
Lecture 12:
Virtual Memory Optimizations

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Administrivia

• Driver Lab is due next week Tuesday!
• There’s quite a lot of work for this one

• You need to write your own tests for the GPU

• There are lots of edge cases where students commonly lose points

• Get started ASAP

• Reminder: office hours are available
• 14 hours across Monday-Thursday

• Come ask questions about the class, labs, debugging, etc.

• Chronically underutilized this quarter

2

Today’s Goals

• Explore optimizations to memory paging.

• Insight into how virtual memory is used and what it looks like in today’s
systems.

• Review of the memory hierarchy and how the OS interacts with each
level.

• Introduce swapping as a mechanism for enabling more virtual memory
than physical memory.

• Explore several page replacement policies that control swapping.

3

Memory paging

• Divide memory into small, fixed-sized pages

• Pages of virtual memory map to pages
of physical memory
• Like segments were mapped,

but many more pages than segments

• Processes and their sections
can be mapped to any
place in memory

4

Page table translates virtual addresses to physical addresses

• Use topmost bits of virtual
address to select page table entry
• One page table entry per each

virtual page

• Add address at page table entry
to bottommost bits
• Actually just concatenate the two

• Just like segment tables, there
will be a different page table for
each process

5

CPU

Process A

Process B

VPN PPN Valid?

0 2 1

1 X 0

2 X 0

3 6 1

4 X 0

5 X 0

6 X 0

7 4 1

8 X 0

Process B Page Table

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Paging challenges

• Page tables are slow to access
• Page tables need to be stored in memory due to size

• MMU only holds the base address of the page table and reads from it

• Two memory loads per load!!!

• Going to have to fix this…

• Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused

• Becomes a serious issue on 64-bit systems

7

8

• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline

Caching can speed up page table access

• How do we make page table access faster?
• How do we make memory access faster?

• Cache it!

• Code and Stack have very high spatial locality

9

TLB caches page table entries

• Translation Lookaside Buffer
• Fully-associative cache (only compulsory misses)

• Holds a subset of the page table (VPN->PPN mapping and permissions)

• On a TLB miss, go check the real page table (done in hardware)

10

Address translation with TLB

11

hardware
hardware or software
software

Virtual Address

TLB
Lookup

Page Table
“Walk”

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access
Permitted

Protection
Fault

SEGFAULT

Page
in Mem

Check cacheFind in Disk Find in Mem

Context switches with a TLB

• A process must only access its own page table entries in the TLB!
• Otherwise, the mapping is wrong, and it accesses another process…

• OS needs to manage the TLB

• Option 1: Flush TLB on each context switch
• Costly to lose recently cached translations

• Option 2: Track with process each entry corresponds to
• x86-64 Process Context Identifiers (12-bit -> 4096 different processes)

• Extra state for the OS to manage if it has more processes than that

12

Software controlled TLBs

• Some RISC CPUs have a software-managed TLB
• TLB still used for translation, but a miss causes a fault for OS to handle

• OS looks in page table for proper entry

• OS evicts an existing entry from TLB

• OS inserts correct entry into TLB

• Special instruction allows OS to write to TLB

• Hardware is simpler and OS has control over the TLB functionality

• Can prefetch page table entries it thinks might be important

• Can flush entries relevant to other processes

• TLB misses take longer to complete, however

13

14

• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline

Paging disadvantages

1. Page tables are slow to access
• Memory access for page table before any other memory access

• TLB can speed this up considerably for common execution

2. Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused

• Becomes a serious issue on 64-bit systems

15

Why do page tables take so much storage space?

• For every virtual page,
there must exist an entry
in the page table
• Even though most virtual

addresses aren’t used!

• 32-bit address space with 4 kB pages -> 1 million entries
• At least 8 MB of storage

• 64-bit address space would require 36 exabytes of page table storage…

16

• How do we eliminate extraneous
entries from the page tables?

Create multiple page tables, each with useful mappings only

17

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

2 0

3 0

4 0

5 1 7

6 0

7 0

Create multiple page tables, each with useful mappings only

18

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

2 0

3 0

4 0

5 1 7

6 0

7 0

• Collect groups of page table entries
(call them “page table entry pages”?)

Create multiple page tables, each with useful mappings only

19

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

4 0

5 1 7

• Collect groups of page table entries

• Only keep groups that have valid
mappings in them

Create multiple page tables, each with useful mappings only

20

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

Virtual Page
Number

Valid? Physical Page
Number

4 0

5 1 7

• Collect groups of page table entries

• Only keep groups that have valid
mappings in them

• Remaining groups are now separate
tables

• Collect groups of page table entries

• Only keep groups that have valid
mappings in them

• Remaining groups are now separate
tables

• Create a directory of page tables to
collect existing page tables

Create multiple page tables, each with useful mappings only

21

Virtual Page
Number Range

Valid? Page Table
Address

0-1 1

2-3 0

4-5 1

6-7 0

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

Virtual Page
Number

Valid? Physical Page
Number

4 0

5 1 7

Multilevel page tables

22

Level 1

Page Table
(Directory)

Level 2

Page Tables

Data Pages

Valid page

Root of the Current

L1 Page Table
(Hardware register)

p1

offset

p2

Virtual Address
p1 p2 offset

01112212231

10-bit

L1
index

10-bit

L2
index

Invalid page

P
h
y
s
ic

a
l
M

e
m

o
ry

Valid data in RAM

Unused RAM

Valid page table

Invalid page table

Multilevel page table logistics

• Virtual address is broken down into three or more parts
• Highest bits index into highest-level page table

• A missing entry at any level triggers a page fault

• Size of tables in memory
proportional to number of
pages of virtual memory used
• Small processes can

have proportionally small
page tables

23

Multilevel page tables can keep nesting

• Even page table
directory is often
sparse, so break
it up too

• x86-64
• Four levels of

page table

• 48-bit addresses
(256 TB RAM
ought to be
enough for
everyone right?)

24

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

9 bits 9 bits 12 bits
48-bit Virtual

Address:
Offset

Virtual
P2 index

Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Intel Ice Lake (2019): 5 layers!!

25

Check your understanding – multilevel page table

• How many memory loads
per read are there now?

26

Check your understanding – multilevel page table

• How many memory loads
per read are there now?
• 6

• As in each memory access
takes six times as long

• TLB is extremely
important

27

Additional optimization: large pages

• Always using large pages results in wasted memory
• Example: 1 MB page where only 1 KB is used

• Always using small pages results in unnecessary page table entries
• Example: 250 entries in a row to represent 1 MB of memory

• Can we mix in larger pages opportunistically?
• Small pages normally

• Large pages occasionally

• Huge pages rarely

28

x86-64 allows multiple-sized pages: 4 KB

• Normal x86-64 paging

29

x86-64 allows multiple-sized pages: 2 MB

30

• Page Size bit triggers
walk to skip next table
and go straight to
2 MB page in memory

• Remaining address
bits are used as offset
into larger page

x86-64 allows multiple-sized pages: 1 GB

31

• Can also skip straight
to 1 GB pages

• With a bit of extra
hardware, TLB can
hold large page entries
• Occupies a single TLB

entry for 1 GB of data
(250000 normal entries)

Other data structures for paging

• If hardware handles TLB misses
• Need a regular structure it can “walk” to find page table entry

• x86-64 needs to use multilevel page tables

• If software handles TLB misses
• OS can use whatever data structure it pleases

• Example: inverted page tables

• Only store entries for virtual pages with valid physical mappings

• Use hash of VPN+PCID to find the entry you need

32

Break + Question

• If every page of virtual memory was used, would a multi-level
page table take more or less space than a “flat” page table?

• How often is every page of virtual memory used?

33

Break + Question

• If every page of virtual memory was used, would a multi-level
page table take more or less space than a “flat” page table?
• More! Still need an entry for every “used” page

• Now would have to add tree structure as well

• How often is every page of virtual memory used?
• Never! That would be 18 exabytes of storage in one process

• For refence: ~44000 exabytes is all of human digital storage (2022)

34

35

• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline

OS tracks regions rather than pages

• A Region is a collection of one or more pages for a process
• An Address Space is a collection of regions for a process

• The OS will keep a data structure of regions for each process
• Includes starting page/address and size
• Protection fields
• Additional bookkeeping information

• Is it a kernel region or an application?
• Is it a “pinned” region, i.e. a region we should never remove?
• Is the region in RAM or on disk?
• Is the region listed in the TLB yet?
• Has the region been modified?

36

Operations on regions

• Add
• Create a new region
• Accesses to virtual addresses in that range should now succeed

• Remove
• Remove the region entirely
• Accesses to virtual addresses in that range should now fault

• Move
• Change physical addresses associated with the region

• Protect
• Change protection status of region
• Could change from read-only to read-and-write

37

Considerations when adding new regions

• The new region goes in the OS data structure immediately

• However, we don’t necessarily need to allocate space in RAM
immediately or update the Page Table
• Those actions are a lot of work

• But maybe the process is never going to actually use most pages

• We could instead wait to see if the process uses pages

• And fix them up individually when exceptions occur

38

Page faults enable lazy allocation and lazy loading

• Paging is not just translation and overflow
• Paging provides an opportunity to be lazy about loading requested data

• Trick: don’t load data upfront, do it later when it’s first needed!
• This is an important performance optimization,

reducing program start time

39

Lazy loading in practice

• If a process requests a huge chunk of memory, maybe it will not
use all that memory immediately (or ever!).
• Programmers and compilers are sometimes greedy in their requests

• We can virtually allocate memory, but mark most of the pages “not
present”

• Let the CPU raise an exception when the memory is really used

• Then really allocate the demanded page

• Lazy allocation minimizes latency of fulfilling the request and it
prevents OS from allocating memory that will not be used.

40

Extra features of lazy loading

• Lazy loading also works for large code binaries
• Delay loading a page of instructions until it’s needed

• OS must also write zeros to newly assigned physical frames
• Program does not necessarily expect the new memory to contain zeros,

• But we clear the memory for security, so that other process’ data is not
leaked.

• OS can keep one read-only physical page filled with zeros and just give a
reference to this at first.

• After the first page fault (due to writing a read-only page), allocate a
real page.

41

Lazy allocation via copy-on-write with Fork

• Recall that fork + exec is the only way to create a child process
in unix

• Fork clones the entire process, including all virtual memory
• This can be very slow and inefficient, especially if the memory will just be

overwritten by a call to exec.

42

Lazy allocation via copy-on-write with Fork

• Copy on write is a performance optimization:
• Don’t copy the parent’s pages, share them

• Make the child process’ page table point to the parent’s physical pages

• Mark all the pages as “read only” in the PTEs (temporarily)

• If parent or child writes to a shared page, a page fault exception will occur

• OS handles the page fault by:

• Copying parent’s page to the child & marking both copies as writeable

• When the faulting process is resumed, it retries the memory write.

43

Back to adding regions

• Adding a Lazy Region
• Just add the region to the process data structure

• Later, when an exception occurs you can load data update the Page Table
as necessary

• Adding an Eager Region
• Do everything right away

• Add to data structure, load into RAM, update Page Table

• Example: a process’s code might be eagerly loaded along with the first
couple pages of the stack

44

Removing, moving, and protecting pages

• Modify the region in the data structure

• Also update the Page Table immediately
• Can’t do this lazily, as future accesses to pages MUST change

• But what if page table data is already in the TLB?!! Two options:
1. Flush the entire TLB (remove all entries in it)

2. Invalidate particular pages (removes individual entry from TLB if it exists)

• For performance, which to do depends on how many pages you’re updating.
Answer depends on the processor hardware, threshold is: 2-1000

45

OS management of processes with paging

• When loading a process
• Add regions to data structure

• For eager regions, also allocate RAM pages and update Page Table
• For lazy regions (most), don’t do anything now

• Some regions might connect to shared libraries already in RAM

• When a context switch occurs
• OS changes which page table is in use (%CR3 register in x86)

• When a fault occurs
• OS handles it by checking the region data structure and the page table

• Might be an invalid access (based on address or permissions)
• Might be a page that’s on disk or was lazily allocated

46

To see virtual memory info on Linux

• cat /proc/meminfo

• vmstat

• pmap

• top

• Try these commands yourself sometime!

Virtual memory in practice

• On Linux, the pmap command shows a process’ VM mapping.

• We see:
• OS tracks which file code is loaded from, so it can be lazily loaded

• The main process binary and libraries are lazy loaded, not fully in
memory

• Libraries have read-only sections that can be shared with other processes

• cat /proc/<pid>/smaps shows even more detail

References:

• https://unix.stackexchange.com/a/116332

• https://www.akkadia.org/drepper/dsohowto.pdf

48

https://unix.stackexchange.com/a/116332
https://www.akkadia.org/drepper/dsohowto.pdf

pmap on emacs

• “Mapping” shows source of the
section, more code can be loaded from
here later.
• “anon” are regular program data,

requested by sbrk or mmap.
(In other words, heap data.)

• Each library has several sections:
• “r-x--” for code can be shared
• “r----” for constants
• “rw---” for global data
• “-----” for guard pages:

(not mapped to anything, just reserved
to generate page faults)

• RSS means resident in physical mem.

• Dirty pages have been written and
therefore cannot be shared with others

49

top has a column showing shared memory

• The duplicate processes are
using a lot of shared
memory:
• ~50% of resident memory for

httpd is shared
~75% of resident memory for
sshd is shared

• Even if there is just one
instance of emacs running, it
may share many libraries
with other running programs.

• Total virtual memory is ~10x
larger than resident memory
• Processes only use a small

fraction of their VM!
• Due to sharing and lazy

loading.

50

Process side: requesting memory from the OS – brk()

• System call to change data segment size (the program “break”)
• Either set a new virtual address pointer for top of data segment

• Or increment the size of the data segment by N bytes

• These are the old system calls to dynamically change program
memory
• How malloc creates space

• “sbrk() and brk() are considered legacy even by 1997 standards”
• Removed from POSIX in 2001

• Still exists in some form in lots of OSes (including Nautilus)

51

Process side: modern requesting memory from the OS – mmap()

• Map (or unmap) files or devices into memory

• Given a file, places the file in the process’s virtual address space
• Process can request an address to place it at, which OS might follow

• Given flag MAP_ANONYMOUS, creates empty memory
• Initialized to zero and accessible from process
• Malloc implementation uses this

• Many other options
• Create huge page, create memory for a stack, shared memory

52

Break + Consideration

• Why use mmap() to put a file in your address space, when you
could just read()/write() it instead?

53

Break + Consideration

• Why use mmap() to put a file in your address space, when you
could just read()/write() it instead?

• Speed! No longer need to make system calls for each file access

• A downside: now you need to handle file interactions yourself

• Track offset for reading and writing

• Make sure you don’t go past the end of the file

54

55

• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline

Memory Hierarchy

56

The OS view on registers

• Illusion: separate set for each process

• Reality: separate set for each core (or each thread in a core)

• OS needs to save and update registers whenever the currently
running process changes

• Process and hardware handle moving memory into registers

57

The OS view on caches

• Mostly ignore them, handled by the hardware automatically

• Occasionally might need to clear them for security purposes

• Addresses in the caches are either entirely physical addresses

• Or are virtually indexed, physically tagged
• Cache lookup and TLB lookup happen in parallel

• TLB result is used as Tag for cache to determine if there was a hit

58

The OS view on memory

• Managed through virtual memory translation
• Paging (or Segmentation) that we talked about last time

• OS chooses which portions of processes go in RAM
• Other portions of memory get “swapped” to disk

• Writeable memory regions (stack, heap, global data) must be preserved

• Read-only memory regions (code) can be reloaded from original location

59

The OS view on disk

• Non-volatile memory store
• Everything else on the system disappears when power is removed

(and cannot be trusted across reboots)

• Backing store for lots of information
• Boot information: via “Master Boot Record” on disk
• Filesystem, which the OS manages access to through system calls
• Swap space, which the OS moves extra pages in and out of

• Disk is significantly bigger than RAM, so this will work

• Disk is a device that the OS manages and reads in “blocks”
• Compare to memory, which is directly addressed by processes

60

Traditional hard disk drives (HDDs) use magnetic regions

61

Solid state drives (SSDs) use flash memory

• Still non-volatile

• Significantly faster
• 0.1 ms to access

(10 ms for disk)

• More limited lifetime
than disk
• Limited writes

62

NMOS transistor with an additional conductor
between gate and source/drain which “traps”
electrons. The presence/absence is a 1 or 0

63

• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline

