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Administrivia

• Getting Started Lab
• Let us know if you’re having problems with this

• Should not take long to complete

• 63/123 of you have finished already

• Office Hours
• Are now running!

• 19 hours a week (M-F) at various times

• 4 of those are online, the rest in-person
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Today’s Goals

• Understand threads as a software design mechanism.

• Describe where and why concurrency and parallelism are involved 
in computing.

• Discuss multiple sources of concurrency on computing systems

• Be disappointed by performance limits on concurrency.
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• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline



Software Tasks: Threads

Unit of execution within a process

Processes discussed so far have a single thread
• They “have a single thread of execution”
• They “are single-threaded”

But a single process could have multiple threads
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Processes and threads

• A process could have multiple threads
• Each with its own registers and stack
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• Code and 
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables



Process address space with threads
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Thread use case: web browser

Let’s say you’re implementing a web browser:
 

You want a tab for each web page you open:
• The same code loads each website (shared code section)

• The same global settings are shared by each tab (shared data section)

• Each tab does have separate state (separate stack and registers)

 

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of 
reasons including performance and security. But they used to use threads.
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Thread use case: user interfaces

• Even if there is only a single processor core, threads are useful

• Single-threaded User Interface
• While processing actions, the UI is frozen

main() {

 while(true) {

  check_for_UI_interactions();

  process_UI_actions(); // UI freezes while processing

 }

}
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Thread use case: web server
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• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request



Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Disk I/O for request 1 finishes

Server responds to request 1

Server reads in request 2

• Easy to program, but slow
• Can’t overlap disk requests with computation

• Can’t overlap either with network sends and receives

11

time



Web server option 1: event-driven model

• Issue I/Os, but don’t wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes
Server responds to request 1

• Fast, but hard to program
• Must remember which requests are in flight and which I/O goes where
• Lots of extra state
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Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!
• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…
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Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1
Exit

Thread 2

Read in request 2
Start disk I/O

time



How are threads implemented?

• Two major possibilities
• User Threads

• Kernel Threads

• (There are other options that mix these)
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Models for thread libraries: User Threads

• Thread scheduling is implemented within the process
• OS only knows about the process, not the threads

• Upsides 
• Works on any hardware or OS
• Performance is better when

creating and switching

• Downsides
• A system call in any thread

blocks all threads
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Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides 
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• This is what we’ll focus on in CS343
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POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr  the value passed to pthread_exit() by the 

terminating thread is made available in the location referenced by value_ptr.
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Pthread system call example

• What happens when pthread_create() is called in a process?
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Library:

int pthread_create(…) {
   Do some work like a normal function
   Put syscall number into register
   Put args into registers
   Special trap instruction

Get return values from regs
  Do some more work like a normal function
};

Get args from regs
  Do the work to spawn the new thread
  Store return value in %eax

Kernel:

clone (56) syscall on Linux



Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all 

threads of the process.
• Scheduled independently of 

parent

• pthread_join()
• Waits for a particular thread to 

finish

• Can communicate by 
reading/writing (shared) 
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to 

finish

• Can communicate by setting up 
shared memory, pipes, 
reading/writing files, or using 
sockets (network).



Threads Example
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Threads Example

• Reads N from process 
arguments

• Creates N threads

• Each one prints a 
number, then 
increments it, then exits

• Main process waits for 
all of the threads to 
finish
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Threads Example
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Threads Example
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• Left: Every thread has its 
own stack

• Right: Every thread 
shares global memory



Break +
Check your understanding

1. How many threads are in this 
program?

2. Does the main thread join with 
the threads in the same order 
that they were created?

3. Do the threads exit in the 
same order they were 
created?

4. If we run the program again, 
could the result change?
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1. How many threads are in this 
program? Five

2. Does the main thread join with 
the threads in the same order 
that they were created? Yes

3. Do the threads exit in the 
same order they were 
created? Maybe??

4. If we run the program again, 
could the result change?
Possibly!
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Break +
Check your understanding
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• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline



It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?
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It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?  Take a vacation
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Moore’s Law – CPU transistors counts 

“Number of transistors in a chip 
doubles every 18 months”

How? Transistors are getting 
exponentially smaller!

How small? Today: <7nm!
(maybe smaller, kind of complicated)
< ½ the size of most viruses!
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Processors kept getting faster too
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Power is a major limiting factor on speed

• We could make processors go very fast
• But doing so uses more and more power

• More power means more heat generated
• And chips typically work up to around 100°C

• Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool
• But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed
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Denard Scaling

• Moore’s Law corollary: Denar Scaling
• As transistors get smaller, the power density stays the same

• Which is to say that the power-per-transistor decreases!

• Making the processor clock speed faster uses more power
• But the two balance out for roughly net even power

• So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:
• In two years, new hardware would run the existing software twice as fast

32



Then they stopped getting faster
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~2006: Leakage 
current becomes 
significant

Now smaller 
transistors doesn’t 
mean lower power



So… now what?

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better by 
waiting for clock speeds to increase.

How do we continue to get better computation performance?
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Exploit parallelism!
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Update: 2010-2021
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Still growing!

Stable

Stable

Small 
improvement

Still growing 
for servers



Key question: how do we use all these cores?

37



Break + Parallelism Analogy

• I want to peel 100 potatoes as fast as possible:

• I can learn to peel potatoes faster

OR

• I can get 99 friends to help me

• Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!
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Parallelism versus Concurrency Two processes A and B
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Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active
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• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline



Hardware sources of concurrency

• Instruction-level parallelism

• Task parallelism
• Multiple processes

• Multiple threads

• Interrupts
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Model of a processor
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But instructions don’t always have to be executed in order

movq  (%rdi), %rax
movq  (%rsi), %rdx
movq  %rdx, (%rdi)
movq  %rax, (%rsi)
addq  %rcx, %rbx

We can apply the multiprogramming approach of executing this 
addq while the movq is waiting on memory.
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Doesn’t have to go after the 
movq instructions because it 
uses different registers



Out-of-order processors

Fetch many 
instructions at 
once!

Read register file, 
handle data 
dependencies with 
register renaming

Reorder instructions 
to make best use of 
CPU Commit, or 

“write back” 
data to memory 
and regfile in 
the order the 
programmer 
expects

Generally: looks for independent 
instructions it can execute early



Out-of-order processors obey normal execution results

• Initial thoughts on out-of-order execution
•

• The processor could be executing my program in order it feels like?!!

• How do I possibly reason about anything?

• Answer: the processor promises to have the same results as if 
things were done in the normal order.
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CPU
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Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might 
mess something up for you.

• What will Thread 1 print?
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while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2



Multiple threads might rely on memory ordering

• The processor can’t account for multiple threads though

• If memory results are shared by two threads, the processor might 
mess something up for you.

• What will Thread 1 print? Could be 42. Could be 0.
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while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

This can be 
addressed with 
memory barriers
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• Threads

• Need for Parallelism

• Processor Concurrency
• Instruction-level parallelism

• Task parallelism

• Interrupts

• Concurrency Challenges

• Amdahl’s Law

Outline



Task parallelism use case

Run Chrome and Spotify simultaneously
• Each are separate programs
• Each has a different memory space
• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,
but hardware can make it actually simultaneous
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Multicore Systems (in pictures)
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Multicore Systems (in words)

• A computer system with at least 2 processor cores
• Each core has its own registers
• Each core executes independent instruction streams
• Cores share the same system memory

• But usually use different parts of it
• Communication possible through memory accesses

• Deliver high throughput for independent jobs via task-level 
parallelism
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Multithreading processors

Basic idea: Processor resources are expensive and should not be left 
idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while waiting for 

cache miss

• Cost of thread context switch must be much less than cache miss latency

• Switching threads is less expensive than processes because they share 
memory
• Cache is still valid

• Page Table for virtual memory doesn’t have to change

53



Memory

Bytes

Processor 

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

•  Two copies of RIP and Registers inside processor hardware

•  Looks like two processors to software
  (hardware thread 0, hardware thread 1)

•  Control logic decides which thread to execute an instruction
   from next (concurrent, but NOT parallel)
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Multithreading processor



Multithreading versus Multicore

• Multithreading => Better utilization
• ≈5% more hardware for ≈1.3x better performance?

• Gets to share ALUs, caches, memory controller

• Multicore => Duplicate cores
• ≈50% more hardware for ≈2x better performance?

• Share some caches (L2 cache, L3 cache), memory controller

• Modern processors might do both!
• Multiple cores with multiple threads per core

• Not all do though, some focus on better single-thread performance
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Multithreading, multicore processors

• Combine capabilities 
of both designs

• Run two processes 
each with two threads

• Or run one process 
with four threads
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Clearing up vocabulary

• Core: computation unit within the CPU
• ALU, Registers, etc.

• Capable of running one or more threads

• CPU (processor): the chip that goes in your computer
• Contains one or more cores

• Computers could have multiple CPU chips as well

• Sometimes people equate processors and cores, which is 
confusing
• I’ll definitely do it by mistake at some point if I haven’t already. Sorry!

57



My desktop computer
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4 total cores
Each capable of 2 threads

≈ 8 jobs at once



Quad core processor

• One thread per core

• 3-way superscalar pipeline
• L1 Cache

• 32 KiB 2-way set associative data cache
• 48 KiB 3-way set associative instruction cache
• Per core

• L2 Cache
• 512 KiB to 4 MiB (shared)

• RAM 1-4 GB

$35
Literally all computers 
are doing parallelism 
these days

Raspberry Pi 4
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Other modern multicore designs

• Heterogeneous 
multicore
• Not all cores are 

necessarily identical

• Enables scheduler to 
make complicated 
choices of performance 
or energy savings
• At the cost of a 

complicated scheduler…
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Break + Real-world Connection

• How many cores/threads does your processor support?
• Windows: Task Manager -> Performance -> CPU

• MacOS: About this Mac -> System Report -> Hardware

• Apple ARM M processors only do 1 thread per core

• Linux: In terminal: lscpu

• Android/iOS: You’ll need to google it
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Interrupts

• An event that the processor handles by running special OS handler 
code
• Timer expiration, Keyboard event, Network packet, etc.

• Necessary for asynchronous event handling

• Don’t wait around for the event, just handle it whenever it happens

• Very similar to Exceptions
• Might be synonyms, depending on the system

• A system call is a way to generate a software interrupt
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Differences from system calls

• When we performed a system call:
• We knew it was about to happen

• Set up our registers in advance

• Performed what looked sort of like a function call

• And we were always switching from process to kernel

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order 

execution, multiple cores and threads, and caches
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Interrupt Vector Table
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Table actually lives in 
memory somewhere, with 
function pointers for each 
vector number

Example from Tock for SAM4L chip (in Rust)



Interrupt Vector Table
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Table actually lives in 
memory somewhere, with 
function pointers for each 
vector number

Example from Tock for SAM4L chip (in Rust)



Interrupt handlers

• Interrupt context
• Running code in a special mode
• Pauses whatever was running previously (kernel or process) until finished

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire 

core jumped to handling this interrupt

• Handled by the operating system kernel
• Processes are interrupted, but otherwise not normally involved
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Why are interrupts important to concurrency?

• Interrupts are a case where the kernel could have a data race with 
itself!!
• Imagine being in the middle of an operation on a device

• When an interrupt comes in for that same device

• Data structures for the device could end up messed up

• Takeaway: concurrency isn’t just about processes and threads
• Many different software designs need to deal with it
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Back up to the OS perspective

• Modern operating systems must manage concurrency
• Both parallel operation and interleaving operations

• Concurrency is valuable
• Performance gains are the reason
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Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?
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Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?
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Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

95 s 5 s

Speedup Example
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95 s 5 s

Speedup from improvements
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Speedup with
Improvement

=

Execution time without 
improvement

Execution time with 
improvement

 

5 s -> 2.5 s: Speedup = 100/97.5  = 1.026

5 s -> 1 s:  Speedup = 100/96  = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053
 

The impact of a performance improvement is relative 
to the importance of the part being improved!



Speedup  =  

 

 F = Fraction of execution time speed up
 S = Scale of improvement

(1 - F)   +   F
SNot improved part Improved part

1

1
0.75 + 0.25

2

1
0.75 + 0.125

= = 1.14

Example: 2x improvement to 25% of the program

Equivalent to 
prior equationAmdahl’s Law
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Parallel speedup example Speedup with 
improvement

=  
1

1 − 𝐹 + (𝐹/𝑆)

76

• Consider an improvement which runs 20 times faster but is only 
usable 15% of the time

Speedup with 
improvement

=  
1

0.85 + (0.15/20) = 1.166

Speedup with 
improvement

=  
1

0.75 + (0.25/20) = 1.311

• What if it’s usable 25% of the time?

Nowhere near 
20x speedup!



Amdahl’s (heartbreaking) Law (in pictures)

• The amount of speedup that can be achieved through parallelism is 
limited by the non-parallel portion of your program!
• And every program has at least some non-parallel parts
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Amdahl’s (heartbreaking) Law (in words)

• Amdahl’s Law tells us that to achieve linear speedup with more 
processors:

• none of the original computation can be serial (non-parallelizable)

• To get a speedup of 90 from 100 processors, the percentage of 
the original program that could be scalar would have to be 0.1% 
or less

  Speedup  =  1/(.001 + .999/100)  =  90.99
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Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?
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Speedup with 
improvement

=  
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%



Break + Question

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?
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Speedup with 
improvement

=  
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Speedup = 1 / [ (1 - F) + (F/S) ]

2 = 1 / [ (1 - 0.5) + (0.5/S)]

S = 0.5 / ((1/2) – 0.5) = ∞

The square root would need to decrease 
to nothing before you got 2x speedup
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