
Lecture 05:
Condvars and Semaphores

CS343 – Operating Systems

Branden Ghena – Fall 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), and Shivaram Venkataraman (Wisconsin)

Administrivia

• PCLab is out and ready to work on
• Some of this week’s material is relevant

• But you can totally get started right now

• About 25% of the class has already made commits to Github

2

Today’s Goals

• Understand how we can apply locks to gain correctness and
maintain performance
• Counter

• Signaling between threads to enforce ordering
• Condition Variables

• Semaphores

3

Review: Locks/Mutexes

• Simple mutual exclusion primitive

• Init(), Acquire()/Lock(), Release()/Unlock()

• Implementations trade complexity, fairness, and performance
• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks

4

Ticket lock still wastes time spinning

• B, C, and D are “busy waiting”
• Might be occupying an entire core in multicore

• Scheduler is fairly scheduling all threads, but ignorant of locks

• Idea: can we skip threads that are waiting on a lock?

5

Yield timeslice when not yet ready

• Yield syscall unschedules the
current thread
• sched_yield() in POSIX API

• Gives the user process just a
little control over the scheduler

6

• In acquire(), yield after
checking condition

• Might delay thread response
time in multicore scenario

void mutex_lock(lock_t* mutex) {

 int myturn = atomic_fetch_and_add(&(mutex->ticket), 1); // take a ticket

 while (mutex->turn != myturn) {

 sched_yield(); // not ready yet

 }

}

Yielding reduces busy-waiting

How much does yielding improve things?

• Performance better with yield(), but still doing a lot of unnecessary
context switches

• Wasted CPU cycles
• Without yield(): O(threads*timeslice)

• With yield(): O(threads*context_switch)

• Timeslice ~1 ms, Context switch: ~1 µs

• Still expensive if we expect many threads to be contending over
the lock

8

Building a blocking lock

• A more performant solution requires cooperation between thread’s locks
and the OS scheduler to block threads

• If a thread cannot acquire the lock, it instead makes a system call
informing the OS that it is blocked on the lock resource

• When a thread releases the lock, it makes a system call to notify the OS
that it can wake one thread waiting on that resource

• Operation needs OS support
• Solaris: Park/Unpark
• Linux: implemented as part of Futex -> used for Pthread Mutex implementation!

9

Spinning versus Blocking

• Each approach is better under different circumstances

• Single core systems
• If waiting process is scheduled, then process holding lock is not
• Waiting process should always yield its time

• Multicore systems
• If waiting process is scheduled, then process holding lock could also be
• Spin or block depends how long until the lock is released

• If the lock is released quickly, spin wait
• If the lock is released slowly, block
• Where quick and slow are relative to context-switch cost

11

Two-phase waiting

• Problem: we can’t always know how long the wait will be
• Programmer might know…

• Library definitely can’t know

• One common compromise:
• Spin lock for a little while, and then give up and block

• Example: Linux Native POSIX Thread Library (NPTL)

• Check the lock at least three times before blocking with Futex

12

Summary on lock implementations

• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks
• Pthread Mutex on Linux (implemented via Futex, see hidden slide)

• Sophisticated locks are more fair and do not waste processor time
“busy waiting”

• But also have unnecessary context-switch overhead if the lock is
only briefly and rarely held

13

14

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Review: Need to enforce mutual exclusion on critical sections

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter++;

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal was

%d)\n", counter, 2*LOOPS);

 return 0;

}

15

Broken concurrency can actually performance too!

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

16

• Why is the no-lock multithreaded version so slow?
• Not 100% certain
• Likely something to do with hardware memory/cache consistency

When iterating
one billion times:

Naively locked counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 pthread_mutex_lock(&lock);

 counter++;

 pthread_mutex_unlock(&lock);

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

 return 0;

}

17

Problem: locking overhead decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds (Correct…)

18

• Formerly loop contained 3 instructions (mov, add, mov)

• Now it has
• Two function calls
• Multiple instructions inside of those
• Possibly even interaction with the OS…
• 3 instructions -> 60 instructions

When iterating
one billion times:

Simple mutual exclusion: one big lock

• Simple solution “one big lock”
• Find all the function calls that interact with shared memory

• Lock at the start of each function call and unlock at the end

• Essentially, no concurrent access
• Correct but poor performance

• If you’ve forgotten all of this years from now, “one big lock” will still work

19

Counter example with big lock technique

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 pthread_mutex_lock(&lock);

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter++;

 }

 printf("%s: done\n", (char*)arg);

 pthread_mutex_unlock(&lock);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

 return 0;

}

20

code posted with last
lecture on canvas

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

21

• Big lock technique basically returned us to single-threaded
execution time (and single-threaded implementation)
• But non-critical section code could still run in parallel

Reducing lock overhead

• We want to enable parallelism, but deal with less lock overhead
• Need to increase the amount of work done when not locked

• Goal: lots of parallel work per lock/unlock event

• “Sloppy” updates to global state
• Keep local state that is operated on

• Occasionally synchronize global state with current local state

• Counter example
• Keep a local counter for each thread (not shared memory)

• Add local counter to global counter periodically

22

Sloppy counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 int sloppy_count = 0;

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 sloppy_count++;

 if (i%1000 == 0) {

 pthread_mutex_lock(&lock);

 counter += sloppy_count;

 pthread_mutex_unlock(&lock);

 sloppy_count = 0;

 }

 }

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n", counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

 return 0;

}

23

Offscreen Tail condition: don’t forget to update
“counter” again when the for loop is complete!

code posted with last
lecture on canvas

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multi-threaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

Sloppy lock (synchronize every 100): 2.150 seconds

Sloppy lock (synchronize every 10000): 1.472 seconds

Sloppy lock (synchronize every 1000000):
Sloppy lock (synchronize every 1000000000):

1.478 seconds
1.500 seconds

24

• Optimal for this counter example will be synchronizing once, when
entirely finished with the local sum

Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel
anyways

• Is concurrency worth it? What kinds of problems work best?

25

Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel
anyways

• Is concurrency worth it? What kinds of problems work best?

• Problems that do not share data will still be HUGE wins!

• No (or few) data races. Big concurrency performance gains.

• Such problems are termed: embarrassingly parallel
• https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

26

https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

27

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Requirements for sensible concurrency

• Mutual exclusion
• Prevents corruption of data manipulated in critical sections

• Atomic instructions → Locks → Concurrent data structures

• Ordering (B runs after A)
• By default, concurrency leads to a lack of control over ordering

• We can use mutex’d variables to control ordering, but it’s inefficient:
• while(!myTurn) sleep(1);

• We would like cooperating threads to be able to signal each other.

• Park/unpark and futex could be used solve this problem

• But we want a higher-level abstraction

28

Barriers for all-or-nothing synchronization

• Barriers create synchronization points in the program
• All threads must reach barrier before any thread continues

• pthread_barrier_init(barrier_t)

• pthread_barrier_wait(barrier_t)

• Use case: neural network processing
• Spawn a pool of threads
• Each thread handles a portion of the input data
• Collect results from all threads at the end of the layer
• Distribute results to appropriate threads for next layer

29

Basic Signaling with Condition Variable (condvar)

• Queue of waiting threads
• Combine with a flag and a mutex to synchronize threads

• wait(condvar_t, lock_t)
• Lock must be held when wait() is called
• Puts the caller to sleep AND releases lock (atomically)
• When awoken, reacquires lock before returning

• signal(condvar_t)
• Wake a single waiting thread (if any are waiting)
• Do nothing if there are no waiting threads
• Called while holding the lock

• (but the newly woken thread won’t leave their wait() until they get the lock)

30

Waiting for a thread to finish

pthread_t p1, p2;

// create child threads
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

...

// join waits for the child threads to finish
thr_join(p1, NULL);
thr_join(p2, NULL);

return 0; How to implement
join?

31

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Done flag tracks the event

• Condvar is used for ordering

• Mutex protects both!

32

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

33

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

• Child calls thr_exit()
• sets done to 1

• calls signal()

• unlocks mutex

34

Check your understanding: why doesn’t this work?
P
a
re

n
t

C
h
ild

Correct Code

35

Incorrect Code

Consider if an ordering exists that would lead to incorrect behavior
• Lock means that only one critical section will run at a time

Buggy attempts to wait for a child, no flag
P
a
re

n
t

C
h
ild

Without done variable:
1) The child could run first and signal
2) Before the parent starts waiting for the child
3) Parent waits forever…

Correct Code

36

Incorrect Code

Check your understanding: is a lock necessary?
P
a
re

n
t

 C

h
ild

Correct Code

37

Incorrect Code

What could go wrong?
• Without the lock, these lines could be interleaved in any way

Buggy attempts to wait for a child, no mutex
P
a
re

n
t

 C

h
ild

Correct Code

38

Incorrect Code

Without the lock:
1) Parent could see done == 0 and enter the if statement
2) Child could then exit, setting done to 1 and signaling
3) Parent then calls wait (missed the signal) and waits forever

Always use a loop to check the flag variable

• It’s possible for the thread
to wake up from a wait, but
the resource is not available!

• Maybe another thread took the resource first
• Another thread could run and claim it before the woken thread is scheduled

• Maybe a spurious wakeup occurred
• Often other sources can cause wakeups to occur

• Signals or Interrupts usually
• Makes the implementation of condvar simpler, and we need to double-check

the flag anyways, so it doesn’t matter

39

Classical concurrency problem: Producer-Consumer

42

Produce/Consumer Example Details

• We have multiple producers and multiple consumers that
communicate with a shared queue (FIFO buffer).
• Concurrent queue allows work to happen asynchronously.
• Buffer has finite size (does not dynamically expand)

• Two operations:
• Put, which should block (wait) if the buffer is full.
• Get, which should block (wait) if the buffer is empty.

• This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting.

• Example scenario: request queue in a multi-threaded web server.

43

Managing the buffer

• A simple implementation of a circular
buffer that stores data in a fixed-size
array.

• fill is the index of the tail

• use is the index of the head

• count is the number of items

This simple implementation assumes:

• Concurrency is managed elsewhere

• It will overwrite data if we try to put
more than MAX elements.

44

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

45

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

46

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is
empty
• Consumer signals empty after get

47

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is
empty
• Consumer signals empty after get

• Loops re-check count condition after
breaking out of wait, to check that there
really is a resource

48

Broadcast makes more complex conditions possible

• Recall that signal wakes one waiting thread (FIFO)
• But there are times when threads are not all equivalent

• The signal may not be serviceable by any of the threads

• For example, consider memory allocation/free requests
• An allocation can only be serviced by free of >= size

• pthread_cond_broadcast wakes all threads
• This approach may be inefficient, but it may be necessary to ensure

progress

49

Condition Variable: rules of thumb

• Shared state determines if condition is true or not
• Check the state in a while loop before waiting on condvar

• Use a mutex to protect:
• The shared state on which condition is based, and

• Operations on the condvar itself

• Use different condvars for different conditions
• Sometimes, cond_broadcast() helps if you can’t find an elegant solution

using cond_signal()

50

Break + xkcd (not relevant, just funny)

51https://xkcd.com/336/

52

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Generalizing Synchronization

• Condvars have no state or lock, just a waiting queue
• The rest is handled by the programmer

• Semaphores are a generalization of condvars and locks
• Includes internal (locked) state

• Sometimes this makes them more complicated, sometimes simpler

53

Semaphores (by Edsger Dijkstra, 1965)

• Keeps an internal integer value that determines
what happens to a calling thread

• Init(val)
• Set the initial internal value
• Value cannot otherwise be directly modified

• Up/Signal/Post/V() (from Dutch verhogen “increase”)
• Increase the value. If there is a waiting thread, wake one.

• Down/Wait/Test/P() (from Dutch proberen “to try”)
• Decrease the value. Wait if the value is negative.

54

Dijkstra invented
Dijkstra’s Algorithm!

Also Semaphores and the
entire field of Concurrent
Programming

https://en.wikipedia.org/
wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphores vs Condition Variables

• Semaphores

• Up/Post: increase value and
wake one waiting thread

• Down/Wait: decrease value
and wait if it’s negative

• Condition Variables

• Signal: wake one waiting thread

• Wait: wait

• Compared to CVs, Semaphores add an integer value that controls
when waiting is necessary
• Value counts the quantity of a shared resource currently available
• Up makes a resource available, down reserves a resource
• Negative value -X means that X threads are waiting for the

resource
55

Check your understanding: build a mutex

• How would we build a mutex out of a semaphore?
typdef struct {

 sem_t sem;

} lock_t;

init(lock_t* lock){

}

acquire(lock_t* lock) {

}

release(lock_t* lock) {

}

56

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

 value >= 0
sem_post(sem_t*): Increment value then

 wake a single waiter

Check your understanding: build a mutex

• How would we build a mutex out of a semaphore?
typdef struct {
 sem_t sem;
} lock_t;
init(lock_t* lock){
 sem_init(&(lock->sem), 1);
}
acquire(lock_t* lock) {
 sem_wait(&(lock->sem));
}
release(lock_t* lock) {
 sem_post(&(lock->sem));
}

57

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

 value >= 0
sem_post(sem_t*): Increment value then

 wake a single waiter

Explanation of semaphore mutex implementation

typdef struct {

 sem_t sem;

} lock_t;

init(lock_t* lock){

 sem_init(&(lock->sem), 1);
}

acquire(lock_t* lock) {

 sem_wait(&(lock->sem));

}

release(lock_t* lock) {

 sem_post(&(lock->sem));

}

58

• The semaphore value represents
the number of resources available
• For a lock, there is 1 available

initially

• Acquiring the lock might give it to
you immediately
• Or it might wait

• Multiple threads could be waiting

• Releasing the lock only occurs
after acquiring and resets it to 1

Semaphores reduce effort for numerical conditions
P
a
re

n
t

 C

h
ild

• Want parent to wait immediately so initialize to 0
• If child thread finishes first, semaphore increments to 1
• Resource: number of threads completed

Condition Variable

59

Semaphore

void thr_exit() {
 sem_post(&s);
}

void thr_join() {
 sem_wait(&s);
}

// somewhere before all of this
sem_init(&s, 0);

Readers-Writers Problem

• Some resources don’t need strict mutual exclusion, especially if
they have many read-only accesses. (eg., a linked list)

• Any number of readers can be active simultaneously, but

• Writes must be mutually exclusive AND cannot happen during read

• API:
• acquire_read_lock(), release_read_lock()

• acquire_write_lock(), release_write_lock()

60

Reader-writer Lock

• “lock” semaphore used as
a mutex

Reader-writer Lock

• “writelock” must be held
during read to block writes
or during write to block
reads.

• During reads
• Number of active readers is

counted.

• First/last reader handles
acquiring/releasing
writelock.

Classical concurrency problems

• Note that this particular solution could starve writers
• There might always be readers in the critical section

• Full solution to readers-writers problem with progress guarantee
• https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

• Generally: try to map your problem to one of these solved problems
• Producers/Consumers or Readers/Writers

• There are MANY solutions to these problems available online

63

https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

64

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

	Default Section
	Slide 1: Lecture 05: Condvars and Semaphores

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Review: Locks/Mutexes
	Slide 5: Ticket lock still wastes time spinning
	Slide 6: Yield timeslice when not yet ready
	Slide 7: Yielding reduces busy-waiting
	Slide 8: How much does yielding improve things?
	Slide 9: Building a blocking lock
	Slide 11: Spinning versus Blocking
	Slide 12: Two-phase waiting
	Slide 13: Summary on lock implementations

	Applying Locks
	Slide 14: Outline
	Slide 15: Review: Need to enforce mutual exclusion on critical sections
	Slide 16: Broken concurrency can actually performance too!
	Slide 17: Naively locked counter example
	Slide 18: Problem: locking overhead decreases performance
	Slide 19: Simple mutual exclusion: one big lock
	Slide 20: Counter example with big lock technique
	Slide 21: Problem: locking decreases performance
	Slide 22: Reducing lock overhead
	Slide 23: Sloppy counter example
	Slide 24: Problem: locking decreases performance
	Slide 25: Break + Open Question
	Slide 26: Break + Open Question

	Ordering with Condition Variables
	Slide 27: Outline
	Slide 28: Requirements for sensible concurrency
	Slide 29: Barriers for all-or-nothing synchronization
	Slide 30: Basic Signaling with Condition Variable (condvar)
	Slide 31: Waiting for a thread to finish
	Slide 32: CV for child wait
	Slide 33: CV for child wait
	Slide 34: CV for child wait
	Slide 35: Check your understanding: why doesn’t this work?
	Slide 36: Buggy attempts to wait for a child, no flag
	Slide 37: Check your understanding: is a lock necessary?
	Slide 38: Buggy attempts to wait for a child, no mutex
	Slide 39: Always use a loop to check the flag variable
	Slide 42: Classical concurrency problem: Producer-Consumer
	Slide 43: Produce/Consumer Example Details
	Slide 44: Managing the buffer
	Slide 45: Managing the concurrency
	Slide 46: Managing the concurrency
	Slide 47: Managing the concurrency
	Slide 48: Managing the concurrency
	Slide 49: Broadcast makes more complex conditions possible
	Slide 50: Condition Variable: rules of thumb
	Slide 51: Break + xkcd (not relevant, just funny)

	Semaphores
	Slide 52: Outline
	Slide 53: Generalizing Synchronization
	Slide 54: Semaphores (by Edsger Dijkstra, 1965)
	Slide 55: Semaphores vs Condition Variables
	Slide 56: Check your understanding: build a mutex
	Slide 57: Check your understanding: build a mutex
	Slide 58: Explanation of semaphore mutex implementation
	Slide 59: Semaphores reduce effort for numerical conditions
	Slide 60: Readers-Writers Problem
	Slide 61: Reader-writer Lock
	Slide 62: Reader-writer Lock
	Slide 63: Classical concurrency problems

	Wrapup
	Slide 64: Outline

