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Administrivia

• PagingLab due today!

• Midterm exam 2
• Wednesday, December 7th from 12:00-2:00pm in the lecture hall

• Expect a similar format to the previous exam

• Covers Device I/O through Virtualization
• Lectures 10-16 and 18

• Does NOT cover scheduling or concurrency. Does NOT cover Embedded OS

• Practice exam will be posted soon

• Practice problems during lecture on Thursday
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Today’s Goals

• Explore notion of a “virtual machine” and how to virtualize 
computers.

• Understand challenges and tradeoffs for several approaches
• Emulation

• Hypervisors

• Containers
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Virtualization

• Virtual (fake) versions of real resources are often provided to users
• Memory – virtual memory

• CPU – processes and scheduler

• Disk – files

• OS provides these abstractions to simplify applications
• And provide security!
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Virtual Machines (VMs)

• What about virtualizing 
the whole computer?
• Provide interfaces that 

look like a normal 
computer

• But actually interact with 
software that manages 
and multiplexes access

• Run an entire OS within 
an OS
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Original motivation: support more applications

• 1960s IBM mainframes had many different OSes
• Some applications only written for certain OSes though

• Virtualization allowed multiple OSes to run on a single mainframe
• Which let one powerful computer serve varied needs of many people

• Still applies today to some degree
• Windows + Ubuntu VM

• Want PowerPoint and also terminal environment (vim/make/gcc)

• MacOS + Windows VM
• Various Windows-only programs
• Often dual boot rather than VM
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Modern motivation: package and isolate applications

• High-performance applications aren’t really stand-alone
• Assumptions about OS
• Assumptions about libraries and services
• Multiple processes working together

• A virtual machine is a method to encapsulate “entire stack”
• Even down to expectations of hardware

• Cloud computing platforms run many applications together
• Need isolation from each other in a strongly controllable way

• Exactly 2 GB of RAM go to this
• Exactly two processor cores go to that
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Virtualization approaches

1. Simulate everything in the computer completely
• Emulation

2. Simulate parts of the computer, but not all of it (actually use CPU)
• Hypervisor

3. Simulate the operating system (software environment)
• Containers
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Software emulation

• User software emulates the behavior of every single instruction
• Data structures for Processor, Memory, I/O, etc.

• Code for Instruction Cycle:

• Fetch next instruction

• Decode

• Perform operation

• Update state

• Example: Gameboy emulator
• Simulates every behavior as-if it were actually Gameboy hardware
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Emulation example: QEMU

• We have been using QEMU for lab to simulate an x86-64 computer
• 2 CPU cores
• 2 GB of RAM
• VirtIO GPU
• PS/2 mouse and keyboard
• 2 PCI IDE interfaces with hard disk and CD-ROM support

• nautilus.iso connected to CD-ROM
• Serial and parallel ports

• stdio connected to serial port
• file parport.out connected to parallel port

• Other stuff
• Floppy disk
• PCI and ISA network adapters
• Intel HD Audio Controller and HDA codec
• PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub
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Emulation tradeoffs

• Upsides
• Any hardware you want

• Entirely in userspace

• Downside
• Complicated to get accurate

• Software runs slower than the 
hardware would

(But modern hardware might run 
software faster than old hardware)
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Simple emulators: interpreted languages

• Create a simple environment for 
code to execute within

• Interpret code instructions 
(bytecode or lines of code) and 
perform actions
• Example: fakes a machine that 

executes Java bytecode

• Still ties in to many parts of the 
real machine
• Filesystem
• Devices
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Not-quite-emulation: binary translation

• MacOS on ARM (M1)
• Uses ARM processor with ARM instruction set
• Old programs were compiled for x86-64 

instruction set

• Solution: translate assembly instructions
• Can be translated in advance
• Or just-in-time (JIT)
• Works fine for applications that are I/O bound

• Simulates a different CPU, but leaves the 
remainder of the computer the same
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Break + Open Question

• What are the best use cases for full hardware emulation?
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Break + Open Question

• What are the best use cases for full hardware emulation?

• Non-standard, slow machines (example: old gaming consoles)

• Where people do not have access to the original hardware

• The original hardware was slower than modern hardware

• And there are existing application binaries that they want to run

• Application-level simulation/testing (example: Nautilus!)

• Still hopefully for the above

• Entirely controlled environment
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How do we speed up virtual machines?

“Efficiency … demands that a statistically dominant subset of the 
virtual processor’s instructions be executed directly by the real 
processor, with no software intervention…”

—Popek and Goldberg, 1974

• Need to use some parts of the computer for real while simulating 
other parts
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Virtual Machine Monitor (VMM)

• Also known as hypervisors
• OS kernel is the system “supervisor” and manages the computer

• Hypervisor manages supervisors

• Creates the illusion that the OS has full control over the hardware
• And even gives real (limited) access to hardware whenever possible

• But may actually be sharing full computer resources among several OSes

• Probably what you had in mind as virtual machines
• VirtualBox, VMWare, Parallels
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Hypervisor layering: directly on hardware
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“Bare Metal” Hypervisor Hosted Hypervisor

• Hypervisor manages hardware 
directly

• Guest OSes run on top of it
• “Guest OS” as in it isn’t actually 

in charge of the computer



Hypervisor layering: on top of Host OS
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“Bare Metal” Hypervisor Hosted Hypervisor

• Normal operating system runs 
on hardware
• Known as “Host OS”

• Hypervisor runs on top of host 
and coordinates with it to 
enable interactions with 
hardware
• Some coordination may be 

within the kernel itself



Hypervisor layering: comparison
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Abstraction choices for hypervisor

• Fully virtualizing hypervisor
• Virtual machine looks exactly like a physical machine

• Though not necessarily the same machine it’s running on

• Guest OS does not need to be modified in any way

• Guest may not even be aware it’s running virtually

• Para-virtualizing hypervisor
• Guest OS has extensions to cooperate with hypervisor

• Sacrifice transparency for better performance

• Same abstraction-breaking ideal from previous lectures

• Might include an API to interact with hypervisor

• Guest OS likely can skip some stuff the hypervisor handles instead
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Arbitrary combinations of these are possible
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Arbitrary combinations of these are possible
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Arbitrary combinations of these are possible
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Arbitrary combinations of these are possible
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VMWare ESXi,
Microsoft Hyper-V

VMware Workstation,
VMware Fusion,

Parallels, VirtualBox

Xen User Mode Linux

Bare Metal Hypervisor Hosted Hypervisor

Fully
Virtualized

Para
Virtualized

Run Linux as 
an application



Hypervisor example: system call
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Process

1. System call: trap to OS

5. Resume execution

Guest OS

3. OS trap handler: 
Decode trap and execute 
syscall. When done issue 
return-from-trap

Hypervisor

2. Receive trap. Call guest 
OS trap handler

4. OS tried to return from 
trap. Do real return-from-
trap



Hypervisor challenges: privileged instructions

• The guest OS is going to run privileged instructions
• Scheduling threads, editing page tables, modifying interrupt state

• Cannot let it have full control over the hardware
• Otherwise it really isn’t a “guest” and host might never regain control

• Solution: trap into hypervisor
• Bare metal: Illegal instruction fault goes directly to hypervisor

• Hosted: Illegal instruction fault in Host OS passed to hypervisor

• Which can actually do something to handle it!!
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Problem: x86 doesn’t virtualize very well

• CPU architecture is virtualizable only if sensitive instructions always 
trap if run in user mode

• Historically, x86 does not guarantee this
• Some instructions behave differently in user mode

• For example: some instructions have no effect when run in user mode

• One solution: binary translation
• Find all unacceptable instructions in the OS binary (possibly at runtime)

• Replace with different instructions that trap to hypervisor

• Which will perform the originally desired operations

31



Virtualization extensions to x86

• Intel VT and AMD-V
• Extensions to instruction set architecture to enable virtualization

• Fix virtualization problems

• Also speed up virtualization performance by requiring less trapping

• VM Entry/Exit
• Swap out Virtual Machine Control Structure (VMCS) that specifies OS state

• Registers, Address Space, Executing Threads

• Example optimization: Virtual Processor ID in TLB entries

• Allows Guest OS and Host OS to share a TLB
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Hypervisor challenges: Memory virtualization

• Guest OS maintains its own page 
tables, mapping virtual to physical 
memory
• But the guest itself is running in virtual 

memory

• Hypervisor maintains “shadow page 
tables” that map Guest memory pages 
to actual memory pages
• Guest modifications to page tables trap to 

hypervisor that modifies its own tables 
accordingly

• Virtual extensions can do this double-
translation in hardware
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Hypervisor challenge: I/O devices

• Difficult to replicate all the different drivers that can exist in a 
kernel in the hypervisor

• One solution: leverage host OS drivers
• Present virtual I/O devices to guest OS

• Guest interacts with virtual I/O through its own device driver

• Calls get sent to hypervisor, which makes appropriate calls to host drivers
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Break + Questions – VirtualBox on ARM Mac

• Will VirtualBox work on the new ARM Macs?
• Will the program run as-is?

• What architecture will the guest OS need to be?

• Could students run CS213 labs in it?
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Break + Questions – VirtualBox on ARM Mac

• Will VirtualBox work on the new ARM Macs?
• Will the program run as-is?

• No. Currently compiled for x86-64. Needs to be recompiled. But it 
probably has a bunch of hardware-specific code that needs to be 
rewritten too… (support exists as of October 2022!)

• What architecture will the guest OS need to be?

• ARM. VirtualBox is a hypervisor that runs code on the actual processor.

• Windows and Linux do have some ARM support…

• Could students run CS213 labs in it?

• Not really… Any x86-64 specific stuff won’t work.
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Sidebar: virtualization extensions often disabled by default

• Most users will never have a 
need for them
• And developers can probably 

figure out BIOS settings
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Cloud platform requirements

• May want to provide multiple OSes, but can do so with multiple 
physical machines

• Really want encapsulation and isolation
• Encapsulation

• Include particular shared libraries that application needs

• Without interfering with other applications on system

• Isolation

• Guarantee certain processing and memory allocations to each application

• Limit visibility into the filesystem (without overhead of partition per app)

39



Containers

• Provide each application with 
illusion of its own dedicated OS
• Isolated resources:

processor and memory

• Isolated namespace:
PIDs, network, filesystem

• Includes only the binaries and libraries 
it needs
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Visual comparison of Hypervisors and Containers
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How to implement containers

• Needs the ability to isolate one process from the effects of another
• More strongly than a normal OS does anyways

• On Linux, there is a related idea which is the basis for containers
• cgroups
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Linux cgroups (control groups)

• Collection of 
processes treated 
as a group for 
resource allocation

• Provider greater 
performance 
isolation between 
cgroups than 
between 
processes
• Firm limits per 

group
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Linux cgroups (control groups)
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cgroups can be used to build containers

• Devices can be connected or denied to a cgroup
• cgroup processes will not be able to detect device at all

• Accounting can be done on cgroup usage
• Memory, CPU, disk I/O
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Docker

• Container packaging, distribution, and execution
• Also created open standard for container runtimes

• Images
• Describes starting state of a Docker container
• Like a snapshot of the system

• Union file system
• Image describes file system as a sequence of layers

• Each layer includes some files
• Overall file system is the union of all the layers
• Layers can be reused in different images
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Docker use cases

• Environments are hard to set up
• Often the hardest part of starting software development

• Containerized applications encapsulate requirements

• Can be run on any system that has the same kernel it was built for

• Packages an application and its requirements into a container
• Can be used by an individual to more easily run an application

• Can be deployed to a cloud server to run

• Example: could use Docker for QEMU + Nautilus
• Need a very specific version of QEMU, with all the proper libraries
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Bonus explanation
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