
Lecture 03: Concurrency
Sources and Challenges

CS343 – Operating Systems

Branden Ghena – Fall 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), and UC Berkeley CS61C and CS162

Administrivia

• Getting Started Lab
• Let us know if you’re having problems with this

• Should not take long to complete

• 63/123 of you have finished already

• Office Hours
• Are now running!

• 19 hours a week (M-F) at various times

• 4 of those are online, the rest in-person

2

Today’s Goals

• Understand threads as a software design mechanism.

• Describe where and why concurrency and parallelism are involved
in computing.

• Discuss multiple sources of concurrency on computing systems

• Be disappointed by performance limits on concurrency.

3

4

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

Software Tasks: Threads

Unit of execution within a process

Processes discussed so far have a single thread
• They “have a single thread of execution”
• They “are single-threaded”

But a single process could have multiple threads

5

Processes and threads

• A process could have multiple threads
• Each with its own registers and stack

6

• Code and
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables

Process address space with threads

7

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

%RIP (T1)

%RIP (T3)
%RIP (T2)

Data

Segment

Thread use case: web browser

Let’s say you’re implementing a web browser:

You want a tab for each web page you open:
• The same code loads each website (shared code section)

• The same global settings are shared by each tab (shared data section)

• Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

8

Thread use case: user interfaces

• Even if there is only a single processor core, threads are useful

• Single-threaded User Interface
• While processing actions, the UI is frozen

main() {

 while(true) {

 check_for_UI_interactions();

 process_UI_actions(); // UI freezes while processing

 }

}

9

Thread use case: web server

10

• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Disk I/O for request 1 finishes

Server responds to request 1

Server reads in request 2

• Easy to program, but slow
• Can’t overlap disk requests with computation

• Can’t overlap either with network sends and receives

11

time

Web server option 1: event-driven model

• Issue I/Os, but don’t wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes
Server responds to request 1

• Fast, but hard to program
• Must remember which requests are in flight and which I/O goes where
• Lots of extra state

12

time

Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!
• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…
13

Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1
Exit

Thread 2

Read in request 2
Start disk I/O

time

How are threads implemented?

• Two major possibilities
• User Threads

• Kernel Threads

• (There are other options that mix these)

14

Models for thread libraries: User Threads

• Thread scheduling is implemented within the process
• OS only knows about the process, not the threads

• Upsides
• Works on any hardware or OS
• Performance is better when

creating and switching

• Downsides
• A system call in any thread

blocks all threads

15

Scheduler

OS
Kernel

Processes

Thread
Library

Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343

16

Scheduler

OS
Kernel

Processes

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

17

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

• What happens when pthread_create() is called in a process?

18

Library:

int pthread_create(…) {
 Do some work like a normal function
 Put syscall number into register
 Put args into registers
 Special trap instruction

Get return values from regs
 Do some more work like a normal function
};

Get args from regs
 Do the work to spawn the new thread
 Store return value in %eax

Kernel:

clone (56) syscall on Linux

Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all

threads of the process.
• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by
reading/writing (shared)
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

Threads Example

20

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a
number, then
increments it, then exits

• Main process waits for
all of the threads to
finish

21

Threads Example

22

Threads Example

23

• Left: Every thread has its
own stack

• Right: Every thread
shares global memory

Break +
Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
created?

4. If we run the program again,
could the result change?

24

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
could the result change?
Possibly!

25

Break +
Check your understanding

26

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?

27

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do? Take a vacation

28

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

How? Transistors are getting
exponentially smaller!

How small? Today: <7nm!
(maybe smaller, kind of complicated)
< ½ the size of most viruses!

29

Processors kept getting faster too

30

Power is a major limiting factor on speed

• We could make processors go very fast
• But doing so uses more and more power

• More power means more heat generated
• And chips typically work up to around 100°C

• Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool
• But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed

31

Denard Scaling

• Moore’s Law corollary: Denar Scaling
• As transistors get smaller, the power density stays the same

• Which is to say that the power-per-transistor decreases!

• Making the processor clock speed faster uses more power
• But the two balance out for roughly net even power

• So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:
• In two years, new hardware would run the existing software twice as fast

32

Then they stopped getting faster

33

~2006: Leakage
current becomes
significant

Now smaller
transistors doesn’t
mean lower power

So… now what?

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better by
waiting for clock speeds to increase.

How do we continue to get better computation performance?

34

Exploit parallelism!

35

Update: 2010-2021

36

Still growing!

Stable

Stable

Small
improvement

Still growing
for servers

Key question: how do we use all these cores?

37

Break + Parallelism Analogy

• I want to peel 100 potatoes as fast as possible:

• I can learn to peel potatoes faster

OR

• I can get 99 friends to help me

• Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!

38

Parallelism versus Concurrency Two processes A and B

39

BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active

40

B

A
OR

time time

OR

time

41

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads

• Interrupts

42

Model of a processor

43

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Instruction
Fetch

Instruction
Decode

Execute Memory Writeback

CPU

But instructions don’t always have to be executed in order

movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
addq %rcx, %rbx

We can apply the multiprogramming approach of executing this
addq while the movq is waiting on memory.

44

Doesn’t have to go after the
movq instructions because it
uses different registers

Out-of-order processors

Fetch many
instructions at
once!

Read register file,
handle data
dependencies with
register renaming

Reorder instructions
to make best use of
CPU Commit, or

“write back”
data to memory
and regfile in
the order the
programmer
expects

Generally: looks for independent
instructions it can execute early

Out-of-order processors obey normal execution results

• Initial thoughts on out-of-order execution
•

• The processor could be executing my program in order it feels like?!!

• How do I possibly reason about anything?

• Answer: the processor promises to have the same results as if
things were done in the normal order.

46

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print?

47

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print? Could be 42. Could be 0.

48

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

This can be
addressed with
memory barriers

49

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

Task parallelism use case

Run Chrome and Spotify simultaneously
• Each are separate programs
• Each has a different memory space
• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,
but hardware can make it actually simultaneous

50

Multicore Systems (in pictures)

51

Core 0

Control

Datapath
RIP

Registers

(ALU)

Memory

Bytes

Processor 0
Memory
Accesses

Core 1

Control

Datapath
RIP

Registers

(ALU)

Processor 1
Memory
Accesses

Actually parallel!

Multicore Systems (in words)

• A computer system with at least 2 processor cores
• Each core has its own registers
• Each core executes independent instruction streams
• Cores share the same system memory

• But usually use different parts of it
• Communication possible through memory accesses

• Deliver high throughput for independent jobs via task-level
parallelism

52

Multithreading processors

Basic idea: Processor resources are expensive and should not be left
idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while waiting for

cache miss

• Cost of thread context switch must be much less than cache miss latency

• Switching threads is less expensive than processes because they share
memory
• Cache is still valid

• Page Table for virtual memory doesn’t have to change

53

Memory

Bytes

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

• Two copies of RIP and Registers inside processor hardware

• Looks like two processors to software
 (hardware thread 0, hardware thread 1)

• Control logic decides which thread to execute an instruction
 from next (concurrent, but NOT parallel)

54

Multithreading processor

Multithreading versus Multicore

• Multithreading => Better utilization
• ≈5% more hardware for ≈1.3x better performance?

• Gets to share ALUs, caches, memory controller

• Multicore => Duplicate cores
• ≈50% more hardware for ≈2x better performance?

• Share some caches (L2 cache, L3 cache), memory controller

• Modern processors might do both!
• Multiple cores with multiple threads per core

• Not all do though, some focus on better single-thread performance

55

Multithreading, multicore processors

• Combine capabilities
of both designs

• Run two processes
each with two threads

• Or run one process
with four threads

56

Memory

Bytes

Processor 0
Memory
Accesses

Processor 1
Memory
Accesses

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Clearing up vocabulary

• Core: computation unit within the CPU
• ALU, Registers, etc.

• Capable of running one or more threads

• CPU (processor): the chip that goes in your computer
• Contains one or more cores

• Computers could have multiple CPU chips as well

• Sometimes people equate processors and cores, which is
confusing
• I’ll definitely do it by mistake at some point if I haven’t already. Sorry!

57

My desktop computer

58

4 total cores
Each capable of 2 threads

≈ 8 jobs at once

Quad core processor

• One thread per core

• 3-way superscalar pipeline
• L1 Cache

• 32 KiB 2-way set associative data cache
• 48 KiB 3-way set associative instruction cache
• Per core

• L2 Cache
• 512 KiB to 4 MiB (shared)

• RAM 1-4 GB

$35
Literally all computers
are doing parallelism
these days

Raspberry Pi 4

59

Other modern multicore designs

• Heterogeneous
multicore
• Not all cores are

necessarily identical

• Enables scheduler to
make complicated
choices of performance
or energy savings
• At the cost of a

complicated scheduler…

60

Break + Real-world Connection

• How many cores/threads does your processor support?
• Windows: Task Manager -> Performance -> CPU

• MacOS: About this Mac -> System Report -> Hardware

• Apple ARM M processors only do 1 thread per core

• Linux: In terminal: lscpu

• Android/iOS: You’ll need to google it

61

62

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

Interrupts

• An event that the processor handles by running special OS handler
code
• Timer expiration, Keyboard event, Network packet, etc.

• Necessary for asynchronous event handling

• Don’t wait around for the event, just handle it whenever it happens

• Very similar to Exceptions
• Might be synonyms, depending on the system

• A system call is a way to generate a software interrupt

63

Differences from system calls

• When we performed a system call:
• We knew it was about to happen

• Set up our registers in advance

• Performed what looked sort of like a function call

• And we were always switching from process to kernel

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order

execution, multiple cores and threads, and caches

64

Interrupt Vector Table

65

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt Vector Table

66

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt handlers

• Interrupt context
• Running code in a special mode
• Pauses whatever was running previously (kernel or process) until finished

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire

core jumped to handling this interrupt

• Handled by the operating system kernel
• Processes are interrupted, but otherwise not normally involved

67

Why are interrupts important to concurrency?

• Interrupts are a case where the kernel could have a data race with
itself!!
• Imagine being in the middle of an operation on a device

• When an interrupt comes in for that same device

• Data structures for the device could end up messed up

• Takeaway: concurrency isn’t just about processes and threads
• Many different software designs need to deal with it

68

Back up to the OS perspective

• Modern operating systems must manage concurrency
• Both parallel operation and interleaving operations

• Concurrency is valuable
• Performance gains are the reason

69

70

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

71

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

72

Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

95 s 5 s

Speedup Example

73

95 s 5 s

Speedup from improvements

74

Speedup with
Improvement

=

Execution time without
improvement

Execution time with
improvement

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s: Speedup = 100/96 = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

Speedup =

 F = Fraction of execution time speed up
 S = Scale of improvement

(1 - F) + F
SNot improved part Improved part

1

1
0.75 + 0.25

2

1
0.75 + 0.125

= = 1.14

Example: 2x improvement to 25% of the program

Equivalent to
prior equationAmdahl’s Law

75

Parallel speedup example Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

76

• Consider an improvement which runs 20 times faster but is only
usable 15% of the time

Speedup with
improvement

=
1

0.85 + (0.15/20) = 1.166

Speedup with
improvement

=
1

0.75 + (0.25/20) = 1.311

• What if it’s usable 25% of the time?

Nowhere near
20x speedup!

Amdahl’s (heartbreaking) Law (in pictures)

• The amount of speedup that can be achieved through parallelism is
limited by the non-parallel portion of your program!
• And every program has at least some non-parallel parts

77

Parallel
portion

Serial
portion

Time

Number of Processors
1 2 3 4 5

Sp
e

e
d

u
p

Number of Processors

Amdahl’s (heartbreaking) Law (in words)

• Amdahl’s Law tells us that to achieve linear speedup with more
processors:

• none of the original computation can be serial (non-parallelizable)

• To get a speedup of 90 from 100 processors, the percentage of
the original program that could be scalar would have to be 0.1%
or less

 Speedup = 1/(.001 + .999/100) = 90.99

78

Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

79

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

80

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Speedup = 1 / [(1 - F) + (F/S)]

2 = 1 / [(1 - 0.5) + (0.5/S)]

S = 0.5 / ((1/2) – 0.5) = ∞

The square root would need to decrease
to nothing before you got 2x speedup

81

• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline

	Default Section
	Slide 1: Lecture 03: Concurrency Sources and Challenges

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Threads
	Slide 4: Outline
	Slide 5: Software Tasks: Threads
	Slide 6: Processes and threads
	Slide 7: Process address space with threads
	Slide 8: Thread use case: web browser
	Slide 9: Thread use case: user interfaces
	Slide 10: Thread use case: web server
	Slide 11: Web server option 1: handle one request at a time
	Slide 12: Web server option 1: event-driven model
	Slide 13: Web server option 3: multi-threaded web server
	Slide 14: How are threads implemented?
	Slide 15: Models for thread libraries: User Threads
	Slide 16: Models for thread libraries: Kernel Threads
	Slide 17: POSIX Threads Library: pthreads
	Slide 18: Pthread system call example
	Slide 19: Threads versus Processes
	Slide 20: Threads Example
	Slide 21: Threads Example
	Slide 22: Threads Example
	Slide 23: Threads Example
	Slide 24: Break + Check your understanding
	Slide 25

	Need for Parallelism
	Slide 26: Outline
	Slide 27
	Slide 28
	Slide 29: Moore’s Law – CPU transistors counts
	Slide 30: Processors kept getting faster too
	Slide 31: Power is a major limiting factor on speed
	Slide 32: Denard Scaling
	Slide 33: Then they stopped getting faster
	Slide 34: So… now what?
	Slide 35: Exploit parallelism!
	Slide 36: Update: 2010-2021
	Slide 37: Key question: how do we use all these cores?
	Slide 38: Break + Parallelism Analogy
	Slide 39: Parallelism versus Concurrency
	Slide 40: Parallelism versus Concurrency

	Processor concurrency
	Slide 41: Outline
	Slide 42: Hardware sources of concurrency
	Slide 43: Model of a processor
	Slide 44: But instructions don’t always have to be executed in order
	Slide 45: Out-of-order processors
	Slide 46: Out-of-order processors obey normal execution results
	Slide 47: Multiple threads might rely on memory ordering
	Slide 48: Multiple threads might rely on memory ordering

	Task Parallelism
	Slide 49: Outline
	Slide 50: Task parallelism use case
	Slide 51: Multicore Systems (in pictures)
	Slide 52: Multicore Systems (in words)
	Slide 53: Multithreading processors
	Slide 54: Multithreading processor
	Slide 55: Multithreading versus Multicore
	Slide 56: Multithreading, multicore processors
	Slide 57: Clearing up vocabulary
	Slide 58: My desktop computer
	Slide 59: Raspberry Pi 4
	Slide 60: Other modern multicore designs
	Slide 61: Break + Real-world Connection

	Interrupts
	Slide 62: Outline
	Slide 63: Interrupts
	Slide 64: Differences from system calls
	Slide 65: Interrupt Vector Table
	Slide 66: Interrupt Vector Table
	Slide 67: Interrupt handlers
	Slide 68: Why are interrupts important to concurrency?
	Slide 69: Back up to the OS perspective

	Amdahl's Law
	Slide 70: Outline
	Slide 71: Challenges to concurrency
	Slide 72: Challenges to concurrency
	Slide 73: Speedup Example
	Slide 74: Speedup from improvements
	Slide 75
	Slide 76: Parallel speedup example
	Slide 77: Amdahl’s (heartbreaking) Law (in pictures)
	Slide 78: Amdahl’s (heartbreaking) Law (in words)
	Slide 79: Break + Question
	Slide 80: Break + Question

	Wrapup
	Slide 81: Outline

