS
« Which can then load the needed page into RAM from disk
* (and push some other page onto disk)
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Virtual Memory
(Process B Only!)

— Physical Memory (RAM)
Process B Shared
Process A Process B | ©
Process B
1
Process B Process B ' Process B
\ Process B | 2
Process B
Process B |3
CPU Process B
Process B | 4
' Process B | 5
Process B | 6
Process B
Process B
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OS management of processes with paging

« When loading a process
 OS places actual memory into physical pages in RAM
 OS creates page table for the process
« OS decides access permissions to different pages
« OS connects to shared libraries already in RAM

« When a context switch occurs
« OS changes which page table is in use (%CR3 register in x86)

« When a fault occurs
« OS decides how to handle it. (Invalid access or missing page?)
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Paging evaluation

» Advantages
« Still sparse allocation of address space and growing segments as needed
« Still different protection for different segments
« Only execute or write where it makes sense to
» Still possible to do dynamic relocation and hardware still relatively simple
« No fragmentation of main memory
« Pages can fit anywhere they need to
 Can load processes bigger than main memory!

53



Paging evaluation (continued)

 Disadvantages
« More work on the part of the OS to set up a process
« Only a problem if we create processes frequently

 Page tables are slow to access
 Page tables need to be stored in memory due to size
« MMU only holds the base address of the page table and reads from it
« Two memory loads per load!!!
« Going to have to fix this...

 Page tables require a lot of storage space
« Mapping must exist for each virtual page, even if unused
« Becomes a serious issue on 64-bit systems
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Outline

« Address Spaces

« Methods of address translation
» Segmentation
* Paging
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