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Administrivia

• PCLab is out and ready to work on
• Some of this week’s material is relevant

• But you can totally get started right now

• About 25% of the class has already made commits to Github
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Today’s Goals

• Understand how we can apply locks to gain correctness and 
maintain performance
• Counter

• Signaling between threads to enforce ordering
• Condition Variables

• Semaphores
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Review: Locks/Mutexes

• Simple mutual exclusion primitive

• Init(), Acquire()/Lock(), Release()/Unlock()

• Implementations trade complexity, fairness, and performance
• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks
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Ticket lock still wastes time spinning

• B, C, and D are “busy waiting”
• Might be occupying an entire core in multicore

• Scheduler is fairly scheduling all threads, but ignorant of locks

• Idea: can we skip threads that are waiting on a lock?
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Yield timeslice when not yet ready

• Yield syscall unschedules the 
current thread
• sched_yield() in POSIX API

• Gives the user process just a 
little control over the scheduler
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• In acquire(), yield after 
checking condition

• Might delay thread response 
time in multicore scenario

void mutex_lock(lock_t* mutex) {

    int myturn = atomic_fetch_and_add(&(mutex->ticket), 1); // take a ticket

    while (mutex->turn != myturn) {

        sched_yield(); // not ready yet

    }

}



Yielding reduces busy-waiting



How much does yielding improve things?

• Performance better with yield(), but still doing a lot of unnecessary 
context switches

• Wasted CPU cycles
• Without yield(): O(threads*timeslice)

• With yield(): O(threads*context_switch)

• Timeslice ~1 ms, Context switch: ~1 µs

• Still expensive if we expect many threads to be contending over 
the lock
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Building a blocking lock

• A more performant solution requires cooperation between thread’s locks 
and the OS scheduler to block threads

• If a thread cannot acquire the lock, it instead makes a system call 
informing the OS that it is blocked on the lock resource

• When a thread releases the lock, it makes a system call to notify the OS 
that it can wake one thread waiting on that resource

• Operation needs OS support
• Solaris: Park/Unpark
• Linux: implemented as part of Futex -> used for Pthread Mutex implementation!
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Spinning versus Blocking

• Each approach is better under different circumstances

• Single core systems
• If waiting process is scheduled, then process holding lock is not
• Waiting process should always yield its time

• Multicore systems
• If waiting process is scheduled, then process holding lock could also be
• Spin or block depends how long until the lock is released

• If the lock is released quickly, spin wait
• If the lock is released slowly, block
• Where quick and slow are relative to context-switch cost
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Two-phase waiting

• Problem: we can’t always know how long the wait will be
• Programmer might know…

• Library definitely can’t know

• One common compromise:
• Spin lock for a little while, and then give up and block

• Example: Linux Native POSIX Thread Library (NPTL)

• Check the lock at least three times before blocking with Futex
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Summary on lock implementations

• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks
• Pthread Mutex on Linux (implemented via Futex, see hidden slide)

• Sophisticated locks are more fair and do not waste processor time 
“busy waiting”

• But also have unnecessary context-switch overhead if the lock is 
only briefly and rarely held
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• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline



Review: Need to enforce mutual exclusion on critical sections

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

void* mythread(void* arg) {

  printf("%s: begin\n", (char*)arg);

  for (int i=0; i<LOOPS; i++) {

    counter++;

  }

  printf("%s: done\n", (char*)arg);

  return NULL;

}

int main(int argc, char* argv[]) {

  pthread_t p1, p2;

  printf("main: begin (counter = %d)\n", counter);

  pthread_create(&p1, NULL, mythread, "A");

  pthread_create(&p2, NULL, mythread, "B");

  // wait for threads to finish

  pthread_join(p1, NULL);

  pthread_join(p2, NULL);

  printf("main: done with both (counter = %d, goal was 

%d)\n", counter, 2*LOOPS);

  return 0;

}
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Broken concurrency can actually performance too!

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)
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• Why is the no-lock multithreaded version so slow?
• Not 100% certain
• Likely something to do with hardware memory/cache consistency

When iterating 
one billion times:



Naively locked counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

  printf("%s: begin\n", (char*)arg);

  for (int i=0; i<LOOPS; i++) {

    pthread_mutex_lock(&lock);

    counter++;

    pthread_mutex_unlock(&lock);

  }

  printf("%s: done\n", (char*)arg);

  return NULL;

}

int main(int argc, char* argv[]) {

  pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

  printf("main: begin (counter = %d)\n", counter);

  pthread_create(&p1, NULL, mythread, "A");

  pthread_create(&p2, NULL, mythread, "B");

  // wait for threads to finish

  pthread_join(p1, NULL);

  pthread_join(p2, NULL);

  printf("main: done with both (counter = %d, goal 

was %d)\n", counter, 2*LOOPS);

  return 0;

}
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Problem: locking overhead decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds (Correct…)
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• Formerly loop contained 3 instructions (mov, add, mov)

• Now it has
• Two function calls
• Multiple instructions inside of those
• Possibly even interaction with the OS…
• 3 instructions -> 60 instructions

When iterating 
one billion times:



Simple mutual exclusion: one big lock

• Simple solution “one big lock”
• Find all the function calls that interact with shared memory

• Lock at the start of each function call and unlock at the end

• Essentially, no concurrent access
• Correct but poor performance

• If you’ve forgotten all of this years from now, “one big lock” will still work
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Counter example with big lock technique

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

  pthread_mutex_lock(&lock);

  printf("%s: begin\n", (char*)arg);

  for (int i=0; i<LOOPS; i++) {

    counter++;

  }

  printf("%s: done\n", (char*)arg);

  pthread_mutex_unlock(&lock);

  return NULL;

}

int main(int argc, char* argv[]) {

  pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

  printf("main: begin (counter = %d)\n", counter);

  pthread_create(&p1, NULL, mythread, "A");

  pthread_create(&p2, NULL, mythread, "B");

  // wait for threads to finish

  pthread_join(p1, NULL);

  pthread_join(p2, NULL);

  printf("main: done with both (counter = %d, goal 

was %d)\n", counter, 2*LOOPS);

  return 0;

}

20
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Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds
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• Big lock technique basically returned us to single-threaded 
execution time (and single-threaded implementation)
• But non-critical section code could still run in parallel



Reducing lock overhead

• We want to enable parallelism, but deal with less lock overhead
• Need to increase the amount of work done when not locked

• Goal: lots of parallel work per lock/unlock event

• “Sloppy” updates to global state
• Keep local state that is operated on

• Occasionally synchronize global state with current local state

• Counter example
• Keep a local counter for each thread (not shared memory)

• Add local counter to global counter periodically
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Sloppy counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

  int sloppy_count = 0;

  printf("%s: begin\n", (char*)arg);

  for (int i=0; i<LOOPS; i++) {

    sloppy_count++;

    if (i%1000 == 0) {

        pthread_mutex_lock(&lock);

        counter += sloppy_count;

        pthread_mutex_unlock(&lock);

        sloppy_count = 0;

    }

  }

int main(int argc, char* argv[]) {

  pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

  printf("main: begin (counter = %d)\n", counter);

  pthread_create(&p1, NULL, mythread, "A");

  pthread_create(&p2, NULL, mythread, "B");

  // wait for threads to finish

  pthread_join(p1, NULL);

  pthread_join(p2, NULL);

  printf("main: done with both (counter = %d, goal 

was %d)\n", counter, 2*LOOPS);

  return 0;

}
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Offscreen Tail condition: don’t forget to update 
“counter” again when the for loop is complete!

code posted with last 
lecture on canvas



Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multi-threaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

Sloppy lock (synchronize every 100): 2.150 seconds

Sloppy lock (synchronize every 10000): 1.472 seconds

Sloppy lock (synchronize every 1000000):
Sloppy lock (synchronize every 1000000000):

1.478 seconds
1.500 seconds
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• Optimal for this counter example will be synchronizing once, when 
entirely finished with the local sum



Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel 
anyways

• Is concurrency worth it? What kinds of problems work best?
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Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel 
anyways

• Is concurrency worth it? What kinds of problems work best?

• Problems that do not share data will still be HUGE wins!

• No (or few) data races. Big concurrency performance gains.

• Such problems are termed: embarrassingly parallel
• https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples
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https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples
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• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline



Requirements for sensible concurrency

• Mutual exclusion
• Prevents corruption of data manipulated in critical sections

• Atomic instructions → Locks → Concurrent data structures

• Ordering (B runs after A)
• By default, concurrency leads to a lack of control over ordering

• We can use mutex’d variables to control ordering, but it’s inefficient:
• while(!myTurn) sleep(1);

• We would like cooperating threads to be able to signal each other.

• Park/unpark and futex could be used solve this problem

• But we want a higher-level abstraction
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Barriers for all-or-nothing synchronization

• Barriers create synchronization points in the program
• All threads must reach barrier before any thread continues

• pthread_barrier_init(barrier_t)

• pthread_barrier_wait(barrier_t)

• Use case: neural network processing
• Spawn a pool of threads
• Each thread handles a portion of the input data
• Collect results from all threads at the end of the layer
• Distribute results to appropriate threads for next layer
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Basic Signaling with Condition Variable (condvar)

• Queue of waiting threads
• Combine with a flag and a mutex to synchronize threads

• wait(condvar_t, lock_t)
• Lock must be held when wait() is called
• Puts the caller to sleep AND releases lock (atomically)
• When awoken, reacquires lock before returning

• signal(condvar_t)
• Wake a single waiting thread (if any are waiting)
• Do nothing if there are no waiting threads
• Called while holding the lock

• (but the newly woken thread won’t leave their wait() until they get the lock)
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Waiting for a thread to finish

pthread_t p1, p2;

// create child threads
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B"); 

... 

// join waits for the child threads to finish 
thr_join(p1, NULL);
thr_join(p2, NULL); 

return 0; How to implement 
join?
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CV for child wait

• Must use mutex to protect 
“done” flag and condvar

• Done flag tracks the event

• Condvar is used for ordering

• Mutex protects both!
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CV for child wait

• Must use mutex to protect 
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1
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CV for child wait

• Must use mutex to protect 
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

• Child calls thr_exit()
• sets done to 1

• calls signal()

• unlocks mutex
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Check your understanding: why doesn’t this work?
P
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Correct Code
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Incorrect Code

Consider if an ordering exists that would lead to incorrect behavior
• Lock means that only one critical section will run at a time



Buggy attempts to wait for a child, no flag
P
a
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n
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h
ild

Without done variable:
1) The child could run first and signal
2) Before the parent starts waiting for the child
3) Parent waits forever…

Correct Code
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Incorrect Code



Check your understanding: is a lock necessary?
P
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Correct Code
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Incorrect Code

What could go wrong?
• Without the lock, these lines could be interleaved in any way



Buggy attempts to wait for a child, no mutex
P
a
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Correct Code
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Incorrect Code

Without the lock:
1) Parent could see done == 0 and enter the if statement
2) Child could then exit, setting done to 1 and signaling
3) Parent then calls wait (missed the signal) and waits forever



Always use a loop to check the flag variable

• It’s possible for the thread
to wake up from a wait, but
the resource is not available!

• Maybe another thread took the resource first
• Another thread could run and claim it before the woken thread is scheduled

• Maybe a spurious wakeup occurred
• Often other sources can cause wakeups to occur

• Signals or Interrupts usually
• Makes the implementation of condvar simpler, and we need to double-check 

the flag anyways, so it doesn’t matter
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Classical concurrency problem: Producer-Consumer
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Produce/Consumer Example Details

• We have multiple producers and multiple consumers that 
communicate with a shared queue (FIFO buffer).
• Concurrent queue allows work to happen asynchronously.
• Buffer has finite size (does not dynamically expand)

• Two operations:
• Put, which should block (wait) if the buffer is full.
• Get, which should block (wait) if the buffer is empty.

• This is more complex than a (linked-list-based) concurrent queue 
because of the finite size and waiting.

• Example scenario: request queue in a multi-threaded web server.
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Managing the buffer

• A simple implementation of a circular 
buffer that stores data in a fixed-size 
array.

• fill is the index of the tail

• use is the index of the head

• count is the number of items

This simple implementation assumes:

• Concurrency is managed elsewhere

• It will overwrite data if we try to put 
more than MAX elements.
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Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars
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Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the 
buffer is full
• Producer signals fill after put
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Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the 
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is 
empty
• Consumer signals empty after get
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Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the 
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is 
empty
• Consumer signals empty after get

• Loops re-check count condition after 
breaking out of wait, to check that there 
really is a resource
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Broadcast makes more complex conditions possible

• Recall that signal wakes one waiting thread (FIFO)
• But there are times when threads are not all equivalent

• The signal may not be serviceable by any of the threads

• For example, consider memory allocation/free requests
• An allocation can only be serviced by free of >= size

• pthread_cond_broadcast wakes all threads
• This approach may be inefficient, but it may be necessary to ensure 

progress
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Condition Variable: rules of thumb

• Shared state determines if condition is true or not 
• Check the state in a while loop before waiting on condvar

• Use a mutex to protect:
• The shared state on which condition is based, and

• Operations on the condvar itself

• Use different condvars for different conditions 
• Sometimes, cond_broadcast() helps if you can’t find an elegant solution 

using cond_signal() 
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Break + xkcd (not relevant, just funny)

51https://xkcd.com/336/
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• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline



Generalizing Synchronization

• Condvars have no state or lock, just a waiting queue
• The rest is handled by the programmer

• Semaphores are a generalization of condvars and locks
• Includes internal (locked) state

• Sometimes this makes them more complicated, sometimes simpler
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Semaphores (by Edsger Dijkstra, 1965)

• Keeps an internal integer value that determines
what happens to a calling thread

• Init(val)
• Set the initial internal value
• Value cannot otherwise be directly modified

• Up/Signal/Post/V() (from Dutch verhogen “increase”)
• Increase the value. If there is a waiting thread, wake one.

• Down/Wait/Test/P() (from Dutch proberen “to try”)
• Decrease the value. Wait if the value is negative.
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Dijkstra invented 
Dijkstra’s Algorithm!

Also Semaphores and the 
entire field of Concurrent 
Programming

https://en.wikipedia.org/
wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Semaphores vs Condition Variables

• Semaphores

• Up/Post: increase value and 
wake one waiting thread

• Down/Wait: decrease value 
and wait if it’s negative

• Condition Variables

• Signal: wake one waiting thread

• Wait: wait

• Compared to CVs, Semaphores add an integer value that controls 
when waiting is necessary
• Value counts the quantity of a shared resource currently available
• Up makes a resource available, down reserves a resource
• Negative value -X means that X threads are waiting for the 

resource
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Check your understanding: build a mutex

• How would we build a mutex out of a semaphore?
typdef struct {

  sem_t sem;

} lock_t;

init(lock_t* lock){
  
}

acquire(lock_t* lock) {
  

}

release(lock_t* lock) {
  

}
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sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

                               value >= 0
sem_post(sem_t*): Increment value then

                               wake a single waiter



Check your understanding: build a mutex

• How would we build a mutex out of a semaphore?
typdef struct {
  sem_t sem;
} lock_t;
init(lock_t* lock){
  sem_init(&(lock->sem), 1);
}
acquire(lock_t* lock) {
  sem_wait(&(lock->sem));
}
release(lock_t* lock) {
  sem_post(&(lock->sem));
}
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sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

                               value >= 0
sem_post(sem_t*): Increment value then

                               wake a single waiter



Explanation of semaphore mutex implementation

typdef struct {

  sem_t sem;

} lock_t;

init(lock_t* lock){

  sem_init(&(lock->sem), 1);
}

acquire(lock_t* lock) {

  sem_wait(&(lock->sem));

}

release(lock_t* lock) {

  sem_post(&(lock->sem));

}
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• The semaphore value represents 
the number of resources available
• For a lock, there is 1 available 

initially

• Acquiring the lock might give it to 
you immediately
• Or it might wait

• Multiple threads could be waiting

• Releasing the lock only occurs 
after acquiring and resets it to 1



Semaphores reduce effort for numerical conditions
P
a
re

n
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 C

h
ild

• Want parent to wait immediately so initialize to 0
• If child thread finishes first, semaphore increments to 1
• Resource: number of threads completed

Condition Variable

59

Semaphore

void thr_exit() {
    sem_post(&s);
}

void thr_join() {
    sem_wait(&s);
}

// somewhere before all of this
sem_init(&s, 0);



Readers-Writers Problem

• Some resources don’t need strict mutual exclusion, especially if 
they have many read-only accesses.  (eg., a linked list)

• Any number of readers can be active simultaneously, but 

• Writes must be mutually exclusive AND cannot happen during read

• API:
• acquire_read_lock(), release_read_lock()

• acquire_write_lock(), release_write_lock()
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Reader-writer Lock

• “lock” semaphore used as 
a mutex



Reader-writer Lock

• “writelock” must be held 
during read to block writes 
or during write to block 
reads.

• During reads
• Number of active readers is 

counted.

• First/last reader handles 
acquiring/releasing 
writelock.



Classical concurrency problems

• Note that this particular solution could starve writers
• There might always be readers in the critical section

• Full solution to readers-writers problem with progress guarantee
• https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

• Generally: try to map your problem to one of these solved problems
• Producers/Consumers or Readers/Writers

• There are MANY solutions to these problems available online
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https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem
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• Applying Locks

• Ordering with Condition Variables

• Semaphores
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