Lecture 16: Filesystem Implementations

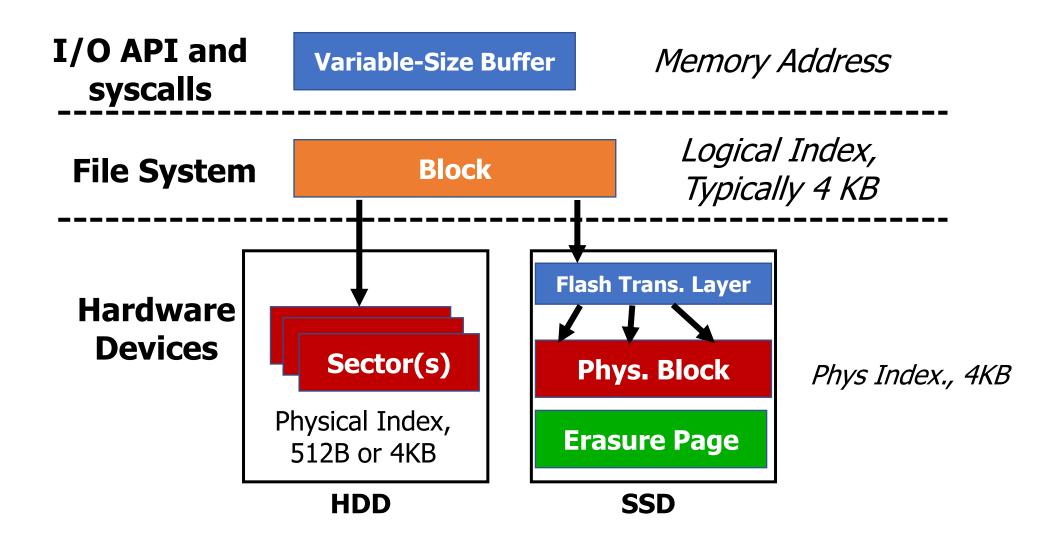
CS343 – Operating Systems Branden Ghena – Fall 2022

Some slides borrowed from: Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), Ed Lazowska (Washington), and UC Berkeley CS162

Northwestern

Administrivia

- Office hours plan for quarter
 - Today has a small change due to illness (see Campuswire)
 - Next week we'll do Monday and Tuesday hours as normal
 - Wednesday-Friday are canceled
 - After Thanksgiving we'll do the entire week of office hours as normal


- Reminder: get started on Paging Lab now
 - Not the best life decision to start it after Thanksgiving

Today's Goals

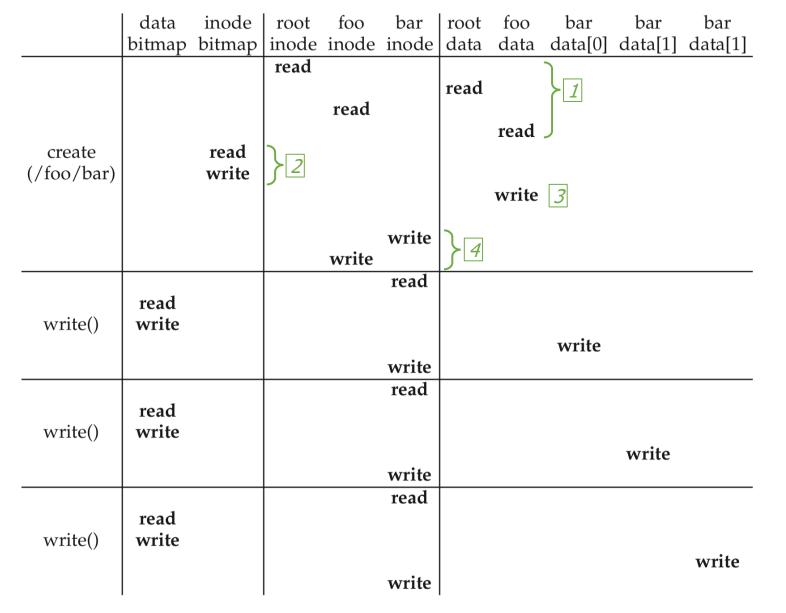
- Understand about additional filesystem features
 - Performance: disk caching
 - Reliability: checking, journaling, and copy-on-write

- Explore real-world filesystem designs
 - FAT, FFS, ext3/ext4, NTFS, ZFS

File systems abstractions

What goes within a partition?

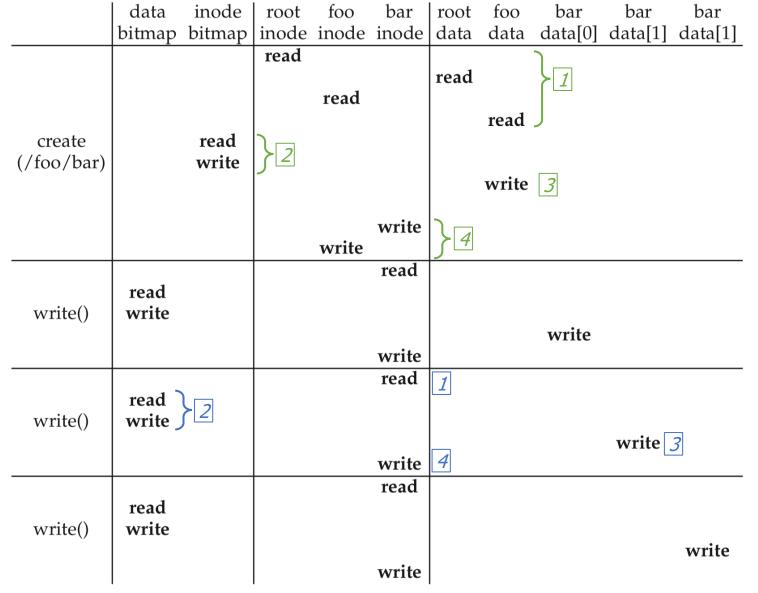
Header (Superblock)


- Details about which filesystem this is
- Metadata about the filesystem
- Free Space Tracking
 - Likely a bitmap of whether blocks are used/free

• File Tracking

Either allocation table or inodes

• File Data


Create and write a file

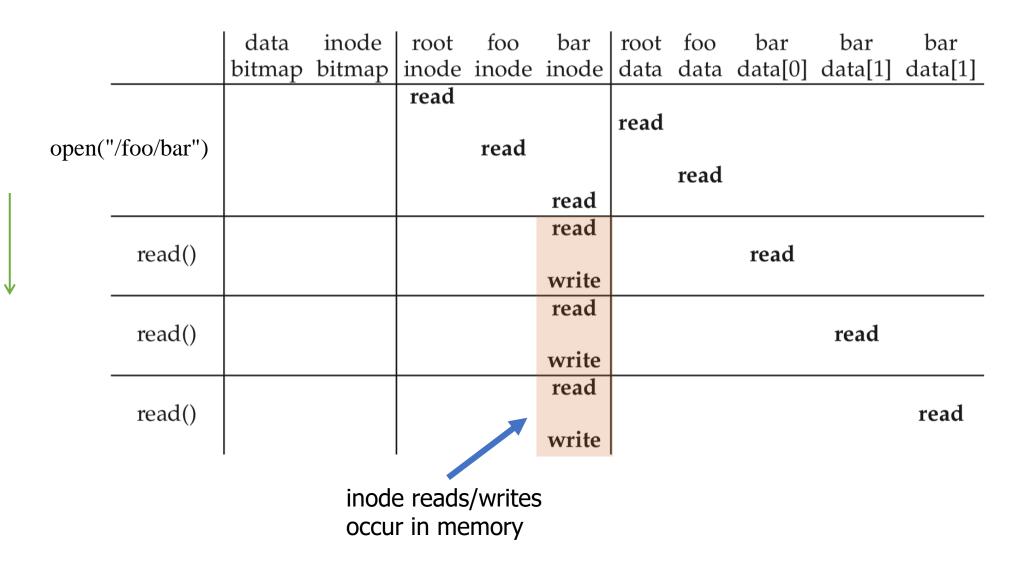
Create:

- 1. First, read the parent directory to ensure that name is not already used.
- 2. Find & claim a free inode.
- 3. Add <"name", inode#> to parent directory.
- 4. Fill-in file metadata.

Create and write a file

Create:

- 1. First, read the parent directory to ensure that name is not already used.
- 2. Find & claim a free inode.
- 3. Add <"bar", inode#> to parent directory.
- 4. Fill-in file metadata.


Write:

- 1. Look for remaining space in existing blocks first.
- 2. Find & claim a new data block.
- 3. Write data to new block
- 4. Point to it in inode

Outline

- Disk Caching
- Classical Filesystems
 - FAT
 - FFS
- Improving Reliability
 - FSCK
 - Journaling
- Journaling Filesystems
 - ext3/ext4
 - NTFS
- Copy-On-Write
 - ZFS

Many disk interactions should be hitting memory instead

time

Filesystem caching

- File I/O can be a significant bottleneck
- So keep useful parts of disk in RAM!
 - Improves performance

- OS kernel does this automatically
 - Using unused RAM to hold disk blocks

File descriptor								
Pathname								
Directory								
Inode								
Logging								
Buffer cache								
Disk								

Goals for filesystem caching

- 1. Cache popular blocks so the disk can be accessed less frequently.
 - Recall that disk has 10,000× greater delay than RAM.
 - *Reads* are faster if the disk block is already in memory from a recent access.
 - Writes can be aggregated.
 - If a thread writes three times briefly to the same file, these can likely be reduced to one write to disk if the writes are delayed.
 - If a thread creates a new file and quickly deletes it, these writes can be skipped altogether.
 - Eventually, changes must be flushed to disk, but there is no rush.
- 2. Must be careful to prevent two threads from accessing different unsynchronized copies of the disk block.
 - i.e., make the cache **coherent** and avoid race conditions

Unified Page Cache

- Page replacement policy can simultaneously consider both pages from Virtual Memory and pages cached from disk
 - May choose to evict either if needed
- Priority:
 - 1. Unwritten disk files or unmodified memory pages
 - Situational which is more important, but neither requires writeback
 - 2. Written disk files
 - Going to have to be written to disk eventually anyways
 - 3. Modified memory pages
 - Must go to swap space to be later read again

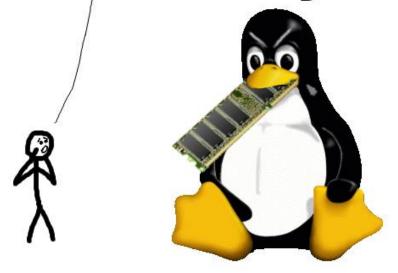
Prefetching

• Any cache can "prefetch", loading memory *before* it's needed

- Base idea: read multiple blocks from disk sequentially from each access
- Advanced: load specific files based on usage patterns

- Need to balance prefetching requests with other disk access
 - Don't want to slow down real accesses with possibly needed prefetching

Short break + Question


• What percentage of memory should an OS fill with disk pages?

Short break + Question

- What percentage of memory should an OS fill with disk pages?
 - As long as it can do it in the background, as much as possible!
 - There's no particular downside:
 - As long as the page wasn't written to, the RAM can be repurposed later if needed without requiring additional writes to disk
 - (Maybe energy use is a downside?)

Real OSes aggressively cache disk in unused RAM

Linux ate my ram!

Don't Panic! Your ram is fine!

linuxatemyram.com

Real OSes aggressively cache disk in unused RAM

top - 10:25:45 up 7 days, 48 min, 3 users, load average: 0.04, 0.06, 0.09
Tasks: 650 total, 1 running, 649 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 132144848k total, 129331984k used, 2812864k free, 37895660k buffers
Swap: 16383996k total, 436k used, 16383560k free, 45074412k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
9213	mysql	20	0	1263m	156m	14m	S	0.0	0.1	3:57.24	mysqld
10001	root	20	0	5748m	219m	14 m	S	0.3	0.2	15:02.22	dsm_om_connsvcd
9382	root	20	0	337m	18 m	11 m	S	0.0	0.0	0:10.67	httpd
8304	apache	20	0	352m	19 m	10 m	S	0.0	0.0	0:00.29	httpd
8302	apache	20	0	339m	14 m	7144	S	0.0	0.0	0:00.16	httpd
8298	apache	20	0	339m	14 m	7140	S	0.0	0.0	0:00.12	httpd
8299	apache	20	0	339m	14m	7136	S	0.0	0.0	0:00.17	httpd
8303	apache	20	0	339m	14 m	7136	S	0.0	0.0	0:00.17	httpd
8300	apache	20	0	339m	14 m	7120	S	0.0	0.0	0:00.13	httpd
8301	apache	20	0	339m	14 m	7120	S	0.0	0.0	0:00.16	httpd
8305	apache	20	0	339m	14 m	7112	S	0.0	0.0	0:00.13	httpd
1386	apache	20	0	339m	14 m	7096	S	0.0	0.0	0:00.06	httpd
1387	apache	20	0	339m	14 m	7084	S	0.0	0.0	0:00.07	httpd
1122	spt175	20	0	251m	14m	6484	S	0.0	0.0	0:00.26	emacs
2615	root	20	0	92996	6200	4816	S	0.0	0.0	0:00.93	NetworkManager
9865	root	20	0	1043 m	23m	4680	S	0.3	0.0	9:44.98	dsm_sa_datamgrd
8737	postgres	20	0	219m	5380	4588	S	0.0	0.0	0:01.00	postmaster
2786	haldaemo	20	0	45448	5528	4320	S	0.0	0.0	0:03.99	hald
9956	root	20	0	491 m	7268	3280	S	0.0	0.0	3:16.30	dsm_sa_snmpd
990	root	20	0	103 m	4188	3172	S	0.0	0.0	0:00.01	sshd
1014	root	20	0	103 m	4196	3172	S	0.0	0.0	0:00.02	sshd
19701	root	20	0	103 m	4244	3172	S	0.0	0.0	0:00.01	sshd

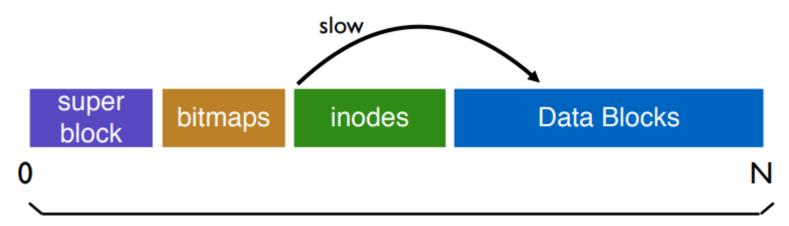
- *buffers* and *cached* both represent file data that is being stored in memory for improved performance
 - Still available for programs
 - Just being made useful for now by caching disk
- Might be a lot of RAM's use for big systems
 - Total RAM: 128 GB
 - Disk cache: 83 GB

Outline

- Disk Caching
- Classical Filesystems
 - FAT
 - FFS
- Improving Reliability
 - FSCK
 - Journaling
- Journaling Filesystems
 - ext3/ext4
 - NTFS
- Copy-On-Write
 - ZFS

FAT (FAT/FAT12/FAT16/FAT32)

- File Allocation Table
- FAT: Microsoft system from *before* MS-DOS (1977)
 - 8 MB max file size
 - 9 character file names
 - No subdirectories
- FAT32: Windows 2000 (introduced 1996)
 - 2 GB max file size
 - 255 character file names
 - Supports up to 16 TB partitions
 - 16 byte granularity for files


FAT design choices

- Allocation table for tracking data blocks
 - Requires four bytes per block in the disk
 - File attributes need to be kept in the directory data block
- Still in use for embedded systems
 - Simple to implement
 - Still compatible with modern general-purpose OSes
 - Works fine for relatively small disks with correspondingly small files
 - Think SD cards
 - Implements aggressive block caching

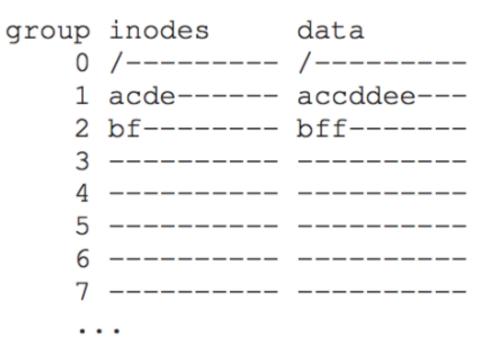
Fast File System (FFS)

- Unix FileSystem (FS) from 1970
 - inode-based design (combination of all the basic stuff covered last time)
 - Simple and slow
 - inodes are far from data blocks
 - data blocks become fragmented over time
- BSD Fast File System (mid-1980s)
 - First "Disk aware file system"
 - Understands disk seek patterns and sequential access benefits

FFS groups

- Split disk space into a set of "cylinder groups"
 - Each group has its own bitmaps, inodes, and data
 - Keeps data and inodes closer together

FFS file placement strategy


• General theme: put related pieces of data near each other

Rules

- 1. Put directory data near directory inodes
- 2. Put file inodes near directory data
- 3. Put data blocks near file inodes
- Example
 - Each directory gets put in an empty group
 - Keep all files within a directory in that single group

FFS example

- Example:
 - Directories: /, /a/, and /b/
 - /a/ files: **c**, **d**, **e**
 - /b/ files: **f**

24

FFS large file problem

- A single large file can fill nearly all of a group
 - So remaining files would have to be placed in other groups

 Instead, limit filesize per group and place remaining blocks in other groups

- Most files are small so prioritize them
- Rare, large files will have worse performance

Outline

- Disk Caching
- Classical Filesystems
 - FAT
 - FFS
- Improving Reliability
 - FSCK
 - Journaling
- Journaling Filesystems
 - ext3/ext4
 - NTFS
- Copy-On-Write
 - ZFS

Crash tolerance

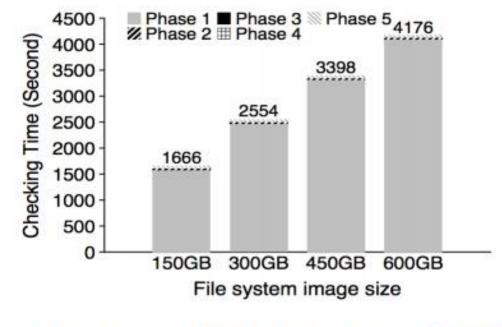
- Filesystems are persistent and store important data
- They *cannot* rely on a graceful shutdown
 - Power outages happen
 - Kernel might panic
 - USB plug might be yanked out
- File system structure updates are *critical sections*
 - Not concerned about race conditions, but rather partial updates
 - Transactions should be performed atomically, "all or none"
- All reads and writes aren't necessarily guaranteed
 - But system needs to stay **consistent**

Crash example (writing to /foo/bar)

		data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data[0]	
time	write()	read write				read				
Ę						write			write	Crash here!

- Crash before write to file's inode could leak a data block
 - Data bitmap was updated to reserve data block and data was written
 - But the data block is not pointed to by any inode
 - Block ends up wasted
- Other write order could be worse
 - Inode points to a block that hasn't been written and has garbage data
 - Or block is still marked as free in the bitmap, and another file will overwrite it!!

File system checker (FSCK)

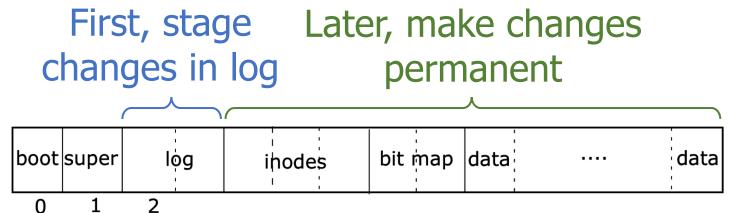

- After a crash, scan entire disk for contradictions and "fix"
 - System pauses boot until FSCK completes
- Example: check data bitmap consistency
 - Read every valid inode
 - Any referenced data block should be marked as used
 - Any used blocks that are not referenced can be marked free
- Also check
 - Each inode should only be listed under one directory (without hard links)
 - Two inodes should not share a data block
 - All block addresses should be valid

Problems with FSCK

- 1. FSCK makes disks *consistent*, not *correct*
 - Not always obvious how best to fix file system image
 - Trivial way to get consistency: reformat disk

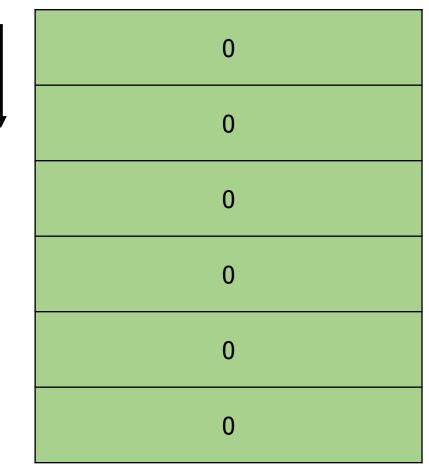
2. FSCK is very slow

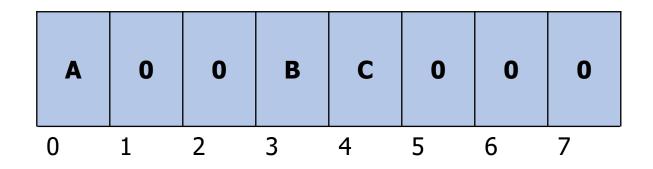
- Reading from disk is slow
- Reading ALL of disk takes a long time, especially as disks increase in size


Checking a 600GB disk takes ~70 minutes

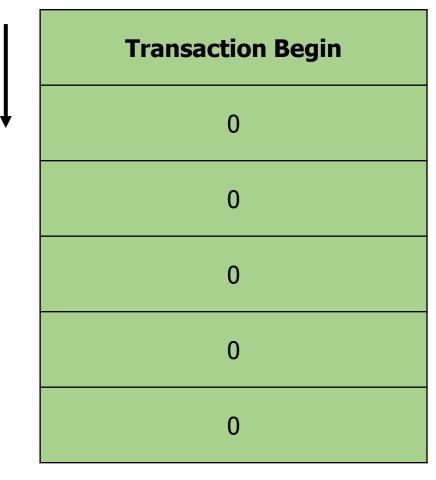
Filesystem transactions

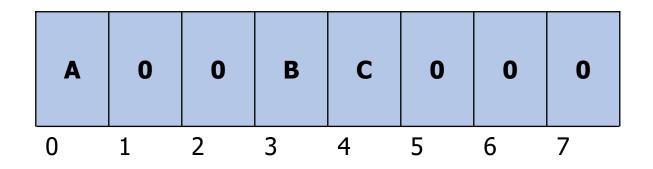
- Goals
 - Move reliability mechanism to continuous operations during runtime
 - Some recovery after crash is fine, but not entire disk
 - Don't just make file system consistent
 - Guarantee correctness
- Solution: enforce atomic transactions
 - Each transaction must be performed in its entirety or not at all
 - Either all new data is visible
 - Or all old data is visible


Journaling Filesystems

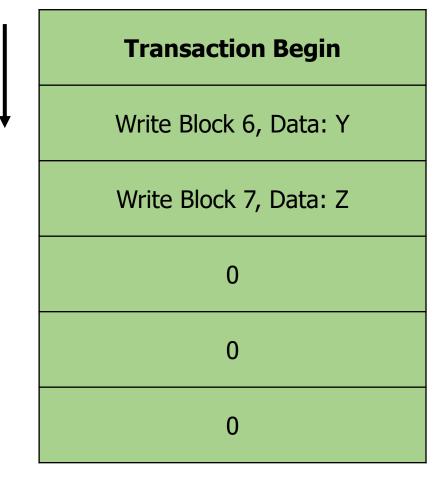

• Write all transactions to *journal* instead of actual locations

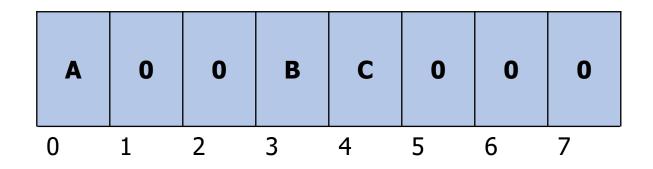
- 1. Write the blocks to the log, a reserved part of the disk.
 - This makes a durable record of the transaction you plan to commit.
 - Continue putting all writes to the log, until *commit* is called.
- 2. On commit, write a commit message to the log, then start writing all of the logged writes where they belong on disk.
 - Clear the log after everything is written again.


Journal

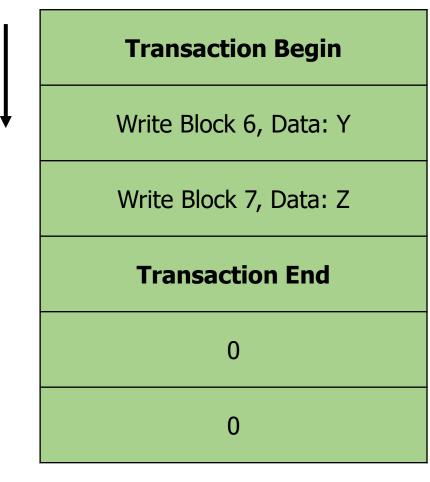


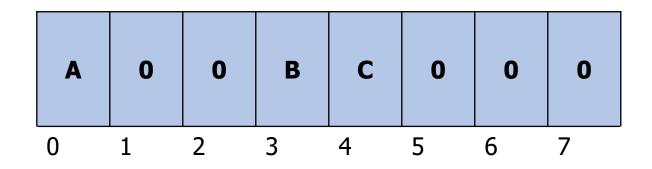
- Current contents of 8 blocks of disk and the journal
 - Note that the journal is also on disk
- Keeping this abstract
 - Blocks could be bitmaps, inodes, data, or anything


Journal



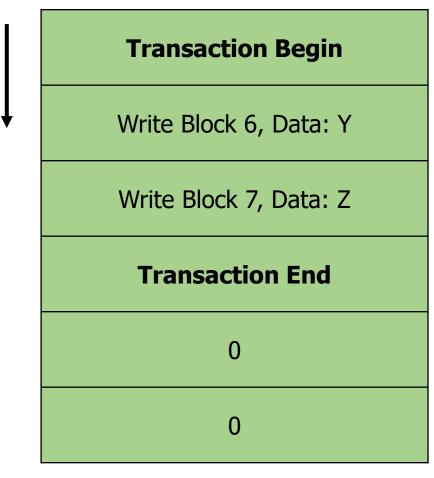
• Write transaction start to journal

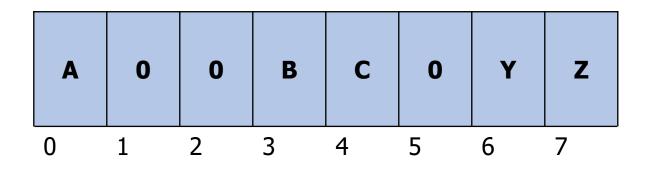

Journal



- Write transaction start to journal
- Then actions for that transaction
 - Along with the data
 - Journal must be multiple blocks in size

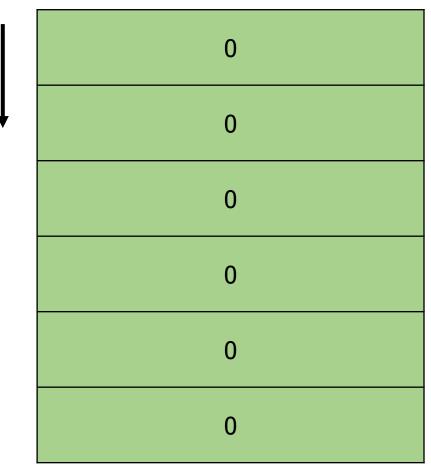
Journal

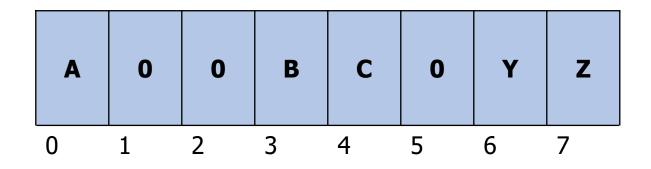




- Write transaction start to journal
- Then actions for that transaction
 - Along with the data
 - Journal must be multiple blocks in size
- "Commit" by writing transaction end

Journaling example


Journal



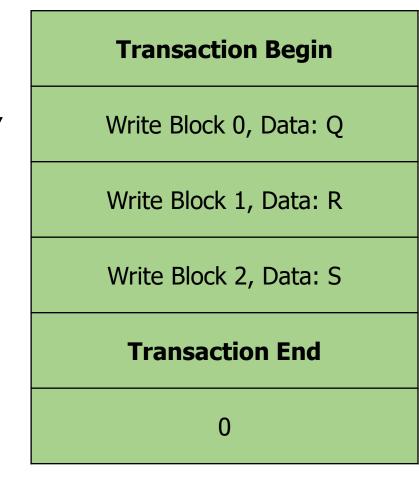
 Sometime after transaction is written, data can actually be recorded to disk

Journaling example

- Sometime after transaction is written, data can actually be recorded to disk
- And then journal can be cleared

Resolving crashes with journaling

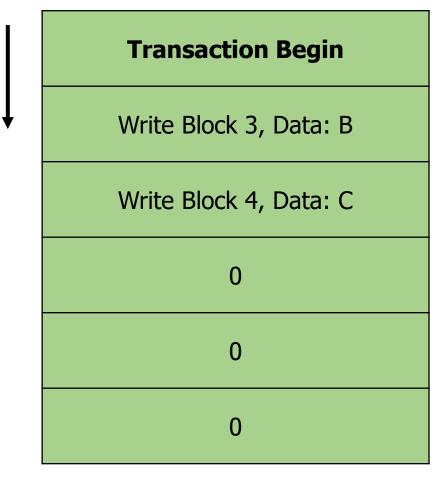
- The next time the computer boots, OS resolves filesystem:
- 1. No transactions happening when crash occurred
 - Journal is empty. Do nothing because there were no outstanding transactions.
- 2. Crash occurred *before commit* (before Transaction End):
 - There is data in the journal, but no commit message.
 - Just clear the log to *roll back* the transaction.
- 3. Crash occurred *after commit*, while writing data to main part of disk.
 - We don't know how much of the transaction was finished.
 - However, the journal tells us exactly what must be done!
 - *Replay* the transaction (from the beginning), then clear the journal.


Break + Check your understanding – resolve after crash

Transaction Begin							
Write Block 0, Data: Q							
Write Block 1, Data: R							
Write Block 2, Data: S							
Transaction End							
0							

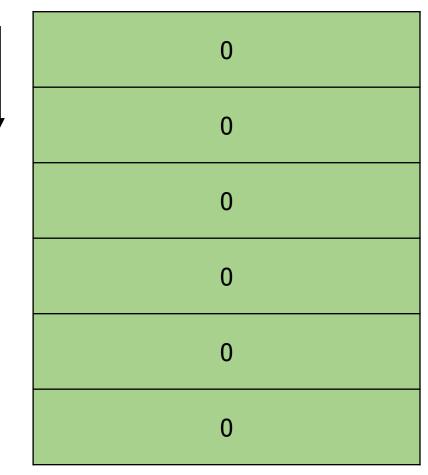
Q	R	0	В	С	0	Y	Z
0	1	2	3	4	5	6	7

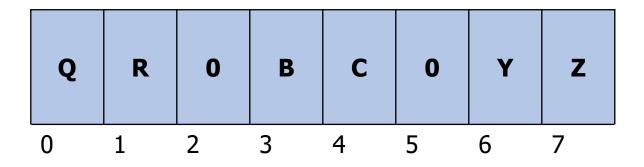
- When did this crash occur?
- What steps should be taken?


Break + Check your understanding – resolve after crash

Q	R	S	В	С	0	Y	z
0	1	2	3	4	5	6	7

- When did this crash occur?
 - After commit
 - Some data may have even been written (impossible to know) Note: only look at the journal
- What steps should be taken?
 - Replay transaction and perform the writes


Break + Check your understanding – resolve after crash again



Q	R	0	В	С	0	Y	Z
0	1	2	3	4	5	6	7

- When did this crash occur?
- What steps should be taken?

Break + Check your understanding – resolve after crash again

- When did this crash occur?
 - Before transaction committed
- What steps should be taken?
 - Delete partial transaction from journal
 - No need to edit disk blocks

Journaling performance

- Transactions only need to be written to the journal for writes
- Interactions with disk can still be cached as before
 - Would be lost in a crash, but no consistency problems
 - Several writes can be combined into one transaction
- Can avoid writing all disk blocks twice by only tracking metadata
 - Writes to bitmaps, inodes, and directories are journaled
 - Writes to file data blocks just happen whenever
 - File could still be corrupted! But the *filesystem* is safe
 - Likely only corrupted in units of whole blocks

Outline

- Disk Caching
- Classical Filesystems
 - FFS
 - FAT
- Improving Reliability
 - FSCK
 - Journaling
- Journaling Filesystems
 - ext3/ext4
 - NTFS
- Copy-On-Write
 - ZFS

ext2/ext3/ext4

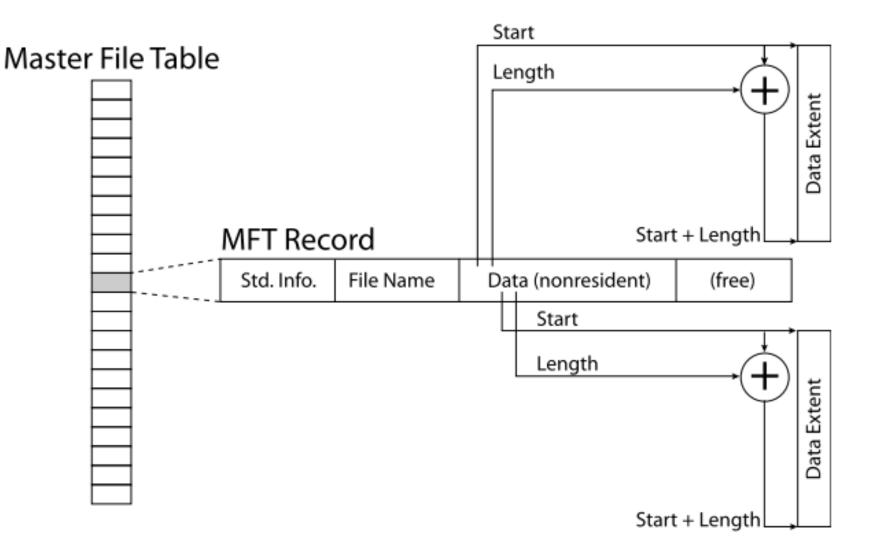
- extended filesystem default for Linux
- ext2 (1993)
 - "Block groups" rather than cylinder groups, of arbitrary size
- ext3 (2001)
 - Adds journaling
 - Configuration options choose to journal either everything or metadata-only
- ext4 (2006)
 - Extents, encryption
 - Used on modern-day linux systems

Extents reduce number of pointers to data blocks

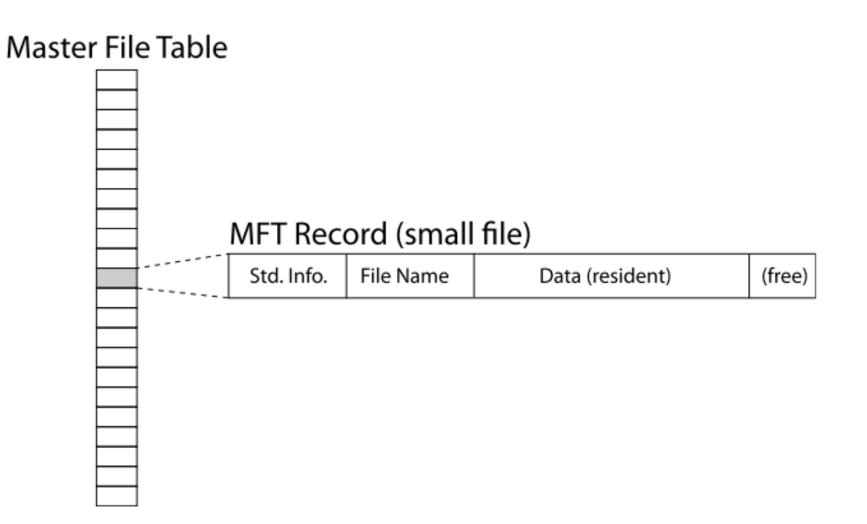
- Extents
 - Instead of raw block addresses
 - Store starting block address and length
 - Greatly compacts sequentially stored data pointers in inodes
- ext4 uses extents
 - 4 extents per file
 - Large, fragmented files use hierarchical system like original inodes

Other ext4 advances

- Encryption
 - Encrypts a directory and all of its contents
 - File names and file data
 - AES encrypt/decrypt is performed on data blocks during read/write
- Directory data structure
 - Htree (specialized B-tree)
 - Enables large subdirectory chains and many files with good seek time


NTFS

- NT File System modern Windows filesystem (1993)
 - Designed for Windows NT (Windows 2000 and up)
 - Uses Master File Table rather than Allocation Table
- Has grown to include many features we've seen
 - Journaling
 - Extents
 - Encryption
 - Directories using B-Trees
- Adds compression


NTFS Master File Table

- Master File Table
 - Similar in practice to an array of inodes
 - Except that a single file can claim multiple MFT records
 - Additional records are indirected additional data block pointers
- Each MFT Record contains
 - Standard attributes
 - Name and pointer to parent directory
 - Storage space
 - Can hold extents to point to series of data blocks
 - Can hold pointers to additional MFT records (for more data blocks)
 - Can hold file data itself!! (if small enough)

NTFS with medium-sized, mostly non-fragmented file

NTFS with a small file

NTFS can automatically compress files

- Before write to disk, compress file data blocks
 - Only write smaller compressed data
- After read from disk, decompress file data blocks

- Interesting tradeoff
 - Read less total blocks from disk
 - Spend more CPU time manipulating blocks

Break + Extend Thinking

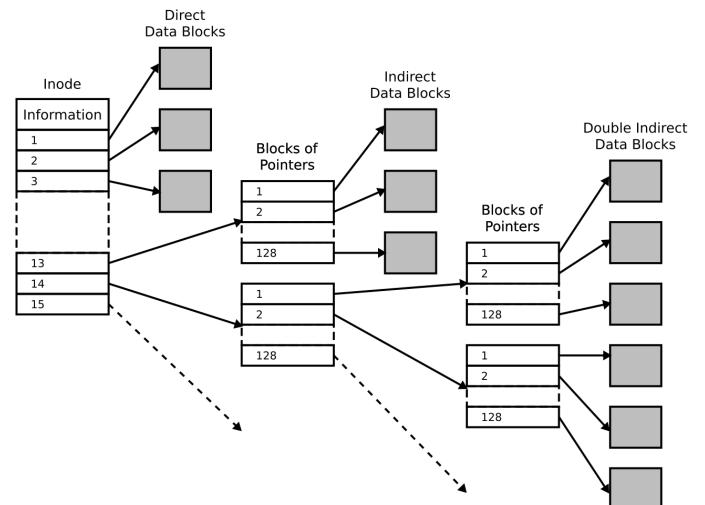
- In Windows 10, a service compresses infrequently used files
 - What files will this work on and what won't this help with?

Break + Extend Thinking

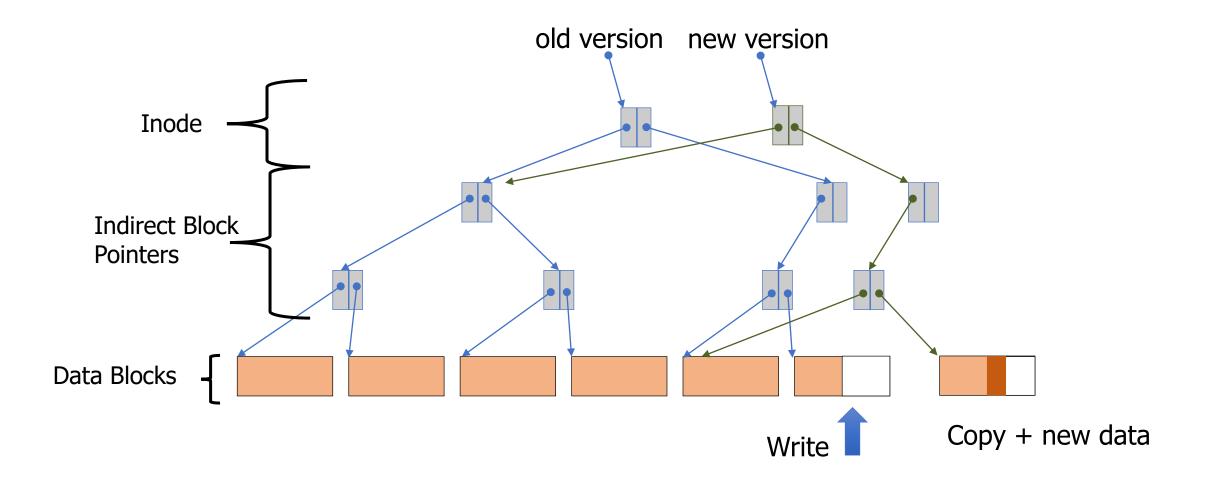
- In Windows 10, a service compresses infrequently used files
 - What files will this work on and what won't this help with?

- Text files are super compressible!!
- Code binaries are maybe compressible
- Unfortunately, can't compress *already compressed* files
 - Particularly: videos and music

Outline


- Disk Caching
- Classical Filesystems
 - FFS
 - FAT
- Improving Reliability
 - FSCK
 - Journaling
- Journaling Filesystems
 - ext3/ext4
 - NTFS
- Copy-On-Write
 - ZFS

Adding file versioning through copy-on-write


- Correctness could also come with a bonus: ability to version files
 - File could be rolled back to an older version from a prior point in time
- Method: instead of over-writing existing data block
 - Write update to a brand new data block
 - Create a new inode for the file that points to the new data block
 - And still points to original data for the other unmodified blocks
 - New inode points to new version of file
 - Old inode points to old version of file
- No longer needs journal for correctness

Reminder: hierarchical inodes

- Likely some bit in each entry specifies whether it points at:
 - 1. A data block
 - 2. A block with additional data pointers
- This system can recurse multiple layers deep
 - Allows for really large files

Copy-on-write example

• Developed by Sun Microsystems, now Oracle (2006)

• Uses Copy-on-Write transactions

- Snapshots
 - Enabled by copy-on-write
 - Points in time for the filesystem can be "snapshot"
 - Files can be returned to prior versions from the snapshot

Pooled file system

- ZFS (and other filesystems) use a concept of pools of storage
 - Flips around disk-filesystem relationship
 - Instead of one filesystem per partition and multiple partitions per disk
 - One filesystem manages multiple disks
- Replaces need for RAID by allowing filesystem to make choices

- Common design pattern in computer systems
 - Abstractions make systems easy to use
 - Breaking abstractions allows for improved performance

Log-Structured File Systems

- Can go further along copy-on-write path
 - Entire disk is just a log of updates to files and inodes
- No longer doing small writes all over disk
 - Jumping between inodes and data blocks
 - Small, random writes are bad for HDD seek
- Instead, treat disk as a circular buffer that updates are written to
 - Write new data, then new inode after it, then next new data
 - All writes end up occurring sequentially
 - Garbage collect old file versions eventually when space gets low

Outline

- Disk Caching
- Classical Filesystems
 - FFS
 - FAT
- Improving Reliability
 - FSCK
 - Journaling
- Journaling Filesystems
 - ext3/ext4
 - NTFS
- Copy-On-Write
 - ZFS