
Lecture 18:
Virtualization

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Jaswinder Pal Singh (Princeton), Harsha V. Madhyastha (Michigan), and UC Berkeley CS162



Administrivia

• PagingLab due today!

• Midterm exam 2
• Wednesday, December 7th from 12:00-2:00pm in the lecture hall

• Expect a similar format to the previous exam

• Covers Device I/O through Virtualization
• Lectures 10-16 and 18

• Does NOT cover scheduling or concurrency. Does NOT cover Embedded OS

• Practice exam will be posted soon

• Practice problems during lecture on Thursday

2



Today’s Goals

• Explore notion of a “virtual machine” and how to virtualize 
computers.

• Understand challenges and tradeoffs for several approaches
• Emulation

• Hypervisors

• Containers

3



4

• Virtualization

• Approaches

• Emulation

• Hypervisors

• Containers

Outline



Virtualization

• Virtual (fake) versions of real resources are often provided to users
• Memory – virtual memory

• CPU – processes and scheduler

• Disk – files

• OS provides these abstractions to simplify applications
• And provide security!

5



Virtual Machines (VMs)

• What about virtualizing 
the whole computer?
• Provide interfaces that 

look like a normal 
computer

• But actually interact with 
software that manages 
and multiplexes access

• Run an entire OS within 
an OS

6



Original motivation: support more applications

• 1960s IBM mainframes had many different OSes
• Some applications only written for certain OSes though

• Virtualization allowed multiple OSes to run on a single mainframe
• Which let one powerful computer serve varied needs of many people

• Still applies today to some degree
• Windows + Ubuntu VM

• Want PowerPoint and also terminal environment (vim/make/gcc)

• MacOS + Windows VM
• Various Windows-only programs
• Often dual boot rather than VM

7



Modern motivation: package and isolate applications

• High-performance applications aren’t really stand-alone
• Assumptions about OS
• Assumptions about libraries and services
• Multiple processes working together

• A virtual machine is a method to encapsulate “entire stack”
• Even down to expectations of hardware

• Cloud computing platforms run many applications together
• Need isolation from each other in a strongly controllable way

• Exactly 2 GB of RAM go to this
• Exactly two processor cores go to that

8



Virtualization approaches

1. Simulate everything in the computer completely
• Emulation

2. Simulate parts of the computer, but not all of it (actually use CPU)
• Hypervisor

3. Simulate the operating system (software environment)
• Containers

9



10

• Virtualization

• Approaches

• Emulation

• Hypervisors

• Containers

Outline



Software emulation

• User software emulates the behavior of every single instruction
• Data structures for Processor, Memory, I/O, etc.

• Code for Instruction Cycle:

• Fetch next instruction

• Decode

• Perform operation

• Update state

• Example: Gameboy emulator
• Simulates every behavior as-if it were actually Gameboy hardware

11



Emulation example: QEMU

• We have been using QEMU for lab to simulate an x86-64 computer
• 2 CPU cores
• 2 GB of RAM
• VirtIO GPU
• PS/2 mouse and keyboard
• 2 PCI IDE interfaces with hard disk and CD-ROM support

• nautilus.iso connected to CD-ROM
• Serial and parallel ports

• stdio connected to serial port
• file parport.out connected to parallel port

• Other stuff
• Floppy disk
• PCI and ISA network adapters
• Intel HD Audio Controller and HDA codec
• PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub

12



Emulation tradeoffs

• Upsides
• Any hardware you want

• Entirely in userspace

• Downside
• Complicated to get accurate

• Software runs slower than the 
hardware would

(But modern hardware might run 
software faster than old hardware)

13



Simple emulators: interpreted languages

• Create a simple environment for 
code to execute within

• Interpret code instructions 
(bytecode or lines of code) and 
perform actions
• Example: fakes a machine that 

executes Java bytecode

• Still ties in to many parts of the 
real machine
• Filesystem
• Devices

14



Not-quite-emulation: binary translation

• MacOS on ARM (M1)
• Uses ARM processor with ARM instruction set
• Old programs were compiled for x86-64 

instruction set

• Solution: translate assembly instructions
• Can be translated in advance
• Or just-in-time (JIT)
• Works fine for applications that are I/O bound

• Simulates a different CPU, but leaves the 
remainder of the computer the same

15



Break + Open Question

• What are the best use cases for full hardware emulation?

16



Break + Open Question

• What are the best use cases for full hardware emulation?

• Non-standard, slow machines (example: old gaming consoles)

• Where people do not have access to the original hardware

• The original hardware was slower than modern hardware

• And there are existing application binaries that they want to run

• Application-level simulation/testing (example: Nautilus!)

• Still hopefully for the above

• Entirely controlled environment

17



18

• Virtualization

• Approaches

• Emulation

• Hypervisors

• Containers

Outline



How do we speed up virtual machines?

“Efficiency … demands that a statistically dominant subset of the 
virtual processor’s instructions be executed directly by the real 
processor, with no software intervention…”

—Popek and Goldberg, 1974

• Need to use some parts of the computer for real while simulating 
other parts

19



Virtual Machine Monitor (VMM)

• Also known as hypervisors
• OS kernel is the system “supervisor” and manages the computer

• Hypervisor manages supervisors

• Creates the illusion that the OS has full control over the hardware
• And even gives real (limited) access to hardware whenever possible

• But may actually be sharing full computer resources among several OSes

• Probably what you had in mind as virtual machines
• VirtualBox, VMWare, Parallels

20



Hypervisor layering: directly on hardware

21

“Bare Metal” Hypervisor Hosted Hypervisor

• Hypervisor manages hardware 
directly

• Guest OSes run on top of it
• “Guest OS” as in it isn’t actually 

in charge of the computer



Hypervisor layering: on top of Host OS

22

“Bare Metal” Hypervisor Hosted Hypervisor

• Normal operating system runs 
on hardware
• Known as “Host OS”

• Hypervisor runs on top of host 
and coordinates with it to 
enable interactions with 
hardware
• Some coordination may be 

within the kernel itself



Hypervisor layering: comparison

23

“Bare Metal” Hypervisor Hosted Hypervisor



Abstraction choices for hypervisor

• Fully virtualizing hypervisor
• Virtual machine looks exactly like a physical machine

• Though not necessarily the same machine it’s running on

• Guest OS does not need to be modified in any way

• Guest may not even be aware it’s running virtually

• Para-virtualizing hypervisor
• Guest OS has extensions to cooperate with hypervisor

• Sacrifice transparency for better performance

• Same abstraction-breaking ideal from previous lectures

• Might include an API to interact with hypervisor

• Guest OS likely can skip some stuff the hypervisor handles instead

24



Arbitrary combinations of these are possible

25

VMWare ESXi,
Microsoft Hyper-V

VMware Workstation,
VMware Fusion,

Parallels, VirtualBox

Xen User Mode Linux

Bare Metal Hypervisor Hosted Hypervisor

Fully
Virtualized

Para
Virtualized



Arbitrary combinations of these are possible

26

VMWare ESXi,
Microsoft Hyper-V

VMware Workstation,
VMware Fusion,

Parallels, VirtualBox

Xen User Mode Linux

Bare Metal Hypervisor Hosted Hypervisor

Fully
Virtualized

Para
Virtualized

“Normal” VMs



Arbitrary combinations of these are possible

27

VMWare ESXi,
Microsoft Hyper-V

VMware Workstation,
VMware Fusion,

Parallels, VirtualBox

Xen User Mode Linux

Bare Metal Hypervisor Hosted Hypervisor

Fully
Virtualized

Para
Virtualized

Cloud/Server 
stuff



Arbitrary combinations of these are possible

28

VMWare ESXi,
Microsoft Hyper-V

VMware Workstation,
VMware Fusion,

Parallels, VirtualBox

Xen User Mode Linux

Bare Metal Hypervisor Hosted Hypervisor

Fully
Virtualized

Para
Virtualized

Run Linux as 
an application



Hypervisor example: system call

29

Process

1. System call: trap to OS

5. Resume execution

Guest OS

3. OS trap handler: 
Decode trap and execute 
syscall. When done issue 
return-from-trap

Hypervisor

2. Receive trap. Call guest 
OS trap handler

4. OS tried to return from 
trap. Do real return-from-
trap



Hypervisor challenges: privileged instructions

• The guest OS is going to run privileged instructions
• Scheduling threads, editing page tables, modifying interrupt state

• Cannot let it have full control over the hardware
• Otherwise it really isn’t a “guest” and host might never regain control

• Solution: trap into hypervisor
• Bare metal: Illegal instruction fault goes directly to hypervisor

• Hosted: Illegal instruction fault in Host OS passed to hypervisor

• Which can actually do something to handle it!!

30



Problem: x86 doesn’t virtualize very well

• CPU architecture is virtualizable only if sensitive instructions always 
trap if run in user mode

• Historically, x86 does not guarantee this
• Some instructions behave differently in user mode

• For example: some instructions have no effect when run in user mode

• One solution: binary translation
• Find all unacceptable instructions in the OS binary (possibly at runtime)

• Replace with different instructions that trap to hypervisor

• Which will perform the originally desired operations

31



Virtualization extensions to x86

• Intel VT and AMD-V
• Extensions to instruction set architecture to enable virtualization

• Fix virtualization problems

• Also speed up virtualization performance by requiring less trapping

• VM Entry/Exit
• Swap out Virtual Machine Control Structure (VMCS) that specifies OS state

• Registers, Address Space, Executing Threads

• Example optimization: Virtual Processor ID in TLB entries

• Allows Guest OS and Host OS to share a TLB

32



Hypervisor challenges: Memory virtualization

• Guest OS maintains its own page 
tables, mapping virtual to physical 
memory
• But the guest itself is running in virtual 

memory

• Hypervisor maintains “shadow page 
tables” that map Guest memory pages 
to actual memory pages
• Guest modifications to page tables trap to 

hypervisor that modifies its own tables 
accordingly

• Virtual extensions can do this double-
translation in hardware

33



Hypervisor challenge: I/O devices

• Difficult to replicate all the different drivers that can exist in a 
kernel in the hypervisor

• One solution: leverage host OS drivers
• Present virtual I/O devices to guest OS

• Guest interacts with virtual I/O through its own device driver

• Calls get sent to hypervisor, which makes appropriate calls to host drivers

34



Break + Questions – VirtualBox on ARM Mac

• Will VirtualBox work on the new ARM Macs?
• Will the program run as-is?

• What architecture will the guest OS need to be?

• Could students run CS213 labs in it?

35



Break + Questions – VirtualBox on ARM Mac

• Will VirtualBox work on the new ARM Macs?
• Will the program run as-is?

• No. Currently compiled for x86-64. Needs to be recompiled. But it 
probably has a bunch of hardware-specific code that needs to be 
rewritten too… (support exists as of October 2022!)

• What architecture will the guest OS need to be?

• ARM. VirtualBox is a hypervisor that runs code on the actual processor.

• Windows and Linux do have some ARM support…

• Could students run CS213 labs in it?

• Not really… Any x86-64 specific stuff won’t work.

36



Sidebar: virtualization extensions often disabled by default

• Most users will never have a 
need for them
• And developers can probably 

figure out BIOS settings

37



38

• Virtualization

• Approaches

• Emulation

• Hypervisors

• Containers

Outline



Cloud platform requirements

• May want to provide multiple OSes, but can do so with multiple 
physical machines

• Really want encapsulation and isolation
• Encapsulation

• Include particular shared libraries that application needs

• Without interfering with other applications on system

• Isolation

• Guarantee certain processing and memory allocations to each application

• Limit visibility into the filesystem (without overhead of partition per app)

39



Containers

• Provide each application with 
illusion of its own dedicated OS
• Isolated resources:

processor and memory

• Isolated namespace:
PIDs, network, filesystem

• Includes only the binaries and libraries 
it needs

40



Visual comparison of Hypervisors and Containers

41



How to implement containers

• Needs the ability to isolate one process from the effects of another
• More strongly than a normal OS does anyways

• On Linux, there is a related idea which is the basis for containers
• cgroups

42



Linux cgroups (control groups)

• Collection of 
processes treated 
as a group for 
resource allocation

• Provider greater 
performance 
isolation between 
cgroups than 
between 
processes
• Firm limits per 

group

43

H
a
rd

w
a
re

S
y
st

e
m

 S
o
ft

w
a
re

U
se

r 
S
o
ft

w
a
re

syscall tbl

intr tbl

Drivers

Page 
Tables

intrpt handlers

syscall handlers

scheduler subsystems

Processor Memory Net BW Files

“production” “testing” “dev”Example:



Linux cgroups (control groups)

• Collection of 
processes treated 
as a group for 
resource allocation

• Provider greater 
performance 
isolation between 
cgroups than 
between 
processes
• Firm limits per 

group

44

H
a
rd

w
a
re

S
y
st

e
m

 S
o
ft

w
a
re

U
se

r 
S
o
ft

w
a
re

syscall tbl

intr tbl

Drivers

Page 
Tables

intrpt handlers

syscall handlers

scheduler subsystems

Processor Memory Net BW Files

“production” “testing” “dev”Example:



cgroups can be used to build containers

• Devices can be connected or denied to a cgroup
• cgroup processes will not be able to detect device at all

• Accounting can be done on cgroup usage
• Memory, CPU, disk I/O

45



Docker

• Container packaging, distribution, and execution
• Also created open standard for container runtimes

• Images
• Describes starting state of a Docker container
• Like a snapshot of the system

• Union file system
• Image describes file system as a sequence of layers

• Each layer includes some files
• Overall file system is the union of all the layers
• Layers can be reused in different images

46



Docker use cases

• Environments are hard to set up
• Often the hardest part of starting software development

• Containerized applications encapsulate requirements

• Can be run on any system that has the same kernel it was built for

• Packages an application and its requirements into a container
• Can be used by an individual to more easily run an application

• Can be deployed to a cloud server to run

• Example: could use Docker for QEMU + Nautilus
• Need a very specific version of QEMU, with all the proper libraries

47



Bonus explanation

48https://twitter.com/b0rk/status/1237744128450072578



49

• Virtualization

• Approaches

• Emulation

• Hypervisors

• Containers

Outline


