
Lecture 11:
Virtual Memory

CS343 – Operating Systems

Branden Ghena – Fall 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS61C and CS162

Resources the OS manages

• Processor
• Scheduling

• Devices
• Device Drivers

• Memory
• Virtual Memory

• Files
• File systems

2

Today’s Goals

• Discuss OS management of process memory with virtual memory

• Understand two virtual memory mechanisms:
segmentation and paging

• Explore optimizations to memory paging

3

4

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

Outline

The reality of memory in a computer

5

CPU
RAM

Process A

Process B

Process A

Process B

Process C

Process C

DISK

A process’s view of the memory

• The Address Space of the process

• The illusion:
• Processes run alone on the computer

• They have full access to every memory
address

• 264 bytes of memory available to them

• The reality:
• There are many processes

• There is only so much RAM available

6

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual memory enables this illusion

7

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual Addresses Physical Addresses

OS

Process A

~ FFFF FFFFhex

~ 0hex

Process B

A
d
d
re

ss
 S

p
a
ce

R
A
M

Why is this illusion important?

• We want to compile our programs at set addresses
• There are alternatives to this, such as Position Independent code

• But those alternatives often have performance costs

• But we can’t know which addresses will be available
• How would developers know which addresses Chrome could use safely or

which addresses Powerpoint intended to use?

• Plus, the amount of RAM on systems varies widely
• Old laptop with 512 MB, Desktop with 16 GB, Server with 256 GB

• If they run x86-64 Linux, the same program will work on all of them

• Specialized systems, like embedded, might not need this requirement

8

Goals of virtual memory

1. Independence from other programs running

2. Independence from machine hardware

3. Security
• Applications shouldn’t be able to even read other memory much less write

4. Efficiency
• Allow reuse of some parts of memory

• Code sections for threads, duplicate processes, or shared libraries

• Don’t slow down the system too much by enabling the above

9

Virtual memory is how the OS controls memory accesses

• I/O operations are controlled by system calls

• CPU usage is controlled by the scheduler (and interrupts)

• How can the OS control memory accesses?
• Context switch for each memory read/write is too high of a cost

• Hardware needs to automatically handle most requests

10

Memory Management Unit (MMU) supports virtual memory

1. Translation: hardware support for common case reads/writes
• Configured by the OS

2. Faults: trap to OS to handle uncommon errors

11

Virtual
Addresses

CPU RAM

Physical
Addresses

Translation
and Faults

Memory
Management

Unit

Short Break + Question

• Which is bigger in practice: virtual memory or physical memory?

12

Short Break + Question

• Which is bigger in practice: virtual memory or physical memory?

• 264 bytes worth of addresses in both

• Both could hold up to 18 Exabytes (~18000 Petabytes, ~18000000 Terabytes)

• Virtual memory: practically there isn’t a limit

• Physical memory: practically limited to amount of RAM installed

• So, likely measured in Gigabytes

• On almost any real system: Virtual Memory is MUCH larger

13

14

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

Outline

Share memory by splitting between whole processes

15

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual Addresses Physical Addresses

OS

Process A

~ FFFF FFFFhex

~ 0hex

Process B

A
d
d
re

ss
 S

p
a
ce

R
A
M

MMU

Address translation with a base register

• Divide RAM into segments, each with a separate “base” address
• Processes each get their own individual segment

• Takes advantage of processes usually being smaller than RAM

• To get a physical address from a virtual one, add to base value

16

mode
==

user?

+
base

Virtual Address Physical Address

Yes

No

Memory Management Unit

Adding protection creates “Base and Bound” translation

• Add a “bound” register with maximum value of the segment
• Memory accesses greater than bound trigger a fault

• No need to worry about lower bound, since minimum address is 0+base

17

mode
==

user?

+
base

Virtual Address Physical Address

Yes

No

Memory Management Unit

>
bound?

No

YesFault

Base and bounds evaluation

• Advantages
• Provides protection between address spaces

• Supports dynamic relocation of processes (even at runtime)

• Simple, inexpensive hardware implementation

• Disadvantages
• Process must be allocated contiguous physical memory

• Including memory between sections that might never be used

• Large allocations end up wasting a lot of space through fragmentation

• No partial sharing of memory

18

Memory fragmentation example

19

CPU
RAM

Process A

Process B

Process A

Process B

Process C

Process C

Memory fragmentation example

20

CPU
RAM

Process A

Process A
Process C

Process C

Memory fragmentation example

21

CPU
RAM

Process A

Process A
Process C

Process C

Process D Process D

Hmm… There’s
enough space,
but not all
together!

Check your understanding – base and bound

• What are the results of the following memory reads? (16-bit)
• Base: 0xC000 Bound: 0x1FFF

• Read 0x0010

• Read 0x1400

• Read 0xD000

22

Check your understanding – base and bound

• What are the results of the following memory reads? (16-bit)
• Base: 0xC000 Bound: 0x1FFF

• Read 0x0010 -> 0xC010

• Read 0x1400 -> 0xD400

• Read 0xD000 -> Fault (translates to 0x19000)

23

What if we split the code into multiple base/bound segments?

24

code

static data

~ 0hex

Physical Addresses

OS

code

~ FFFF FFFFhex

~ 0hex

heap

A
d
d
re

ss
 S

p
a
ce

R
A
M

MMU

heap

stack

static data

stack

Segmentation design

• Select some number of “segments” that processes may have
• Separate base and bound register for each one

• Need to distinguish which accesses correspond to which segment
• Solution: use top few bits of the virtual address, log2(number of segments)

• 00 -> segment 0

• 01 -> segment 1

• etc.

• Only add remaining lower bits to the base register

25

Memory Management Unit for segmentation

• Similar comparison and addition hardware as before

• New segment table to select correct base and bounds
• Bits from virtual address decide on the correct segment

• Segment decides the proper base and bound selection

• Can also apply permissions to individual segments

26

Segment Base Bound Permissions

0 0x2000 0x06FF Read/Execute

1 0x0000 0x04FF Read/Write

2 0x3000 0x0FFF Read/Write

3 0x0000 0x0000 None

Code

Stack

Data

Unused

Example

OS management of processes with segmentation

• On context switch
• Hardware changes to kernel mode and deactivates the MMU

• Save process’s segment table with the rest of the process data

• Load new process’s segment table into the MMU

• Change to user mode and jump to new process

• x86 example
• No table, but rather registers for each segment

• Stack Segment, Code Segment, Data Segment

• Extra Segment, F Segment, G Segment

27

Segmentation evaluation

• Advantages
• Sparse allocation of address space (most of it goes in no segment at all)

• Stack and heap segments can grow

• Different protection for different segments

• Only execute or write where it makes sense to

• Still possible to do dynamic relocation and hardware still relatively simple

• Disadvantages
• Still results in fragmentation of memory

• Entire section must fit

• But sections are irregularly sized

28

Quick question – segmentation (16-bit address space)

• How many bits are
used for the segment?

29

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Quick question – segmentation (16-bit address space)

• How many bits are
used for the segment?

• Three bits (8 choices)

• Placed as most
significant bits

• Lower 13 bits are
added to base

30

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Break + Practice – segmentation (16-bit address space)

• Which segment is each?

• Read 0x0200

• Read 0x0500

• Write 0x0410

• Read 0x4004

• Write 0x5004

31

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

Break + Practice – segmentation (16-bit address space)

• Which segment is each?

• Read 0x0200

• Read 0x0500

• Write 0x0410

• Read 0x4004

• Write 0x5004

32

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Segment 0

Segment 2 Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

Break + Practice – segmentation (16-bit address space)

• Do full translation

• Read 0x0200

• Read 0x0500

• Write 0x0410

• Read 0x4004

• Write 0x5004

33

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Segment 0

Segment 2 Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

Break + Practice – segmentation (16-bit address space)

• Do full translation

• Read 0x0200 -> 0x0200

• Read 0x0500 -> 0x0500

• Write 0x0410 -> Fault
 (Permission)

• Read 0x4004

• Write 0x5004

34

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Segment 0

Segment 2 Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

Break + Practice – segmentation (16-bit address space)

• Do full translation

• Read 0x0200 -> 0x0200

• Read 0x0500 -> 0x0500

• Write 0x0410 -> Fault
 (Permission)

• Read 0x4004 -> 0x3C04

• Write 0x5004 -> Fault (Bound) [0x1004 > 0x01FF]

35

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Segment 0

Segment 2 Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

36

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

Outline

Improving upon segmentation

• Segmentation had some good features
• Address space does not need to be contiguous

• Segments can grow when needed

• But irregularly-sized segments lead to fragmentation

37

RAM

New process doesn’t fit!
RAM is available, but only
in fragments.

Many
processes
created

Some
processes
complete

Solution to fragmentation: pages of memory

• Divide memory into small, fixed-sized pages

• Pages of virtual memory map to pages
of physical memory
• Like segments were mapped,

but many more pages than segments

• Processes and their sections
can be mapped to any
place in memory

38

Page table translates virtual addresses to physical addresses

• Use topmost bits of virtual
address to select page table entry
• One page table entry per each

virtual page

• Combine address at page table
entry with bottommost bits
• Actually just concatenate the two

• Just like segment tables, there
will be a different page table for
each process

39

Paging versus segmentation

• Every page of virtual memory maps to a page of physical memory
• No need for a bound anymore

• Above a bound would just be within the bounds of some other page

• We don’t pick the number of pages, we pick page size
• Number of pages = Size of memory / Size of Page

• Result: Way more pages than there were segments
• 4 kB pages with 4 GB of RAM -> ~1 million pages

• Need to keep page table in memory rather than hardware registers

• Hardware register points at the base of the page table

40

CPU

Process A

Process B

VPN PPN Valid?

0

1

2

3

4

5

6

7

8

Process B Page Table

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

CPU

Process A

Process B

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

VPN PPN Valid?

0 2 1

1

2

3 6 1

4

5

6

7 4 1

8

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Process B Page Table

CPU

Process A

Process B

VPN PPN Valid?

0 2 1

1 X 0

2 X 0

3 6 1

4 X 0

5 X 0

6 X 0

7 4 1

8 X 0

Process B Page Table

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Check your understanding – virtual address translation

44

?

Virtual Address

Virtual Page Number Offset

Physical Page Number Offset

Page
table

lookup!

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

Check your understanding – virtual address translation

45

Virtual Address

Virtual Page Number Offset

Physical Page Number Offset

Page
table

lookup!

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

No. Those are
used to determine
word/byte within
the page.

46

V AR PPN

X XX

. . .

Virtual Address: VPN offset

Page Table

1) Index
into PT

using VPN

2) Check
Valid and

Access
Rights bits

+

3) Combine
PPN and

offset

Physical
Address

4) Use PA to
access memory

Steps to translating virtual addresses with paging

Important:
This is all done in hardware!! OS is not involved unless it faults

Break + Virtual Memory Practice

Assume `a` starts at 0x3000 (virtual)

Ignore instruction fetches and
access to `i` and `sum` (they’re in registers)

47

Code

int sum = 0;
for(int i=0; i<N; i++){
 sum += a[i];
}

Virtual Address
Accesses

load 0x3000
load 0x3004
load 0x3008
load 0x300C

Physical Address
Accesses

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

• Which physical address is within the page table?

• At what physical address does `a` start?

Break + Virtual Memory Practice

Assume `a` starts at 0x3000 (virtual)

Ignore instruction fetches and
access to `i` and `sum` (they’re in registers)

48

Code

int sum = 0;
for(int i=0; i<N; i++){
 sum += a[i];
}

Virtual Address
Accesses

load 0x3000
load 0x3004
load 0x3008
load 0x300C

Physical Address
Accesses

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

• Which physical address is within the page table? 0x100C
• All accesses are within the same Page

• At what physical address does `a` start? 0x7000
• Accesses to the array step by 4 byte increments

How the OS deals with memory in a paging system

1. How do the OS and program agree on addresses?
• Each program can use any virtual addresses it wants

• Some default for compiler/OS pairing
• OS controls physical memory layout in RAM and maps the two

2. How does the OS move memory around without messing up
programs?
• Just update the record in the page table
• Process doesn’t know the difference

3. How to protect OS and process memory from other processes?
• Ensure that virtual pages from a process never map to physical pages for another
• But we can share physical pages for threads or shared libraries if we want!

49

Dealing with processes bigger than memory

• Paging allows the OS to support processes larger than RAM
• Just leave the virtual pages unmapped

• When a load occurs to the unmapped page, a fault triggers the OS

• Which can then load the needed page into RAM from disk

• (and push some other page onto disk)

50

51

CPU

Process A

Process B

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Process B

Process B

Process B

Process B

DISK

OS management of processes with paging

• When loading a process
• OS places actual memory into physical pages in RAM

• OS creates page table for the process

• OS decides access permissions to different pages

• OS connects to shared libraries already in RAM

• When a context switch occurs
• OS changes which page table is in use (%CR3 register in x86)

• When a fault occurs
• OS decides how to handle it. (Invalid access or missing page?)

52

Paging evaluation

• Advantages
• Still sparse allocation of address space and growing segments as needed

• Still different protection for different segments

• Only execute or write where it makes sense to

• Still possible to do dynamic relocation and hardware still relatively simple

• No fragmentation of main memory

• Pages can fit anywhere they need to

• Can load processes bigger than main memory!

53

Paging evaluation (continued)

• Disadvantages
• More work on the part of the OS to set up a process

• Only a problem if we create processes frequently

• Page tables are slow to access
• Page tables need to be stored in memory due to size
• MMU only holds the base address of the page table and reads from it
• Two memory loads per load!!!
• Going to have to fix this…

• Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused
• Becomes a serious issue on 64-bit systems

54

55

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

Outline

	Default Section
	Slide 1: Lecture 11: Virtual Memory

	Goals
	Slide 2: Resources the OS manages
	Slide 3: Today’s Goals

	Address Spaces
	Slide 4: Outline
	Slide 5: The reality of memory in a computer
	Slide 6: A process’s view of the memory
	Slide 7: Virtual memory enables this illusion
	Slide 8: Why is this illusion important?
	Slide 9: Goals of virtual memory
	Slide 10: Virtual memory is how the OS controls memory accesses
	Slide 11: Memory Management Unit (MMU) supports virtual memory
	Slide 12: Short Break + Question
	Slide 13: Short Break + Question

	Segmentation
	Slide 14: Outline
	Slide 15: Share memory by splitting between whole processes
	Slide 16: Address translation with a base register
	Slide 17: Adding protection creates “Base and Bound” translation
	Slide 18: Base and bounds evaluation
	Slide 19: Memory fragmentation example
	Slide 20: Memory fragmentation example
	Slide 21: Memory fragmentation example
	Slide 22: Check your understanding – base and bound
	Slide 23: Check your understanding – base and bound
	Slide 24: What if we split the code into multiple base/bound segments?
	Slide 25: Segmentation design
	Slide 26: Memory Management Unit for segmentation
	Slide 27: OS management of processes with segmentation
	Slide 28: Segmentation evaluation
	Slide 29: Quick question – segmentation (16-bit address space)
	Slide 30: Quick question – segmentation (16-bit address space)
	Slide 31: Break + Practice – segmentation (16-bit address space)
	Slide 32: Break + Practice – segmentation (16-bit address space)
	Slide 33: Break + Practice – segmentation (16-bit address space)
	Slide 34: Break + Practice – segmentation (16-bit address space)
	Slide 35: Break + Practice – segmentation (16-bit address space)

	Paging
	Slide 36: Outline
	Slide 37: Improving upon segmentation
	Slide 38: Solution to fragmentation: pages of memory
	Slide 39: Page table translates virtual addresses to physical addresses
	Slide 40: Paging versus segmentation
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Check your understanding – virtual address translation
	Slide 45: Check your understanding – virtual address translation
	Slide 46: Steps to translating virtual addresses with paging
	Slide 47: Break + Virtual Memory Practice
	Slide 48: Break + Virtual Memory Practice
	Slide 49: How the OS deals with memory in a paging system
	Slide 50: Dealing with processes bigger than memory
	Slide 51
	Slide 52: OS management of processes with paging
	Slide 53: Paging evaluation
	Slide 54: Paging evaluation (continued)

	Wrapup
	Slide 55: Outline

