
Lecture 14:
Security

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Tyler Bletsch (NC State), Berkeley CS61C

Today’s Goals

• Introduce OS security considerations.

• Describe memory-based attacks and defenses.

• Explore speculative execution attacks and ramifications.

2

Why is computer security so important?

• Most public security happens at least in
some portion on the honor system
• Pretty easy to break a window

• Keyed locks are easy to pick

• Master keys can be determined and
manufactured (Matt Blaze attack)

• Laws apply after you’ve done it

3

https://www.mattblaze.org/masterkey.html

Early computers didn’t have any security either

• Simple machines for doing computation do not
have private files or contention

• Timeslicing machines meant there were multiple
users, but all were employees of the same
company
• Permissions needed to be as secure as a file in a

locked drawer on a desk

“The act of breaking into a computer system has to
have the same social stigma as breaking into a
neighbor's house. It should not matter that the
neighbor's door is unlocked.”
- Ken Thompson, Turing Award Lecture, 1984

4

Connectivity of computers makes security a top concern

• Importantly, physical item security is dependent on the fact that
one person can only steal one thing at a time
• And it’s usually obvious when theft occurs

• The internet changed all of this for computers
• Usually not people breaking into computers manually, one at a time

• Instead it is computers breaking into computers by means of scripting

• And you can access a computer from anywhere on Earth

• Breaking into or controlling one car is a crime
• Controlling 100,000 cars remotely is a problem for the manufacturer

5

Mirai botnet (2016)

• Takes control of up to 600,000 insecure connected devices
• IP-attached cameras, DVRs, routers, printers

6

Botnets can be directed towards denial-of-service attacks

• Mirai is used for
DDOS attacks on
various websites
• Krebs on

Security blog
gets 623 Gbps of
traffic during one
attack

7

DDOS attacks targeting Krebs on Security

8

• Design for security

• Memory attacks and defenses
• Buffer overflow and No-Execute bit

• Return-Oriented Programming and Address Space Layout Randomization

• Speculative execution attacks
• Meltdown

• Spectre

Outline

Trusted Computing Base (TCB)

• Trusted Computing Base is everything the OS relies on to enforce
security
• If everything outside of the TCB is “evil”, the TCB can still be trusted

• Important to be a clear, minimum set of components

• TCB includes
• Scheduler, Memory Management, Parts of file system, Parts of device

drivers

• Anything else must be assumed malicious
• Processes memory accesses, System call arguments, Received packets

9

Modern code bases are enormous

Program/Use Case Millions of Lines
of Code

Unix v1.0 0.01

Average iPhone app 0.04

Space Shuttle 0.4

Windows 3.1 2.5

Mars Curiosity Rover 5

Firefox (2015) 9.7

F-35 Fighter jet 24

Microsoft Office 2001 25

Windows 7 40

Facebook (2015) 62

Debian 5.0 codebase 68

10

• For many projects, no one
person has read and
understood all of it

• TCB needs to be agreed upon
by everyone working on the
project
• And needs to enforced by

everyone in the project

https://www.informationisbeautiful.net/
visualizations/million-lines-of-code/

Writing auditable code

• Code style and semantics really do matter!!
• If you want code to be secure, it needs to be read AND understood by

many people

• This is why I focus so much on semantics in Intro to C/C++

• Bad code style/semantics builds up cognitive load of the reader
making them less likely to notice when something is wrong
• 0 versus NULL

• &buf[0] versus &(buf[0])

• int x, y, z; versus int x; int y; int z;

11

Apple “goto fail” SSL bug

...

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

...
12

Spacing intentional. This code mixes tabs and
spaces and has random extra line breaks.

It is actually decently commented overall,
just not in this particular section.

Apple “goto fail” SSL bug

...

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

...
13

Spacing intentional. This code mixes tabs and
spaces and has random extra line breaks.

It is actually decently commented overall,
just not in this particular section.

Apple “goto fail” SSL bug

...

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

...
14

Outside of IF statement!! Always runs.

Spacing intentional. This code mixes tabs and
spaces and has random extra line breaks.

It is actually decently commented overall,
just not in this particular section.

Security properties OS should enforce

• Confidentiality
• Private information should remain private

• Example: processes can’t read memory in another process

• Integrity
• Mechanisms should not be modified without permission

• Example: OS data structures can’t be modified by processes

• Availability
• Resources on the computer should be able to be fairly accessed

• Example: network access is shared among processes

15

OS security concerns

• Processor access
• Integrity: User versus kernel mode

• Availability: Timeslicing

• Memory access
• Confidentiality and Integrity: Virtual memory (and permissions)

• Availability: Swapping

• File access
• Confidentiality: Permissions (user and group)

• Integrity: only accessible through system calls

16

What about devices?

• Device access
• Confidentiality: User permissions… sort of?

• This gets complicated
• Should any app I run be able to activate my webcam or microphone?

• When should Uber be able to access my location?

• Still figuring this one out
• Smartphones are at the forefront

17

Security is an arms race

• There is no single fix for system security
• New attacks are constantly being discovered

• New solutions are constantly being applied

1. Find a vulnerability and how it can be exploited

2. Fix vulnerability

3. Go back to 1

• But if the OS is designed with security in mind, it’s hopefully
harder to find vulnerabilities in the first place

18

Break + xkcd

19https://xkcd.com/538/

20

• Design for security

• Memory attacks and defenses
• Buffer overflow and No-Execute bit

• Return-Oriented Programming and Address Space Layout
Randomization

• Speculative execution attacks
• Meltdown

• Spectre

Outline

What’s wrong with this code?

#include <stdlib.h>

#include <stdio.h>

int main() {

char name[1024];

printf("What is your name? ");

scanf("%s", name);

printf("%s is cool.\n", name);

return 0;

}

21

Buffer overflow potential with “nice” input

22

Buffer overflow potential with “evil” input

23

Buffer Overflow

• Arrays (buffers) in C are not bounds checked
• Can keep writing past the end of the array

• Overwrites either data section or stack section

• Still an incredibly common problem in C

• Key problem
• Trusting input from an untrustworthy source

• Users are not part of the trusted computing base

• Certainly not arbitrary inputs they can make

24

Heartbleed attack

• Vulnerability in OpenSSL
• 2014

• Started the trend of
vulnerabilities with cool
names and logos

25

Heartbleed attack

• Vulnerability in OpenSSL
• 2014

• Started the trend of
vulnerabilities with cool
names and logos

26

Unsafe C library functions (and replacements)

Better choices:

27

char *fgets(char *s, int size, FILE *stream)

snprintf(char *str, size_t size, const char *format, ...);

strncat(char *dest, const char *src, size_t n)

strncpy(char *dest, const char *src, size_t n)

vsnprintf(char *str, size_t size, const char *format, va_list ap)

Buffer overflows can overwrite important variables

• Long input string
can overwrite
variables on the
stack
• Such as the

password check

28

int main(int argc, char *argv[]) {

char passwd_ok = 0;

char passwd[8];

strcpy(passwd, argv[1]);

if (strcmp(passwd, "niklas")==0)

passwd_ok = 1;

if (passwd_ok) { ... }

}

longpassword1

Buffer overflows can overwrite function pointers

• Overwriting a function
pointer can allow you to
redirect code anywhere

• First writing machine code
in the stack then
overwriting function pointer
to execute it allows for
arbitrary code execution

29

char buffer[100];

void (*func)(char*) = thisfunc;

strcpy(buffer, argv[1]);

func(buffer);

arbitrarycodeX

Return addresses constantly live on the stack

• Recall: When a function is called…
• parameters are pushed on stack

• return address pushed on stack

• called function puts local variables on the stack

• Memory layout

• C’s calling convention means arbitrary execution could happen
anywhere!

30

arbitrarystuffX

What do you do with arbitrary
execution?

• Open a shell that can run anything…

• Top: C code

• Middle: position-independent x86
assembly

• Bottom: machine code hex

31

Morris Worm

• November 02, 1988
• Roughly 88,000 computers on

internet at the time

• Worm
• Invading program that installs

itself on additional computers

• Infected several thousand
computers, taking down
internet for several days

32

How the worm entered computers: three methods

1. Debug vulnerability in sendmail – an email sending service
• Connect, enter debug mode, send arbitrary code to execute

2. Buffer overflow in finger – a command to list user details
• Send request with more than 512 bytes of arguments

• Execute /bin/sh

3. Guess passwords
• Get list of users for the machine worm is already running in

• Guess username, reverse username, 400 “popular” words, entire dictionary

33

Effects of Morris Worm

• Morris Worm created too many copies of itself
• Checked if there was already a worm on the computer before running

• 1 out of 7 of the executables just ran anyways (too high a default)

• Computers ended up with many processes running
• Check your understanding: How are too many processes harmful?

34

Effects of Morris Worm

• Morris Worm created too many copies of itself
• Checked if there was already a worm on the computer before running
• 1 out of 7 of the executables just ran anyways (too high a default)

• Computers ended up with many processes running
• Long response time due to so many processes
• Thrashing due to too much memory pressure
• Slowed computers to a halt

• Outcomes:
• Invaded ~6000 computers in hours (10% of the Internet at the time)
• CERT was created to manage software security
• First Computer Fraud and Abuse Act (CFAA) prosecution

35

Disable execution in the stack

• The OS can allow a region to be written or executed
• But not both!

• NX bit in x86-64 (no-execute)

36

Overcoming no-execute

• Do we need malicious code to have malicious behavior? No

37

argument 2

argument 1

RA

frame pointer

locals

buffer
Attack code

(launch a shell)

Address of attack code

Code injection

argument 2

argument 1

RA

frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code reuse (!)

"Return-into-libc" attack

argument 2

argument 1

RA

frame pointer

locals

buffer

Default Stack

Return-oriented programming

• More general process to enable
arbitrary execution without code
rewrite

• Look through assembly instructions
followed by a return
• Known as “gadgets”

• Chain these gadget together to make
working code
• By placing addresses on stack

38

Gadgets can create a Turing-complete programming environment

39

• Loading constants

• Arithmetic

• Control flow

•Memory

add eax, ebx ; ret

stack
pointer

pop eax ; ret

stack
pointer

0x55555555

pop esp ; ret

stack
pointer

mov ebx, [eax] ; ret

stack pointer

0x8070abcd
(address)

pop eax ; ret

...

Address-space layout randomization (ASLR)

• Randomize memory region
locations in virtual memory
• Already spread throughout

physical memory

• Move locations of libraries and
code relative to each other
• Arbitrary address for attacker to

send code to gets harder to
predict!

• Implemented 2005-2007
• Linux, MacOS, and Windows
• 2011 for Android and iOS

40

Running a process again re-randomizes its layout

Overcoming ASLR

• ASLR is a probabilistic approach, merely increases attacker’s
expected work
• Each failed attempt results in crash; at restart, randomization is different

• Counters:
• Information leakage

• Program reveals a pointer? Game over.
• De-randomization attack

• Just keep trying! (carefully)
• 32-bit ASLR defeated in 216 seconds

• Under certain scenarios is less effective
• Poor source of randomness

41

Break + Question

• The Common Vulnerabilities and Exposures (CVE) system
documents publicly released software vulnerabilities.

• How long has it been since the last CVE due to a buffer overflow?

42https://www.cvedetails.com/vulnerability-list.php

https://www.cvedetails.com/vulnerability-list.php

Break + Question

• The Common Vulnerabilities and Exposures (CVE) system
documents publicly released software vulnerabilities.

• How long has it been since the last CVE due to a buffer overflow?
• Today is Thursday (11-10)

43https://www.cvedetails.com/vulnerability-list.php

Tuesday (11-08)

Discovered Friday (11-04), Updated Monday (11-07)

https://www.cvedetails.com/vulnerability-list.php

Break + Question

• The Common Vulnerabilities and Exposures (CVE) system
documents publicly released software vulnerabilities.

• How long has it been since the last CVE due to a buffer overflow?

44https://www.cvedetails.com/vulnerability-list.php

Last MAJOR overflow vulnerability, August 10th

https://www.cvedetails.com/vulnerability-list.php

45

• Design for security

• Memory attacks and defenses
• Buffer overflow and No-Execute bit

• Return-Oriented Programming and Address Space Layout Randomization

• Speculative execution attacks
• Meltdown

• Spectre

Outline

• To understand Speculative Execution Attacks you really need to
understand low-level software and hardware

• A few pieces of background knowledge will be useful:
• Timing Side Channels

• Speculative Execution

• Keeping the kernel in Virtual Memory

46

Background: Side channel attacks

• Important for understanding speculative execution attacks

• Many physical systems have properties that may leak information
about internal state
• Determine RSA key bits based on power use during a decrypt operation

• Determine length of password by how long it takes to check it

47

Timing attacks are one side channel

• Timing attacks can be overcome with constant-time algorithms
which always take as long as the worst-case execution time
• But this means reducing performance

• Caches are essentially one big timing attack
• Speeds up access to data if it is present in the cache

• This was the goal!!

• An attack can know which data was accessed recently

• But that seems harmless, right?

48

Background: Speculative Execution

Modern processors want to always be doing something

• What if we’re going to branch based on a memory load?

• What if we just guess what the result will be and start executing
early!!

So they are often “speculatively executing” instructions

• Perform the operation and throw out the result if we shouldn’t
actually do it

• For example, branch prediction

49

Optimization: Kernel Mapped in Virtual Memory

Page tables map virtual memory to physical
memory for a process

But actually, we often leave the OS memory
in the page table too…

• Each page is marked as no-read, no-write
• Faster to switch back to the OS

• No need to TLB flush or page table swap if
the OS intends to go right back to process

50

Process
Memory

Empty

OS
Memory

Empty

Virtual
Memory

0x00000000

0xFFFFFFFF

Meltdown

Security vulnerability in all modern processors

that allows arbitrary reads from memory

Disclosed in January 2018 by:
● Jann Horn (Google Project Zero),
● Werner Haas, Thomas Prescher (Cyberus Technology),
● Daniel Gruss, Moritz Lipp, Stefan Mangard, Michael Schwarz (Graz University of

Technology)

Details:

• https://hackernoon.com/a-simplified-explanation-of-the-meltdown-cpu-vulnerability-ad316cd0f0de

• https://meltdownattack.com/meltdown.pdf

51

https://twitter.com/tehjh
https://googleprojectzero.blogspot.com/
https://www.cyberus-technology.de/
https://gruss.cc/
https://mlq.me/
https://www.iaik.tugraz.at/content/about_iaik/people/mangard_stefan/
https://misc0110.net/
https://www.iaik.tugraz.at/
https://hackernoon.com/a-simplified-explanation-of-the-meltdown-cpu-vulnerability-ad316cd0f0de
https://meltdownattack.com/meltdown.pdf

Step 1: Read from a kernel address

mov $KERNEL_ADDRESS_OF_SECRET, %r12

mov (%r12), %eax

%eax now holds a byte of memory that we shouldn’t able to access

• This will be an invalid page fault!
• Once the instruction actually hits the end of the pipeline...

• For now, it loads that value into %r12 right away and continues
executing speculatively

52

Step 2: Read based on secret

mov $KERNEL_ADDRESS_OF_SECRET, %r12

mov (%r12), %eax

mov MY_ARRAY(%eax), %edx

%edx is a valid read from our own memory

• This is never going to finish either because the process will have
an exception from the prior instruction, but it will start
executing...

• MY_ARRAY here is a 256-byte array which is not in the cache

53

Step 3: Handle the Exception

mov $KERNEL_ADDRESS_OF_SECRET, %r12

mov (%r12), %eax

mov MY_ARRAY(%eax), %edx

The processor realizes you tried to read from memory you didn’t
have access to and generates an exception

• You can catch these and recover
• The invalid instruction and ones after it are rolled back as if they

never happened

54

Everything’s still safe right?

The processor never saved any results from the invalid accesses to
memory in registers

• So there’s no problem, right?

55

We forgot about the cache

The load affected the cache!!!

mov $KERNEL_ADDRESS_OF_SECRET, %r12

mov (%r12), %eax

mov MY_ARRAY(%eax), %edx

The value at address MY_ARRAY+%eax was saved in our cache

56

Step 4: Time loads from memory

for (int i=0; i<255; i++){

start_time = time();

int temp = MY_ARRAY[i*CACHE_BLOCKSIZE];

stop_time = time();

if ((stop_time-start_time) <= SHORT_TIME){

secret = i;

}

}

57

The cache speeds up the access to the one memory
address that was cached due to speculative execution

Step 5: Repeat and Profit

• Now we know the value of a single byte

• But we can repeat this process over and over to read arbitrary
memory
• Read from memory at ~500 kbps

• Incredible part is how relatively simple this attack is
• Does require systems knowledge of multiple domains

• Computer architecture, OS, and security

58

How do we fix this?

1. Stop speculatively executing
• Already in the hardware
• Would slow all computers down a lot

2. Stop caching speculative loads
• Already in the hardware
• Would slow all computers down a lot

3. Stop leaving OS memory in the page table ✔
• Would slow all computers down somewhat
• Kernel Page Table Isolation

• Estimated 5-30% performance loss
• Improved by use of PCID bit in TLB

59

Spectre

• Speculative execution targeting branch
prediction

• Disclosed in January 2018 by

• Jann Horn (Google Project Zero) and

• Paul Kocher in collaboration with, in alphabetical
order, Daniel Genkin (University of
Pennsylvania and University of Maryland), Mike
Hamburg (Rambus), Moritz Lipp (Graz University of
Technology), and Yuval Yarom (University of
Adelaide and Data61)

60

https://twitter.com/tehjh
https://googleprojectzero.blogspot.com/
https://paulkocher.com/
https://www.cis.upenn.edu/~danielg3/
https://www.upenn.edu/
https://www.umd.edu/
https://www.shiftleft.org/
https://www.rambus.com/
https://mlq.me/
https://www.iaik.tugraz.at/
https://cs.adelaide.edu.au/~yval
https://www.adelaide.edu.au/
https://www.data61.csiro.au/

Background: Branch Prediction

61

Incredibly
accurate in
modern day
computers
>95%

Spectre v1

• Repeat meltdown-style attack using conditional branches
• Conditional branches are especially prevalent for bounds checks in

software virtual machines (like the Javascript runtime)

1. Train conditional branch predictor that bounds check branch
always succeeds

2. Make an invalid bounds-checked read, affecting cache state

3. Use cache timing analysis to determine value of read byte

62

Spectre v2

• Combine indirect branch prediction and in-kernel ROP gadgets
• Indirect branch predictors try loading a guessed address

1. Train indirect branch predictor to go to a particular address

2. Make a system call requesting something

3. Within the system call, a branch mis-prediction that runs the
targeted gadget, affecting cache state
• Note: the gadget runs with kernel permission on physical memory

4. Use cache timing attack to determine result

63

Spectre fallout

• Spectre allows code inside a process to access all memory of the
process
• Bypassing any security mechanisms or containerization

• Example: Javascript running inside a web browser

• Led to increased push for “one website per process”

• Spectre is harder to fix too. Can’t just change page tables
• No one simple thing can fix all of these problems

• Stopping branch prediction helps, but we don’t want to stop it everywhere

• Active research on targeted branch prediction disabling

64

Ramifications of speculative execution attacks

• Particularly big deals in the era of cloud computing
• Anyone can run a program on an AWS server

• And now can maybe read data from the other running programs…

• Speculative execution attacks are a new era for computer security
• Hardware is still being actively developed to address attacks

• Websites can be fixed in hours, Programs in days, OSes in weeks, and
Hardware takes years

• Attacks are still being developed

• OS continues to have to adapt to both sides

65

66

• Design for security

• Memory attacks and defenses
• Buffer overflow and No-Execute bit

• Return-Oriented Programming and Address Space Layout Randomization

• Speculative execution attacks
• Meltdown

• Spectre

Outline

