Lecture 03: Concurrency
Sources and Challenges

CS343 — Operating Systems
Branden Ghena — Fall 2024

Some slides borrowed from:
Stephen Tarzia (Northwestern), and UC Berkeley CS61C and CS162

Northwestern

Administrivia

 Getting Started Lab
 Let us know if you're having problems with this
 Should not take long to complete
« 63/123 of you have finished already

» Office Hours
* Are now running!
* 19 hours a week (M-F) at various times
4 of those are online, the rest in-person

Today’s Goals

« Understand threads as a software design mechanism.

 Describe where and why concurrency and parallelism are involved
in computing.

» Discuss multiple sources of concurrency on computing systems

 Be disappointed by performance limits on concurrency.

Outline
 Threads

* Need for Parallelism

 Processor Concurrency
« Instruction-level parallelism
 Task parallelism
* Interrupts

» Concurrency Challenges
« Amdahl’s Law

Software Tasks: Threads

Unit of execution within a process

Processes discussed so far have a single thread

* They “have a single thread of execution”
* They “are single-threaded”

But a single process could have multiple threads

Processes and threads

* A process could have multiple threads
« Each with its own registers and stack

* Code and
Data

L

heap

static data

‘ code \
~ Dhex

[« Registers

 Instruction Pointep

[%rax [%eax | [%r8 [%r8d | i+
[%rbx [%ebx |[%r9 [%rod | Condition Codes
[%rcx [%ecx |[%rle [%r10d]
[%2rdx [%edx | Béril T%riid]
[%rsi [esi | [%r12 [%ri2d] « Stack
[%rdi [%edi |Peri3 [erizd 1] S
[%rsp [%esp |[(%rl14 Feridd | —Stfc—
[%rbp [%ebp | [%5r15 %risd |
\ y
[« Registers : -
g « Instruction Pointer
[%rax [eax | [%r8 [%r8d | . it
b e [oro —— Condition Codes
[%rcx [%ecx |%r1e [%ried]
(%rdx [%edx 11%r1l [%r11d |
[%rsi [%esi | [%r12 Triza] * Stack
[%rdi [%edi |[%r13 Gerizd | S
[%rsp [%esp |[%r14 [eriad | |: _Stfc"_ :I
[%rbp [%ebp | [%r15 [ri5d |

Threads have separate:
 Instruction Pointer
» Registers
« Stack Memory
« Condition Codes

Threads share:
« Code
* Global variables

Process address space with threads

Stack (T1) < Thread 1
Thread 2 > Stack (T2)
Stack (T3) <— Thread 3
Data Heap
Segment Static Data
<~— %RIP (T3)
%RIP (T2) > Code
< %RIP (T1)

Thread use case: web browser

Let’s say you're implementing a web browser:

You want a tab for each web page you open:
* The same code loads each website (shared code section)

* The same global settings are shared by each tab (shared data section)

* Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

Thread use case: user interfaces

 Even if there is only a single processor core, threads are useful

» Single-threaded User Interface
» While processing actions, the UI is frozen

main() A
while(true) {

check for UI interactions();
process UI actions(); // UI freezes while processing

Thread use case: web server

« Example: Web server
« Receives multiple simultaneous requests
« Reads web pages from disk to satisfy each request

10

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1
Request 2 arrives

Disk I/O for request 1 finishes
Server responds to request 1
Server reads in request 2

time

 Easy to program, but slow
« Can't overlap disk requests with computation
« Can't overlap either with network sends and receives

11

Web server option 1: event-driven model

e Issue I/0Os, but don't wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives _
Server reads in request 2 time
Server starts disk I/O for request 2
Disk I/O for request 1 completes v
Server responds to request 1

* Fast, but hard to program
« Must remember which requests are in flight and which I/O goes where
* Lots of extra state

12

Web server option 3: multi-threaded web server

* One thread per request. Thread handles only that request.

Main Thread Thread 1
Request 1 arrives
Create thread

Read in request 1
Start disk I/O
Request 2 arrives
Create thread

Disk I/O finishes

Respond to request 1

Exit

Thread 2

Read in request 2
Start disk I/O

 Easy to program (maybe), and fast!
 State is stored in the stacks of each thread and the thread scheduler

« Simple to program if they are independent...

time

13

How are threads implemented?

» Two major possibilities
« User Threads

« Kernel Threads

* (There are other options that mix these)

14

Models for thread libraries: User Threads

« Thread scheduling is implemented within the process
« OS only knows about the process, not the threads

° UPsides Processes % g g
« Works on any hardware or OS
- Performance is better when T_hread
creating and switching LRG0

 Downsides 0S

« A system call in any thread Kernel
blocks all threads

15

Models for thread libraries: Kernel Threads

» Thread scheduling is implemented by the operating system
« OS manages the threads within each process

» Upsides
« Other threads can continue while Processes
one blocks on I/O

* No additional scheduler

 Downsides

 Higher overhead 05
Kernel Scheduler

e This is what we'll focus on in CS343

POSIX Threads Library: pthreads

» https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread _create(pthread t *thread, const pthread _attr_t *attr,
void *(*start routine)(void*), void *arg);

 thread is created executing start_routine with arg as its sole argument.
 return is implicit call to pthread_exit

void pthread_exit(void *value ptr);
 terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread t thread, void **value ptr);
« suspends execution of the calling thread until the target fAread terminates.

* On return with a non-NULL value ptr the value passed to pthread exit() by the
terminating thread is made available in the location referenced by value ptr.

17

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

» What happens when pthread_create() is called in a process?

Library:
int pthread create(..) {

s

Do some work like a normal function

Put syscall number into register < clone (56) syscall on Linux
Put args into registers

Special trap instruction

Kernel:
Get args from regs
Do the work to spawn the new thread
Store return value in %eax

Get return values from regs
Do some more work like a normal function

18

Threads versus Processes

Threads

* pthread _create()

* Creates a thread

« Shares all memory with all
threads of the process.

« Scheduled independently of
parent
* pthread_join()
« Waits for a particular thread to
finish
« Can communicate by

reading/writing (shared)
global variables.

Processes

* fork()

 Creates a single-threaded process
« Copies all memory from parent
« Can be quick using copy-on-write
« Scheduled independently of parent
e waitpid()
« Waits for a particular child process to
finish
 Can communicate by setting up
shared memory, pipes,

reading/writing files, or using
sockets (network).

_IincLuce =s5tdio.h=
#include =stdlib.h=>

Threads Example #include =pthread.h=

#include <string.h>
int common = 162;

void *threadfun{void *threadid)
{
Llong tid = {long)threadid;
printf{"Thread #%1lx stack: %1lx common: %1lx (%d)\n", tid,
{unsigned long) &tid, (unsigned long) &common, common++);
pthread_exit(MULL]);
}

int maim {int argc, char *argv[])
{
Long t;
int nthreads = 2;
if (argc = 1) {
nthreads = atoi{argv[1]);
}
pthread_t #threads = malloc({nthreads*sizeof(pthread_t));
printf{"Main stack: %1lx, common: %Llx (%d)\n",
{unsigned leng) &t,{unsigned long) &Scommen, common);
for{t=@; tenthreads; t++){
int rc = pthread_create(&threads[t], NULL, threadfun, (void *)t);
if (rec)d{
printf{"ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}

for(t=8; tenthreads; t++){
pthread_join(threads [t], NULL);
}
pthread_exit(MULL]); f* last thimng in the main thread =/
}

]ir clude =stdio.h=

Threads Example R T

#include <string.h>

int common = 1b62;

Reads N from proceSS -J-I:'t-ic *threadfun{void *threadid)

arguments long tid = (long)threadid;

printf{"Thread #%1lx stack: %1lx common: %1lx (%d)\n", tid,

{unsigned long) &tid, (unsigned long) &common, common++);

Creates N threads pthread_exit(NULL);

° EaCh One prints a ?-z: main (int argc, char #argv[])
number] then il'l-'. |".I.' reads

if (argc = 1) {

|nCI‘ementS It, then eXItS nthreads = atoilargv[1]);

pthread_t #threads = malloc({nthreads*sizeof(pthread_t));

P Main process Waits for printf{"H:_i:i_..l.‘. 5_t_a-.:|:c:l_“-:1.x -:c:-mjfl.‘.:_‘%flx I:f:dhln S
for{t=08; tenthreads; t++){
a” Of the threads tO int rc = pthread create(&threads[t], NULL, threadfun, (void *)t);
finiSh printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

for(t=8; tenthreads; t++){

pthread_join(threads [t], NULL);

pthread_exit(MULL]); f* last thimng in the main thread =/
} 21

Threads Example

{base) CullerMacl9:code®4 culler$./pthread 4

Main stack: 7ffee2c6b6bB, common: 1@8cfo5048 (162)
Thread #1 stack: 70000d83bef8 common: 1@8cf950848 (162)
Thread #3 stack: 70080d941ef8 common: 1@8cf250848 (164)
Thread #2 stack: 70000dBbeef8 common: 1@8cf950848 (165)
Thread #8 stack: 70088dTbBefB cnmmEn: 18cf950848 (163)

= = = = =

_IiFCLLEE
#include
#include
#include

=stdio. h=

<stdlib. h>
zpthread. h=
<string.h=
int

common = 162;

void sthreadfun{void *threadid)

{
Llong tid = {long)threadid;
printf{"Thread #%1lx stack: %1lx common: %1lx (%d)\n", tid,
{unsigned long) &tid, (unsigned long) &common, common++);
pthread_exit(MULL]);
}
int maim {int argc, char *argv[])
{
Long t;
int nthreads = 2;
it (argc = 1) {
nthreads = atoi{argv[1]);
}
pthread_t #threads = malloc({nthreads*sizeof(pthread_t));
printf{"Main stack: %1lx, common: %Llx (%d)\n",
{unsigned leng) &t,{unsigned long) &Scommen, common);
for{t=@; tenthreads; t++){
int rc = pthread_create(&threads[t], NULL, threadfun, (void =*)t);
if {rc){
printf{"ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
for(t=8; tenthreads; t++){
pthread_join(threads [t], NULL);
}
pthread_exit(MULL]); f* last thimng in the main thread =/
}

22

Threads Example

{base) CullerMacl9: cndeﬂ4 cullers fpthread 4

Main stack: Tffe %)
Thread #1 stack:) 70088d83befE lﬂcf95343 {162)
Thread #3 stack:)| 78888d341efid 18cfo95848 (164)
Thread #2 stack:) 70088d8beeTB 18cf950481 (165)
Thread #0 5tack: TooRRdThBeTE 18cf950848) (163)

« Left: Every thread has its
own stack

 Right: Every thread
shares global memory

=stdio. h=

<stdlib. h>
zpthread. h=
<string.h=

_IiFCLLEE
#include
#include
#include
int

common = 162;

{
Llong tid = {long)threadid;
printf{"Thread #%1lx stack: %1lx common:
{unsigned long) &tid, (unsigned
pthread_exit(MULL]);

%lx (%d)\n", tid,

int maim {int argc, char *argv[])
Long t;
int nthreads = 2;
if (argc = 1) {

nthreads = atoi{argv[1]);
}
pthread_t #threads = malloc({nthreads*sizeof(pthread_t));
printf{"Main stack: %1lx, common: %Llx (%d)\n",

{unsigned leng) &t,{unsigned long) &Scommen, common);

for{t=@; tenthreads; t++){

int rc = pthread_create(&threads[t], NULL, threadfun,
it (rcid
printf{"ERROR; return code from pthread_create() is %d\n",
exit(-1);
}
}
for(t=8; tenthreads; t++){
pthread_join(threads [t], NULL);
}

pthread_exit(MULL]); f+ last thing in the main thread

long) &common, common++);

(void *}t);

rc);

*/

23

Break +
Check your understanding

{base) CullerMacl9:code®4 culler$./pthread 4

Main stack: 7ffee2c6b6bB, common: 1@8cfo5048 (162)
Thread #1 stack: 70000d83bef8 common: 1@8cf950848 (162)
Thread #3 stack: 70080d941ef8 common: 1@8cf250848 (164)
Thread #2 stack: 70000dBbeef8 common: 1@8cf950848 (165)
Thread #@ stack: 70800d7bBef8 common: 1@8cf950848 (163)

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
Created?

4. If we run the program again,
could the result change:

Binclude =stdio.h=
#include =stdlib.h=
#include =pthread.h>
#include <string.h>
int common = 1b62;

void *threadfun{void *threadid)
{
Llong tid = {long)threadid;
printf{"Thread #%1lx stack: %1lx common: %1lx (%d)\n", tid,
{unsigned long) &tid, (unsigned long) &common, common++);
pthread_exit(MULL]);

}
int maim {int argc, char *argv[])
{

Long t;

int nthreads = 2;

it (argc = 1) {

nthreads = atoi{argv[1]);
}

pthread_t #threads = malloc({nthreads*sizeof(pthread_t));
printf{"Main stack: %1lx, common: %Llx (%d)\n",
{unsigned leng) &t,{unsigned long) &Scommen, common);
for(t=0; tenthreads; t++){
int rc = pthread_create(&threads[t], NULL, threadfun,
if {rc){
printf("ERROR;
exit(-1);
}
}

(void *}t);

return code from pthread_create() is %dwn", rc);

for{(t=8; tenthreads; t++){
pthread_join(threads [t], NULL);

}
pthread_exit(NULL);

}

S* last thing in the main thread =/

Break +
Check your understanding

{base) CullerMacl9:code®4 culler$./pthread 4

Main stack: 7ffee2c6b6bB, common: 1@8cfo5048 (162)
Thread #1 stack: 70000d83bef8 common: 1@8cf950848 (162)
Thread #3 stack: 70080d941ef8 common: 1@8cf250848 (164)
Thread #2 stack: 70000dBbeef8 common: 1@8cf950848 (165)
Thread #@ stack: 70800d7bBef8 common: 1@8cf950848 (163)

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
could_the result change:
Possibly!

clude =stdio. h>

clude =stdlib. h=>
clude =pthread. h>
Cclude <string.h=

L D e O e B
P e

int common = 1b62;

void *threadfun{void *threadid)
{
Llong tid = {long)threadid;
printf{"Thread #%1lx stack: %lx
{unsigned long) &tid, (unsigned
pthread_exit(MULL]);

common: %lx (%d)\mn", tid,
long) &common, common++);

}
int main (int argc, char #%argv[])
{
Long t;
int nthreads = 2;
it (argc = 1) {
nthreads = atoi{argv[1]);
}
pthread_t #threads = malloc({nthreads*sizeof(pthread_t));
printf{"Main stack: %1lx, common: %Llx (%d)\n",
{unsigned leng) &t,{unsigned long) &Scommen, common);

for(t=0; tenthreads; t++){
int rc = pthread_create(&threads[t], NULL, threadfun,
it (rcid
printf("ERROR;
exit(-1);
}
}

(void *}t);

return code from pthread_create() is %dwn", rc);

for{(t=8; tenthreads; t++){
pthread_join(threads [t], NULL);

}
pthread_exit(NULL);

}

S* last thing in the main thread =/

25

Outline
* Threads

 Need for Parallelism

 Processor Concurrency
« Instruction-level parallelism
 Task parallelism
* Interrupts

 Concurrency Challenges
« Amdahl’s Law

It's the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?

27

It's the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do? Take a vacation

28

Moore’s Law — CPU transistors counts

Transistor count

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000
10,000 -,
5000 ° ¢ 8
o Yo
°
1,000
A

o
C \0\

\
oo D

Y o° ot o' Qg
N NN

Fs
O) b
\l \I

v

' A
b
. Year in which the microchip w

PLAVIPN v
RO

v Rz

as first introduced

o
~
Q° A
v

“Number of transistors in a chip
doubles every 18 months”

How? Transistors are getting
exponentially smaller!

How small? Today: <7nm!

(maybe smaller, kind of complicated)
< V4> the size of most viruses!

Hannah Ritchie and Max Roser 29

Processors kept getting faster too

- ; " ey : . ; - (MHz
103 s 437 &3 ,.x() ________
o f Typical Power
107, A (Watts)
10 b 4 R R e S S I s s B B L S T e s N O P S S I U.I:.Cores

AMD Phenom (4 cores)

Intel | Tran5|st0r*
Pentlum4 § (Thousands)

..

e f Parallel App
S § " Performance

..........

....................................

- Frequency

1975 1980 1985 1990 1995 2000 2005

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olu

30

Power is @ major limiting factor on speed

« We could make processors go very fast
 But doing so uses more and more power

» More power means more heat generated
« And chips typically work up to around 100°C
 Hotter than that and things stop working

« We add heat sinks and fans and water coolers to keep chips cool
 But it's hard to remove heat quickly enough from chips

» S0, power consumption ends up limiting processor speed

31

Denard Scaling

« Moore’s Law corollary: Denar Scaling
* As transistors get smaller, the power density stays the same
« Which is to say that the power-per-transistor decreases!

« Making the processor clock speed faster uses more power
 But the two balance out for roughly net even power
« So not only do we get more transistors, but chip speed can be /astertoo

« From our Excel example:
 In two years, new hardware would run the existing software twice as fast

32

Then they stopped getting faster

‘ AMD Phenom (4 cores)

: Trénsistors;
/.. (Thousancs)

Paﬁallel App
7 Performance

. Frequency
 (MHz)

Ty;ﬁical Power
S (Watts)

Nui‘nber
“uf-(;ores'"

1975 1980 1985 1990 1995 2000 2005 2010 2015

ially collected by M. Horowitz, F. te, O. ¢ ham, K. Olukotun, L. Hammond

~2006: Leakage
current becomes
significant

Now smaller

transistors doesn’t
mean lower power

33

So... now what?

In summary:

« Making transistors smaller doesn’t make them lower power,

* so if we were to make them faster, they would take more power,
» which will eventually lead to our processors melting...

« and because of that, we can’t refiably make performance better by
walting for clock speeds to increase.

How do we continue to get better computation performance?

34

Exploit parallelism!

AMD Phenom (4 cores)

Intel :
Pentlum4 '. |

Tra{nsisto rs
(Thousands)

. Parallel App
7 Performance

...

Frequency
(MHz)

..

j Typical Power
e (Wtts)

. Nuinber

1975 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

35

Update: 2010-2021

50 Years of Microprocessor Trend Data

! ' ! I G
ok o Lt 4l
g g g a4 &L Transistors il o
P S S - doa t | (thousands) Il growing:
| Y 53
5 | ; . A aasa Single-Thread
10 ; “ﬂg ._%.."" ***1 Performance ; Small
104 | sk o 00d}* _I(SpecINTx 10°) improvement
ol - S‘A‘zﬁ'ﬂ"*"“‘ gaTw Froquency (MH2) Stable
! [J
o, A Y L . . ¥ v|Typ|caI Power
102 - """""""" 4 ...e.‘,-vv;f"v“"xf}: ‘i x (WattS) S able
1 . m 2TV YT et vl Number of _ _
0 r o ow B A B sante **|Logical Cores Still growing
100 2" v i . VY i SO for servers
--s--q ----------- * o GO ME SN MNIB S [8
| | i S R
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

36

Key question: how do we use all these cores?

37

Break + Parallelism Analogy

I want to peel 100 potatoes as fast as possible:

I can learn to peel potatoes faster
OR

I can get 99 friends to help me

» Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!

38

Parallelism versus Concurrency Two processes A and B

B

time

—_—
Serial execution
time |
Parallel execution A
B
time time

Concurrent execution OR llllllllll
B

39

Parallelism versus Concurrency

* Parallelism
 Two things happen strictly simultaneously

« Concurrency
* More general term
 Two things happen in the same time window
« Could be simultaneous, could be interleaved

« Concurrent execution occurs whenever two processes are both active

time time .

e —
-« HINNEENRNR T
B

40

Outline
* Threads

* Need for Parallelism

* Processor Concurrency
« Instruction-level parallelism
 Task parallelism
* Interrupts

 Concurrency Challenges
« Amdahl’s Law

Hardware sources of concurrency

» Instruction-level parallelism

» Task parallelism
« Multiple processes
« Multiple threads

 Interrupts

42

Model of a processor

Instructions,
Registers,
Memory

CPU

Updated
Registers
and
Memory

Writeback

43

But instructions don't always have to be executed in order

movqg (%rdi), %rax
movg (%rsi), %rdx
movq %rdx, (%rdi)
o o 1
movq %rax, (/°PS 1) Doesn’t have to go after the

addc %I"CX, %rbx <« movq instructions because it
uses different registers

We can apply the multiprogramming approach of executing this
addq while the movq is waiting on memory.

44

Out-of-order processors

Reorder instructions

to make best use of .
CPU Commit, or

[Branch | l “write back”
!:EtCh many predictor + Deccéde _ e e .t data to memory
f H an 1 eoraer purier ommi . .
instructions at - =221 rename — and regfile in
once! L_enare | > Integerqueve |- ALU the order the
~ Floeg:]ngdgoint .__ ALU programmer
. . expects
Read reQISter flle, e~ |_oad/store queue ln-» ALU
handle data . '
. . L Physical
dependencies with register file
register renaming Generally: looks for independent

instructions it can execute early

Out-of-order processors obey normal execution results

« Initial thoughts on out-of-order execution
-
« The processor could be executing my program in order it feels like?!!
« How do I possibly reason about anything?

« Answer: the processor promises to have the same results as if
things were done in the normal order.

Updated
Registers
and
Memory

Instructions,
Registers,
Memory

46

Multiple threads might rely on memory ordering

* The processor can't account for multiple threads though

 If memory results are shared by two threads, the processor might
mess something up for you.

f=0;

X =0;

// split into threads
Thread 1 / N\ Thread 2
while (f == 0); X =42;
printf("%d\n", x); f=1,;

« What will Thread 1 print?

47

Multiple threads might rely on memory ordering

* The processor can't account for multiple threads though

 If memory results are shared by two threads, the processor might
mess something up for you.

f=0;

X =0;

// split into threads
Thread 1 / N\ Thread 2
while (f == 0); X =42;
printf("%d\n", x); f=1,;

This can be
addressed with

- What will Thread 1 print? Could be 42. Could be 0. ™memory barriers

48

Outline
* Threads

* Need for Parallelism

* Processor Concurrency
« Instruction-level parallelism
« Task parallelism
* Interrupts

 Concurrency Challenges
« Amdahl’s Law

Task parallelism use case

Run Chrome and Spotify simultaneously

Eac
Eac
Eac

N are separate programs
n has a different memory space

N Can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,

but hardware can make it actually simultaneous

50

Multicore Systems (in pictures)

Core O Memory
Processor O
Control Memor
v yY y
Accesses

Bytes

Datapath
| RIP | '
E Registers ?

Core 1
Control Processor 1
v A Memory

Datapath Accesses
RIP /
Registers

Actually parallel!

Multicore Systems (in words)

» A computer system with at least 2 processor cores

« Each core has its own registers
* Each core executes independent instruction streams
* Cores share the same system memory
* But usually use different parts of it
* Communication possible through memory accesses

* Deliver high throughput for independent jobs via task-level
parallelism

52

Multithreading processors

Basic idea: Processor resources are expensive and should not be left
idle

Long memory latency to memory on cache miss?

* Hardware switches threads to bring in other useful work while waiting for
cache miss

» Cost of thread context switch must be much less than cache miss latency

 Switching threads is less expensive than processes because they share
memory
 Cache is still valid
« Page Table for virtual memory doesn’t have to change

53

Multithreading processor

Processor
Control
\ 4 A
Datapath
I RIP O | | RIP 1 |
= Registers 0 3 E Registers 1 3

» Two copies of RIP and Registers inside processor hardware

 Looks like two processors to software

(hardware thread 0, hardware thread 1)

 Control logic decides which thread to execute an instruction

from next (concurrent, but NOT parallel)

Memory

Bytes

Multithreading versus Multicore

« Multithreading => Better utilization
« 5% more hardware for =1.3x better performance?
« Gets to share ALUs, caches, memory controller

 Multicore => Duplicate cores
« 250% more hardware for =2x better performance?
» Share some caches (L2 cache, L3 cache), memory controller

 Modern
« Multip
* Not al

processors might do both!
e cores with multiple threads per core

do though, some focus on better single-thread performance

55

Multithreading,

multicore processors

Processor

Control

h 4 A
Datapath
| RIP O] | RIP 1]
E Registers 0 E Registers 1 E

Processor O
Memory
Accesses

-

Processor

Control

Processor 1

4 A
Datapath
| RIP O] | RIP 1]
E Registers 0 E E Registers 1 E

Memory

Accesses

Memory

Bytes

» Combine capabilities
of both designs

* Run two processes
each with two threads

* Or run one process
with four threads

56

Clearing up vocabulary

 Core: computation unit within the CPU
« ALU, Registers, etc.
« Capable of running one or more threads

» CPU (processor): the chip that goes in your computer
« Contains one or more cores
« Computers could have multiple CPU chips as well

« Sometimes people equate processors and cores, which is
confusing

« I'll definitely do it by mistake at some point if I haven't already. Sorry!

57

CPU

% Utilization over 60 seconds

My desktop computer

Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

Utilization Speed Base speed: 3.60 GHz

2% 4.08 GHz o '

Processes Threads Handles Lj;; brocessors: 8 < 4 tOtal cores

236 2909 111153 virwalization: Enabled Each Capable Of 2 threads
Ub time L1 cache: 256 KB

12:02:28:40 Cee sows

= 8 jobs at once

Raspberry Pi 4

Quad core processor
* One thread per core

3-way superscalar pipeline
L1 Cache

* 32 KiB 2-way set associative data cache
* 48 KiB 3-way set associative instruction cache

* Per core

L2 Cache
e 512 KiB to 4 MiB (shared)

RAM 1-4 GB

S35

Literally all computers
are doing parallelism
these days

59

Other modern multicore designs

» Heterogeneous
multicore

* Not all cores are
necessarily identical

« Enables scheduler to
make complicated
choices of performance
or energy savings

At the cost of a
complicated scheduler...

4 high-performance cores
Ultrawide microarchitecture

192KB instruction cache

128KB data cache

Shared 16MB cache

4 high-efficiency cores
Wide microarchitecture
128KB instruction cache
64KB data cache

Shared 4MB cache

s

— I
— I
— T
— I

—L I
—{ I
—L I

I
I

T

LI

[T

TN

(1T

1
I

-I+H~+H+|:

O HEFH | HEE

1

60

Break + Real-world Connection

* How many cores/threads does your processor support?
« Windows: Task Manager -> Performance -> CPU

« MacOS: About this Mac -> System Report -> Hardware
« Apple ARM M processors only do 1 thread per core

e Linux: In terminal: Iscpu

» Android/iOS: You'll need to google it

61

Outline
* Threads

* Need for Parallelism

* Processor Concurrency
« Instruction-level parallelism
 Task parallelism
« Interrupts

 Concurrency Challenges
« Amdahl’s Law

Interrupts

* An event that the processor handles by running special OS handler
code
 Timer expiration, Keyboard event, Network packet, etc.
« Necessary for asynchronous event handling
« Don't wait around for the event, just handle it whenever it happens

* Very similar to Exceptions
« Might be synonyms, depending on the system

A system call is a way to generate a software interrupt

63

Differences from system calls

« When we performed a system call:
« We knew it was about to happen
 Set up our registers in advance
 Performed what looked sort of like a function call
« And we were always switching from process to kernel

* Interrupts can happen whenever:

 This can get extremely complicated on modern systems with out-of-order
execution, multiple cores and threads, and caches

64

Interrupt Vector Table

[Table 6-1. Exceptions and Interrupts

Vector No. | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpomnt INT 3 instruction.
R} #OF Overfiow INTO instruction.
5 #BR BOUND Range Exceaded BOUND instruction.
6 |#UD Invalid Opcode {UnDefined Opcode) UD2 instruction or reserved opcode.!
7 H#NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction,
8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.
9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.
10 #1S Invalid TSS Task switch or TSS access,
11 #NP Segment Not Present Loading segment reqisters of accessing system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #0P General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 |#MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction,
17 |#AC Alignment Check Any data reference in memory.>
18 #MC Machine Check Error codes (if any) and source are model dependent?
19 [#xM SIMD Fioating-Point Exception SIMD Floating-Point Instruction®
20-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.

SR~

Table actually lives in

memory somewhere, with
function pointers for each
vector number

match interrupt {
nvic::ASTALARM =» ast::AST.handle_interrupt(),

nvic::
nvic::
nvic::

nvic:

nvic::
nvic:
nvic::
nvic::
nvic::
nvic:
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic:
nvic:
nvic::

nvic::

USART® =>
USARTL =>
USARTZ =3

(USARTS =>

PDCAB =3

(PDCAL =>

PDCAZ =3
PDCAS =3
PDCAS =3

1PDCAS =>

PDCAR =>
PDCAT =>
PDCAS =3
PDCAD =3
PDCALE =3
PDCALL =>

:PDCALZ =>
:PDCALZ =3

PDCALS =3
PDCALS =>

usart::
usart::
usart::

usart:

dma: : DMA_CHANNELS[@].
dma : : DMA_CHAMNELS[1].
dma : : DMA_CHAMNELS[2].
dma: : DMA_CHANMELS[3].
dma: : DMA_CHANNELS[4].
dma: : DMA_CHAMNELS[S].
dma : : DMA_CHANNELS[6].
dma : : DMA_CHAMNELS[7].
dma: : DMA_CHAMNELS[S].
dma: : DMA_CHAMNELS[9].
:DMA_CHAMNELS[18] . handle_interrupt(),
:DMA_CHANNELS[11].handle_interrupti(),
:DMA_CHANNELS[12].handle_interrupti(),
:DMA_CHAMNELS[13] . handle_interrupt(),
:DMA_CHAMNELS[14] . handle_interrupt(),
:DMA_CHANNELS[15] . handle_interrupt(),

dma:
dma :
dma :
dma:
dma:

dma:

USARTA. handle_interrupt(),
USART1.handle_interrupt()},
USART2.handle_interrupt(),
(USART3 . handle_interrupt(]),

handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),
handle_interrupt(),

Example from Tock for SAM4L chip (in Rust)

65

Interrupt Vector Table

[Table 6-1. Exceptions and Interrupts

Vector No. | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpomnt INT 3 instruction.
R} #OF Overfiow INTO instruction.
5 #BR BOUND Range Excesded BOUND instruction.
6 |#UD Invalid Opcode {UnDefined Opcode) UD2 instruction or reserved opcode.!
7 H#NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction,
8 #DF Double Fault Any instruction that can generate an exception, an NML, or
an INTR.
9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.?
10 #1S Invalid TSS Task switch or TSS access,
11 #NP Segment Not Present Loading segment registers of accessing system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #0oP General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction,
17 #AC Alignment Check Any data reference in memory.3
18 [#MC Machine Check Error codes (if any) and source are model dependent*
19 [#xM SIMD Fioating-Point Exception SIMD Floating-Point Instruction®
20-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.

Table actually lives in

memory somewhere, with
function pointers for each
vector number

match interrupt {
nvic::ASTALARM =» ast::AST.handle_interrupt(),

nvic::
nvic::
nvic::

nvic::

nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::
nvic::

nvic::

USART® =>
USARTL =>
USARTZ =3
USART3 =>

PDCAB =3
FDCAL =>
FDCAZ =>
PDCA3 =>
PDCAS =3
PDCAS =3
FDCAG =>
FDCA7 =>
PDCAS =>
PDCAY =3
PDCA1A =3
FDCALL =>
FDCALZ =>
PDCAL3 =3
PDCAL4 =3
PDCALS =3

usart::
usart::
usart::

usart:

dma: : DMA_CHANMELS[@].

dma: :DMA_CHANMELS[1]

dma: : DMA_CHANMELS[S]

dma: : DMA_CHAMNELS[9]
dma:
dma :
dma :
dma:
dma:

dma:

USARTA. handle_interrupt(),
USART1.handle_interrupt(},
USART2.handle_interrupt()},
(USART3 . handle_interrupt(),

handle_interrupt(),

.handle_interrupt(),
dma: :DMA_CHAMMELS[27.
dma: :DMA_CHAMMELS[3].
dma: : DMA_CHAMMELS[4].

handle_interrupt(),
handle_interrupt(),
handle_interrupt(),

.handle_interrupt(),
dma : : DMA_CHANNELS[6].
dma : : DMA_CHAMNELS[7].
dma: : DMA_CHAMNELS[S].

handle_interrupt(),
handle_interrupt(),
handle_interrupt(),

.handle_interrupt(),

:DMA_CHAMNELS[18] . handle_interrupt(),
:DMA_CHANNELS[11].handle_interrupti(),
:DMA_CHANNELS[12].handle_interrupti(),
:DMA_CHAMNELS[13] . handle_interrupt(),
:DMA_CHAMNELS[14] . handle_interrupt(),
:DMA_CHANNELS[15] . handle_interrupt(),

Example from Tock for SAM4L chip (in Rust)

66

Interrupt handlers

* Interrupt context
* Running code in a special mode
 Pauses whatever was running previously (kernel or process) until finished

« Handler code
« Execute some guick processing to deal with the interrupt
 Return so the hardware can bring us back to our normal operation

« Cannot pause to wait for something else to finish first because the entire
core jumped to handling this interrupt

« Handled by the operating system kernel
* Processes are interrupted, but otherwise not normally involved

67

Why are interrupts important to concurrency?

* Interrupts are a case where the kernel could have a data race with
itself!!
« Imagine being in the middle of an operation on a device
* When an interrupt comes in for that same device
 Data structures for the device could end up messed up

« Takeaway: concurrency isn‘t just about processes and threads
« Many different software designs need to deal with it

68

Back up to the OS perspective

» Modern operating systems must manage concurrency
 Both parallel operation and interleaving operations

 Concurrency is valuable
« Performance gains are the reason

69

Outline
* Threads

* Need for Parallelism

 Processor Concurrency
« Instruction-level parallelism
 Task parallelism
* Interrupts

« Concurrency Challenges
- Amdahl’s Law

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside...?

1. How much speedup can we get from it?
2. How hard is it to write parallel programs?

71

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside...?

1. How much speedup can we get from it?
2. How hard is it to write parallel programs?

72

Speedup Example

-

Imagine a program that takes 100 seconds to run

* 95 seconds in the blue part
« 5 seconds in the green part

73

Speedup from improvements

Execution time without

- improvement
95 - Speedup with _ P
Improvement Execution time with
improvement

5s->2.5s: Speedup = 100/97.5 = 1.026

5s->1s: Speedup = 100/96 = 1.042
5s->0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

74

Equivalent to

Amdahl’s Law / prior equation
1
Speedup =
(1-F) + F
Not improved part ~ S — Improved part

F = Fraction of execution time speed up

S = Scale of improvement

Example: 2x improvement to 25% of the program

1

0.75+0.25
2

~ 0.75+0.125

= 1.14

Parallel speedup example Speedup with 1

improvement (1 —F) + (F/S)

« Consider an improvement which runs 20 times faster but is only
usable 15% of the time

Speedup with 1
improvement ~ (0.85) + (0.15/20) = 1.166

N\

Nowhere near
|
« What if it's usable 25% of the time? 20x speedup!

Speedup with 1 /

improvement ~ (0.75) + (0.25,20) =1.311

76

Amdahl’s (heartbreaking) Law (in pictures)

 The amount of speedup that can be achieved through parallelism is

limited by the non-parallel portion of your program!
* And every program has at least some non-parallel parts

Time

Parallel
portion

Serial
portion

1 2 3 4 5
Number of Processors

Speedup

20.00

18.00

16.00

/ Parallel Portion
50%

14.00

— 75%
S0%

— S95%

12.00

10.00

8.00

6.00

4.00

2.00

0.00

N\

rrrrrrr

] T — ! =+ 53] m w © m

- m e N 8 P & o 8 o m o
— o =t o o [L1

Number of Processors

77

Amdahl’s (heartbreaking) Law (in words)

- Amdahl’s Law tells us that to achieve linear speedup with more
Processors:

« none of the original computation can be serial (non-parallelizable)

- To get a speedup of 90 from 100 processors, the percentage of
theI original program that could be scalar would have to be 0.1%
or less

Speedup = 1/(.001 + .999/100) = 90.99

78

improvement (1 —F) + (F/S)

50% 50%

« Suppose a program spends 50% of its time in @ square root routine.
« How much must you speed up square root to make the program run 2x faster?

(A)
(B) 20
(C)
(D)

79

improvement (1 —F) + (F/S)

50% 50%

« Suppose a program spends 50% of its time in @ square root routine.
« How much must you speed up square root to make the program run 2x faster?

Speedup=1/[(1-F)+(F/S)]
2=1/[(1-0.5)+(0.5/S)]

(A)

8) 20 S=0.5/((1/2)-0.5) =

(€ The square root would need to decrease
(D) | to nothing before you got 2x speedup

80

Outline
* Threads

* Need for Parallelism

 Processor Concurrency
« Instruction-level parallelism
 Task parallelism
* Interrupts

» Concurrency Challenges
« Amdahl’s Law

	Default Section
	Slide 1: Lecture 03: Concurrency Sources and Challenges

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Threads
	Slide 4: Outline
	Slide 5: Software Tasks: Threads
	Slide 6: Processes and threads
	Slide 7: Process address space with threads
	Slide 8: Thread use case: web browser
	Slide 9: Thread use case: user interfaces
	Slide 10: Thread use case: web server
	Slide 11: Web server option 1: handle one request at a time
	Slide 12: Web server option 1: event-driven model
	Slide 13: Web server option 3: multi-threaded web server
	Slide 14: How are threads implemented?
	Slide 15: Models for thread libraries: User Threads
	Slide 16: Models for thread libraries: Kernel Threads
	Slide 17: POSIX Threads Library: pthreads
	Slide 18: Pthread system call example
	Slide 19: Threads versus Processes
	Slide 20: Threads Example
	Slide 21: Threads Example
	Slide 22: Threads Example
	Slide 23: Threads Example
	Slide 24: Break + Check your understanding
	Slide 25

	Need for Parallelism
	Slide 26: Outline
	Slide 27
	Slide 28
	Slide 29: Moore’s Law – CPU transistors counts
	Slide 30: Processors kept getting faster too
	Slide 31: Power is a major limiting factor on speed
	Slide 32: Denard Scaling
	Slide 33: Then they stopped getting faster
	Slide 34: So… now what?
	Slide 35: Exploit parallelism!
	Slide 36: Update: 2010-2021
	Slide 37: Key question: how do we use all these cores?
	Slide 38: Break + Parallelism Analogy
	Slide 39: Parallelism versus Concurrency
	Slide 40: Parallelism versus Concurrency

	Processor concurrency
	Slide 41: Outline
	Slide 42: Hardware sources of concurrency
	Slide 43: Model of a processor
	Slide 44: But instructions don’t always have to be executed in order
	Slide 45: Out-of-order processors
	Slide 46: Out-of-order processors obey normal execution results
	Slide 47: Multiple threads might rely on memory ordering
	Slide 48: Multiple threads might rely on memory ordering

	Task Parallelism
	Slide 49: Outline
	Slide 50: Task parallelism use case
	Slide 51: Multicore Systems (in pictures)
	Slide 52: Multicore Systems (in words)
	Slide 53: Multithreading processors
	Slide 54: Multithreading processor
	Slide 55: Multithreading versus Multicore
	Slide 56: Multithreading, multicore processors
	Slide 57: Clearing up vocabulary
	Slide 58: My desktop computer
	Slide 59: Raspberry Pi 4
	Slide 60: Other modern multicore designs
	Slide 61: Break + Real-world Connection

	Interrupts
	Slide 62: Outline
	Slide 63: Interrupts
	Slide 64: Differences from system calls
	Slide 65: Interrupt Vector Table
	Slide 66: Interrupt Vector Table
	Slide 67: Interrupt handlers
	Slide 68: Why are interrupts important to concurrency?
	Slide 69: Back up to the OS perspective

	Amdahl's Law
	Slide 70: Outline
	Slide 71: Challenges to concurrency
	Slide 72: Challenges to concurrency
	Slide 73: Speedup Example
	Slide 74: Speedup from improvements
	Slide 75
	Slide 76: Parallel speedup example
	Slide 77: Amdahl’s (heartbreaking) Law (in pictures)
	Slide 78: Amdahl’s (heartbreaking) Law (in words)
	Slide 79: Break + Question
	Slide 80: Break + Question

	Wrapup
	Slide 81: Outline

