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Administrivia

• Driver Lab is due next week Tuesday!
• There’s quite a lot of work for this one

• You need to write your own tests for the GPU

• There are lots of edge cases where students commonly lose points

• Get started ASAP

• Reminder: office hours are available
• 14 hours across Monday-Thursday

• Come ask questions about the class, labs, debugging, etc.

• Chronically underutilized this quarter
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Today’s Goals

• Explore optimizations to memory paging.

• Insight into how virtual memory is used and what it looks like in today’s 
systems.

• Review of the memory hierarchy and how the OS interacts with each 
level.

• Introduce swapping as a mechanism for enabling more virtual memory 
than physical memory.

• Explore several page replacement policies that control swapping.
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Memory paging

• Divide memory into small, fixed-sized pages

• Pages of virtual memory map to pages
of physical memory
• Like segments were mapped,

but many more pages than segments

• Processes and their sections
can be mapped to any
place in memory
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Page table translates virtual addresses to physical addresses

• Use topmost bits of virtual 
address to select page table entry
• One page table entry per each 

virtual page

• Add address at page table entry 
to bottommost bits
• Actually just concatenate the two

• Just like segment tables, there 
will be a different page table for 
each process
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Paging challenges

• Page tables are slow to access
• Page tables need to be stored in memory due to size

• MMU only holds the base address of the page table and reads from it

• Two memory loads per load!!!

• Going to have to fix this…

• Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused

• Becomes a serious issue on 64-bit systems
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• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline



Caching can speed up page table access

• How do we make page table access faster?
• How do we make memory access faster?

• Cache it!

• Code and Stack have very high spatial locality
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TLB caches page table entries

• Translation Lookaside Buffer
• Fully-associative cache (only compulsory misses)

• Holds a subset of the page table (VPN->PPN mapping and permissions)

• On a TLB miss, go check the real page table (done in hardware)
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Address translation with TLB
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Context switches with a TLB

• A process must only access its own page table entries in the TLB!
• Otherwise, the mapping is wrong, and it accesses another process…

• OS needs to manage the TLB

• Option 1: Flush TLB on each context switch
• Costly to lose recently cached translations

• Option 2: Track with process each entry corresponds to
• x86-64 Process Context Identifiers (12-bit -> 4096 different processes)

• Extra state for the OS to manage if it has more processes than that
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Software controlled TLBs

• Some RISC CPUs have a software-managed TLB
• TLB still used for translation, but a miss causes a fault for OS to handle

• OS looks in page table for proper entry

• OS evicts an existing entry from TLB

• OS inserts correct entry into TLB

• Special instruction allows OS to write to TLB

• Hardware is simpler and OS has control over the TLB functionality

• Can prefetch page table entries it thinks might be important

• Can flush entries relevant to other processes

• TLB misses take longer to complete, however
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• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy
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Paging disadvantages

1. Page tables are slow to access
• Memory access for page table before any other memory access

• TLB can speed this up considerably for common execution

2. Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused

• Becomes a serious issue on 64-bit systems
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Why do page tables take so much storage space?

• For every virtual page,
there must exist an entry
in the page table
• Even though most virtual

addresses aren’t used!

• 32-bit address space with 4 kB pages -> 1 million entries
• At least 8 MB of storage

• 64-bit address space would require 36 exabytes of page table storage…
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• How do we eliminate extraneous 
entries from the page tables?

Create multiple page tables, each with useful mappings only
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Virtual Page 
Number

Valid? Physical Page 
Number

0 1 2

1 1 3

2 0

3 0

4 0

5 1 7

6 0

7 0



Create multiple page tables, each with useful mappings only
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Virtual Page 
Number

Valid? Physical Page 
Number

0 1 2

1 1 3

2 0

3 0

4 0

5 1 7

6 0

7 0

• Collect groups of page table entries
(call them “page table entry pages”?)



Create multiple page tables, each with useful mappings only
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Virtual Page 
Number

Valid? Physical Page 
Number

0 1 2

1 1 3

4 0

5 1 7

• Collect groups of page table entries

• Only keep groups that have valid 
mappings in them



Create multiple page tables, each with useful mappings only
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Virtual Page 
Number

Valid? Physical Page 
Number

0 1 2

1 1 3

Virtual Page 
Number

Valid? Physical Page 
Number

4 0

5 1 7

• Collect groups of page table entries

• Only keep groups that have valid 
mappings in them

• Remaining groups are now separate 
tables



• Collect groups of page table entries

• Only keep groups that have valid 
mappings in them

• Remaining groups are now separate 
tables

• Create a directory of page tables to 
collect existing page tables

Create multiple page tables, each with useful mappings only
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Virtual Page 
Number Range

Valid? Page Table 
Address

0-1 1

2-3 0

4-5 1

6-7 0

Virtual Page 
Number

Valid? Physical Page 
Number

0 1 2

1 1 3

Virtual Page 
Number

Valid? Physical Page 
Number

4 0

5 1 7



Multilevel page tables
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Multilevel page table logistics

• Virtual address is broken down into three or more parts
• Highest bits index into highest-level page table

• A missing entry at any level triggers a page fault

• Size of tables in memory
proportional to number of
pages of virtual memory used
• Small processes can

have proportionally small
page tables
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Multilevel page tables can keep nesting

• Even page table 
directory is often 
sparse, so break 
it up too

• x86-64
• Four levels of 

page table

• 48-bit addresses
(256 TB RAM 
ought to be 
enough for 
everyone right?)
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Intel Ice Lake (2019): 5 layers!!
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Check your understanding – multilevel page table

• How many memory loads 
per read are there now?
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Check your understanding – multilevel page table

• How many memory loads 
per read are there now?
• 6

• As in each memory access 
takes six times as long

• TLB is extremely
important
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Additional optimization: large pages

• Always using large pages results in wasted memory
• Example: 1 MB page where only 1 KB is used

• Always using small pages results in unnecessary page table entries
• Example: 250 entries in a row to represent 1 MB of memory

• Can we mix in larger pages opportunistically?
• Small pages normally

• Large pages occasionally

• Huge pages rarely
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x86-64 allows multiple-sized pages: 4 KB

• Normal x86-64 paging
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x86-64 allows multiple-sized pages: 2 MB
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• Page Size bit triggers 
walk to skip next table 
and go straight to
2 MB page in memory

• Remaining address 
bits are used as offset 
into larger page



x86-64 allows multiple-sized pages: 1 GB
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• Can also skip straight 
to 1 GB pages

• With a bit of extra 
hardware, TLB can 
hold large page entries
• Occupies a single TLB 

entry for 1 GB of data
(250000 normal entries)



Other data structures for paging

• If hardware handles TLB misses
• Need a regular structure it can “walk” to find page table entry

• x86-64 needs to use multilevel page tables

• If software handles TLB misses
• OS can use whatever data structure it pleases

• Example: inverted page tables

• Only store entries for virtual pages with valid physical mappings

• Use hash of VPN+PCID to find the entry you need
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Break + Question

• If every page of virtual memory was used, would a multi-level 
page table take more or less space than a “flat” page table?

• How often is every page of virtual memory used?
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Break + Question

• If every page of virtual memory was used, would a multi-level 
page table take more or less space than a “flat” page table?
• More! Still need an entry for every “used” page

• Now would have to add tree structure as well

• How often is every page of virtual memory used?
• Never! That would be 18 exabytes of storage in one process

• For refence: ~44000 exabytes is all of human digital storage (2022)
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• Paging improvements
• Improving translation speed

• Improving table storage size

• OS Paging Implementation

• Memory Hierarchy

Outline



OS tracks regions rather than pages

• A Region is a collection of one or more pages for a process
• An Address Space is a collection of regions for a process

• The OS will keep a data structure of regions for each process
• Includes starting page/address and size
• Protection fields
• Additional bookkeeping information

• Is it a kernel region or an application?
• Is it a “pinned” region, i.e. a region we should never remove?
• Is the region in RAM or on disk?
• Is the region listed in the TLB yet?
• Has the region been modified?
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Operations on regions

• Add
• Create a new region
• Accesses to virtual addresses in that range should now succeed

• Remove
• Remove the region entirely
• Accesses to virtual addresses in that range should now fault

• Move
• Change physical addresses associated with the region

• Protect
• Change protection status of region
• Could change from read-only to read-and-write
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Considerations when adding new regions

• The new region goes in the OS data structure immediately

• However, we don’t necessarily need to allocate space in RAM 
immediately or update the Page Table
• Those actions are a lot of work

• But maybe the process is never going to actually use most pages

• We could instead wait to see if the process uses pages

• And fix them up individually when exceptions occur
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Page faults enable lazy allocation and lazy loading

• Paging is not just translation and overflow
• Paging provides an opportunity to be lazy about loading requested data

• Trick: don’t load data upfront, do it later when it’s first needed!
• This is an important performance optimization,

reducing program start time
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Lazy loading in practice

• If a process requests a huge chunk of memory, maybe it will not 
use all that memory immediately (or ever!).
• Programmers and compilers are sometimes greedy in their requests

• We can virtually allocate memory, but mark most of the pages “not 
present”

• Let the CPU raise an exception when the memory is really used

• Then really allocate the demanded page

• Lazy allocation minimizes latency of fulfilling the request and it 
prevents OS from allocating memory that will not be used.

40



Extra features of lazy loading

• Lazy loading also works for large code binaries
• Delay loading a page of instructions until it’s needed

• OS must also write zeros to newly assigned physical frames
• Program does not necessarily expect the new memory to contain zeros,

• But we clear the memory for security, so that other process’ data is not 
leaked.

• OS can keep one read-only physical page filled with zeros and just give a 
reference to this at first.

• After the first page fault (due to writing a read-only page), allocate a 
real page.
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Lazy allocation via copy-on-write with Fork

• Recall that fork + exec is the only way to create a child process 
in unix

• Fork clones the entire process, including all virtual memory
• This can be very slow and inefficient, especially if the memory will just be 

overwritten by a call to exec.
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Lazy allocation via copy-on-write with Fork

• Copy on write is a performance optimization:
• Don’t copy the parent’s pages, share them

• Make the child process’ page table point to the parent’s physical pages

• Mark all the pages as “read only” in the PTEs (temporarily)

• If parent or child writes to a shared page, a page fault exception will occur

• OS handles the page fault by:

• Copying parent’s page to the child & marking both copies as writeable

• When the faulting process is resumed, it retries the memory write.
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Back to adding regions

• Adding a Lazy Region
• Just add the region to the process data structure

• Later, when an exception occurs you can load data update the Page Table
as necessary

• Adding an Eager Region
• Do everything right away

• Add to data structure, load into RAM, update Page Table

• Example: a process’s code might be eagerly loaded along with the first 
couple pages of the stack
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Removing, moving, and protecting pages

• Modify the region in the data structure

• Also update the Page Table immediately
• Can’t do this lazily, as future accesses to pages MUST change

• But what if page table data is already in the TLB?!! Two options:
1. Flush the entire TLB (remove all entries in it)

2. Invalidate particular pages (removes individual entry from TLB if it exists)

• For performance, which to do depends on how many pages you’re updating. 
Answer depends on the processor hardware, threshold is: 2-1000
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OS management of processes with paging

• When loading a process
• Add regions to data structure

• For eager regions, also allocate RAM pages and update Page Table
• For lazy regions (most), don’t do anything now

• Some regions might connect to shared libraries already in RAM

• When a context switch occurs
• OS changes which page table is in use (%CR3 register in x86)

• When a fault occurs
• OS handles it by checking the region data structure and the page table

• Might be an invalid access (based on address or permissions)
• Might be a page that’s on disk or was lazily allocated
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To see virtual memory info on Linux

• cat /proc/meminfo

• vmstat

• pmap

• top

• Try these commands yourself sometime!



Virtual memory in practice

• On Linux, the pmap command shows a process’ VM mapping.

• We see:
• OS tracks which file code is loaded from, so it can be lazily loaded

• The main process binary and libraries are lazy loaded, not fully in 
memory

• Libraries have read-only sections that can be shared with other processes

• cat /proc/<pid>/smaps shows even more detail

References:

• https://unix.stackexchange.com/a/116332

• https://www.akkadia.org/drepper/dsohowto.pdf
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pmap on emacs

• “Mapping” shows source of the 
section, more code can be loaded from 
here later.
• “anon” are regular program data,

requested by sbrk or mmap.
(In other words, heap data.)

• Each library has several sections:
• “r-x--” for code can be shared
• “r----” for constants
• “rw---” for global data
• “-----” for guard pages:

(not mapped to anything, just reserved 
to generate page faults)

• RSS means resident in physical mem.

• Dirty pages have been written and 
therefore cannot be shared with others
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top has a column showing shared memory

• The duplicate processes are 
using a lot of shared 
memory:
• ~50% of resident memory for 

httpd is shared
~75% of resident memory for 
sshd is shared

• Even if there is just one 
instance of emacs running, it 
may share many libraries 
with other running programs.

• Total virtual memory is ~10x 
larger than resident memory
• Processes only use a small 

fraction of their VM!
• Due to sharing and lazy 

loading.
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Process side: requesting memory from the OS – brk()

• System call to change data segment size (the program “break”)
• Either set a new virtual address pointer for top of data segment

• Or increment the size of the data segment by N bytes

• These are the old system calls to dynamically change program 
memory
• How malloc creates space

• “sbrk() and brk() are considered legacy even by 1997 standards”
• Removed from POSIX in 2001

• Still exists in some form in lots of OSes (including Nautilus)
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Process side: modern requesting memory from the OS – mmap()

• Map (or unmap) files or devices into memory

• Given a file, places the file in the process’s virtual address space
• Process can request an address to place it at, which OS might follow

• Given flag MAP_ANONYMOUS, creates empty memory
• Initialized to zero and accessible from process
• Malloc implementation uses this

• Many other options
• Create huge page, create memory for a stack, shared memory
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Break + Consideration

• Why use mmap() to put a file in your address space, when you 
could just read()/write() it instead?
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Break + Consideration

• Why use mmap() to put a file in your address space, when you 
could just read()/write() it instead?

• Speed! No longer need to make system calls for each file access

• A downside: now you need to handle file interactions yourself

• Track offset for reading and writing

• Make sure you don’t go past the end of the file
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Memory Hierarchy
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The OS view on registers

• Illusion: separate set for each process

• Reality: separate set for each core (or each thread in a core)

• OS needs to save and update registers whenever the currently 
running process changes

• Process and hardware handle moving memory into registers
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The OS view on caches

• Mostly ignore them, handled by the hardware automatically

• Occasionally might need to clear them for security purposes

• Addresses in the caches are either entirely physical addresses

• Or are virtually indexed, physically tagged
• Cache lookup and TLB lookup happen in parallel

• TLB result is used as Tag for cache to determine if there was a hit
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The OS view on memory

• Managed through virtual memory translation
• Paging (or Segmentation) that we talked about last time

• OS chooses which portions of processes go in RAM
• Other portions of memory get “swapped” to disk

• Writeable memory regions (stack, heap, global data) must be preserved

• Read-only memory regions (code) can be reloaded from original location
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The OS view on disk

• Non-volatile memory store
• Everything else on the system disappears when power is removed

(and cannot be trusted across reboots)

• Backing store for lots of information
• Boot information: via “Master Boot Record” on disk
• Filesystem, which the OS manages access to through system calls
• Swap space, which the OS moves extra pages in and out of

• Disk is significantly bigger than RAM, so this will work

• Disk is a device that the OS manages and reads in “blocks”
• Compare to memory, which is directly addressed by processes
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Traditional hard disk drives (HDDs) use magnetic regions
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Solid state drives (SSDs) use flash memory

• Still non-volatile

• Significantly faster
• 0.1 ms to access

(10 ms for disk)

• More limited lifetime 
than disk
• Limited writes
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NMOS transistor with an additional conductor 
between gate and source/drain which “traps” 
electrons. The presence/absence is a 1 or 0
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