
Lecture 11:
Virtual Memory

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS61C and CS162

Resources the OS manages

• Processor
• Scheduling

• Devices
• Device Drivers

• Memory
• Virtual Memory

• Files
• File systems

2

Today’s Goals

• Discuss OS management of process memory with virtual memory

• Understand two virtual memory mechanisms:
segmentation and paging

• Explore optimizations to memory paging

3

4

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

• Paging improvements
• Improving translation speed

• Improving table storage size

Outline

The reality of memory in a computer

5

CPU
RAM

Process A

Process B

Process A

Process B

Process C

Process C

DISK

A process’s view of the memory

• The Address Space of the process

• The illusion:
• Processes run alone on the computer

• They have full access to every memory
address

• 264 bytes of memory available to them

• The reality:
• There are many processes

• There is only so much RAM available

6

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual memory enables this illusion

7

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual Addresses Physical Addresses

OS

Process A

~ FFFF FFFFhex

~ 0hex

Process B

A
d
d
re

ss
 S

p
a
ce

R
A
M

Why is this illusion important?

• We want to compile our programs at set addresses
• There are alternatives to this, such as Position Independent code

• But those alternatives often have performance costs

• But we can’t know which addresses will be available
• How would developers know which addresses Chrome could use safely or

which addresses Powerpoint intended to use?

• Plus, the amount of RAM on systems varies widely
• Old laptop with 512 MB, Desktop with 16 GB, Server with 256 GB

• If they run x86-64 Linux, the same program will work on all of them

• Specialized systems, like embedded, might not need this requirement

8

Goals of virtual memory

1. Independence from other programs running

2. Independence from machine hardware

3. Security
• Applications shouldn’t be able to even read other memory much less write

4. Efficiency
• Allow reuse of some parts of memory

• Code sections for threads, duplicate processes, or shared libraries

• Don’t slow down the system too much by enabling the above

9

Virtual memory is how the OS controls memory accesses

• I/O operations are controlled by system calls

• CPU usage is controlled by the scheduler (and interrupts)

• How can the OS control memory accesses?
• Context switch for each memory read/write is too high of a cost

• Hardware needs to automatically handle most requests

10

Memory Management Unit (MMU) supports virtual memory

1. Translation: hardware support for common case reads/writes
• Configured by the OS

2. Faults: trap to OS to handle uncommon errors

11

Virtual
Addresses

CPU RAM

Physical
Addresses

Translation
and Faults

Memory
Management

Unit

Short Break + Question

• Which is bigger in practice: virtual memory or physical memory?

12

Short Break + Question

• Which is bigger in practice: virtual memory or physical memory?

• 264 bytes worth of addresses in both

• Both could hold up to 18 Exabytes (~18000 Petabytes, ~18000000 Terabytes)

• Virtual memory: practically there isn’t a limit

• Physical memory: practically limited to amount of RAM installed

• So, likely measured in Gigabytes

• Virtual Memory is MUCH larger (218 vs 29)

13

14

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

• Paging improvements
• Improving translation speed

• Improving table storage size

Outline

Share memory by splitting between whole processes

15

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual Addresses Physical Addresses

OS

Process A

~ FFFF FFFFhex

~ 0hex

Process B

A
d
d
re

ss
 S

p
a
ce

R
A
M

MMU

Address translation with a base register

• Divide RAM into segments, each with a separate “base” address
• Processes each get their own individual segment

• Takes advantage of processes usually being smaller than RAM

• To get a physical address from a virtual one, add to base value

16

mode
==

user?

+
base

Virtual Address Physical Address

Yes

No

Memory Management Unit

Adding protection creates “Base and Bound” translation

• Add a “bound” register with maximum value of the segment
• Memory accesses greater than bound trigger a fault

• No need to worry about lower bound, since minimum address is 0+base

17

mode
==

user?

+
base

Virtual Address Physical Address

Yes

No

Memory Management Unit

>
bound?

No

YesFault

Base and bounds evaluation

• Advantages
• Provides protection between address spaces

• Supports dynamic relocation of processes (even at runtime)

• Simple, inexpensive hardware implementation

• Disadvantages
• Process must be allocated contiguous physical memory

• Including memory between sections that might never be used

• Large allocations end up wasting a lot of space through fragmentation

• No partial sharing of memory

18

Check your understanding – base and bound

• What are the results of the following memory reads? (16-bit)
• Base: 0xC000 Bound: 0x1FFF

• Read 0x0010

• Read 0x1400

• Read 0xD000

19

Check your understanding – base and bound

• What are the results of the following memory reads? (16-bit)
• Base: 0xC000 Bound: 0x1FFF

• Read 0x0010 -> 0xC010

• Read 0x1400 -> 0xD400

• Read 0xD000 -> Fault (translates to 0x19000)

20

What if we split the code into multiple base/bound segments?

21

code

static data

~ 0hex

Physical Addresses

OS

code

~ FFFF FFFFhex

~ 0hex

heap

A
d
d
re

ss
 S

p
a
ce

R
A
M

MMU

heap

stack

static data

stack

Segmentation design

• Select some number of “segments” that processes may have
• Separate base and bound register for each one

• Need to distinguish which accesses correspond to which segment
• Solution: use top few bits of the virtual address

• 00 -> segment 0

• 01 -> segment 1

• etc.

• Only add remaining lower bits to the base register

22

Memory Management Unit for segmentation

• Similar comparison and addition hardware as before

• New segment table to select correct base and bounds
• Bits from virtual address decide on the correct segment

• Segment decides the proper base and bound selection

• Can also apply permissions to individual segments

23

Segment Base Bound Permissions

0 0x2000 0x06FF Read/Execute

1 0x0000 0x04FF Read/Write

2 0x3000 0x0FFF Read/Write

3 0x0000 0x0000 None

Code

Stack

Data

Unused

Example

OS management of processes with segmentation

• On context switch
• Hardware changes to kernel mode and deactivates the MMU

• Save process’s segment table with the rest of the process data

• Load new process’s segment table into the MMU

• Change to user mode and jump to new process

• x86 example
• No table, but rather registers for each segment

• Stack Segment, Code Segment, Data Segment

• Extra Segment, F Segment, G Segment

24

Segmentation evaluation

• Advantages
• Sparse allocation of address space

• Stack and heap segments can grow

• Different protection for different segments

• Only execute or write where it makes sense to

• Still possible to do dynamic relocation and hardware still relatively simple

• Disadvantages
• Still results in fragmentation of memory

• Entire section must fit

• But sections are irregularly sized

25

Quick question – segmentation (16 bit)

• How many bits are
used for the segment?

26

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x1C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x1200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Quick question – segmentation (16 bit)

• How many bits are
used for the segment?

• Three bits (8 choices)

• Placed as most
significant bits

• Lower 13 bits are
added to base

27

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x1C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x1200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Break + Practice – segmentation (16 bit)

• Translate the following

• Read 0x0200

• Read 0x0500

• Write 0x0410

• Read 0x4004

• Write 0x5004

28

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

Break + Practice – segmentation (16 bit)

• Translate the following

• Read 0x0200 -> 0x0200

• Read 0x0500 -> 0x0500

• Write 0x0410 -> Fault
(Permission)

• Read 0x4004 -> 0x3C04

• Write 0x5004 -> Fault (Bound) [0x1004 > 0x01FF]

29

Segment Base Bound Permissions

0 0x0000 0x06FF Read/Execute

1 0x0700 0x02FF Read/Write

2 0x3C00 0x01FF Read/Write

3 0x1800 0x01FF Read/Execute

4 0x4200 0x0400 Read/Execute

5 0x0000 0x0000 None

6 0x0000 0x0000 None

7 0x0000 0x0000 None

Segment 0

Segment 2 Upper 3 bits of address are the segment
Lower 13 bits of address are appended to Base

30

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

• Paging improvements
• Improving translation speed

• Improving table storage size

Outline

Improving upon segmentation

• Segmentation had some good features
• Address space does not need to be contiguous

• Segments can grow when needed

• But irregularly-sized segments lead to fragmentation

31

RAM

New process doesn’t fit!
RAM is available, but only
in fragments.

Many
processes
created

Some
processes
complete

Solution to fragmentation: pages of memory

• Divide memory into small, fixed-sized pages

• Pages of virtual memory map to pages
of physical memory
• Like segments were mapped,

but many more pages than segments

• Processes and their sections
can be mapped to any
place in memory

32

Page table translates virtual addresses to physical addresses

• Use topmost bits of virtual
address to select page table entry
• One page table entry per each

virtual page

• Combine address at page table
entry with bottommost bits
• Actually just concatenate the two

• Just like segment tables, there
will be a different page table for
each process

33

Paging versus segmentation

• Every page of virtual memory maps to a page of physical memory
• No need for a bound anymore

• Above a bound would just be the next page

• We don’t pick the number of pages, we pick page size
• Number of pages = Size of memory / Size of Page

• Way more pages than there were segments
• 4 kB pages with 4 GB of RAM -> ~1 million pages

• Need to keep page table in memory rather than hardware registers

• Hardware register points at the base of the page table

34

CPU

Process A

Process B

VPN PPN Valid?

0

1

2

3

4

5

6

7

8

Process B Page Table

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

CPU

Process A

Process B

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

VPN PPN Valid?

0 2 1

1

2

3 6 1

4

5

6

7 4 1

8

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Process B Page Table

CPU

Process A

Process B

VPN PPN Valid?

0 2 1

1 X 0

2 X 0

3 6 1

4 X 0

5 X 0

6 X 0

7 4 1

8 X 0

Process B Page Table

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Check your understanding – virtual address translation

38

?

Virtual Address

Virtual Page Number Offset

Physical Page Number Offset

Page
table

lookup!

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

Check your understanding – virtual address translation

39

Virtual Address

Virtual Page Number Offset

Physical Page Number Offset

Page
table

lookup!

Physical Address

Do we need to
translate the
lower bits of a
virtual address?

No. Those are
used to determine
word/byte within
the page.

40

V AR PPN

X XX

. . .

Virtual Address: VPN offset

Page Table

1) Index
into PT

using VPN

2) Check
Valid and

Access
Rights bits

+

3) Combine
PPN and

offset

Physical
Address

4) Use PA to
access memory

Steps to translating virtual addresses with paging

Important:
This is all done in hardware!! OS is not involved unless it faults

How the OS deals with memory in a paging system

1. How do the OS and program agree on addresses?
• Each program can use any virtual addresses it wants
• OS controls physical memory layout in RAM and maps the two

2. How does the OS move memory around without messing up
programs?
• Just update the record in the page table
• Process doesn’t know the difference

3. How to protect OS and process memory from other processes?
• Ensure that virtual pages from a process never map to physical pages for

another
• But we can share physical pages for threads or shared libraries if we want!

41

Dealing with processes bigger than memory

• Paging allows the OS to support processes larger than RAM
• Just leave the virtual pages unmapped

• When a load occurs to the unmapped page, a fault triggers the OS

• Which can then load the needed page into RAM from disk

• (and push some other page onto disk)

42

43

CPU

Process A

Process B

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

Process B

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Process B

Process B

Process B

Process B

DISK

OS management of processes with paging

• When loading a process
• OS places actual memory into physical pages in RAM

• OS creates page table for the process

• OS decides access permissions to different pages

• OS connects to shared libraries already in RAM

• When a context switch occurs
• OS changes which page table is in use (%CR3 register in x86)

• When a fault occurs
• OS decides how to handle it. (Invalid access or missing page?)

44

Paging evaluation

• Advantages
• Still sparse allocation of address space and growing segments as needed

• Still different protection for different segments

• Only execute or write where it makes sense to

• Still possible to do dynamic relocation and hardware still relatively simple

• No fragmentation of main memory

• Pages can fit anywhere they need to

• Can load processes bigger than main memory!

45

Paging evaluation (continued)

• Disadvantages
• More work on the part of the OS to set up a process

• Only a problem if we create processes frequently

• Page tables are slow to access
• Page tables need to be stored in memory due to size
• MMU only holds the base address of the page table and reads from it
• Two memory loads per load!!!
• Going to have to fix this…

• Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused
• Becomes a serious issue on 64-bit systems

46

Break + Virtual Memory Practice

Assume `a` starts at 0x3000 (virtual)

Ignore instruction fetches and
access to `i` and `sum` (they’re in registers)

47

Code

int sum = 0;
for(int i=0; i<N; i++){
sum += a[i];

}

Virtual Address
Accesses

load 0x3000
load 0x3004
load 0x3008
load 0x300C

Physical Address
Accesses

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C• What physical address is the

page table for this process at?

• At what physical address does `a` start?

Break + Virtual Memory Practice

Assume `a` starts at 0x3000 (virtual)

Ignore instruction fetches and
access to `i` and `sum` (they’re in registers)

48

Code

int sum = 0;
for(int i=0; i<N; i++){
sum += a[i];

}

Virtual Address
Accesses

load 0x3000
load 0x3004
load 0x3008
load 0x300C

Physical Address
Accesses

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C• What physical address is the

page table for this process at? 0x100C

• At what physical address does `a` start? 0x7000

49

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

• Paging improvements
• Improving translation speed

• Improving table storage size

Outline

Caching can speed up page table access

• How do we make page table access faster?
• How do we make memory access faster?

• Cache it!

• Code and Stack have very high spatial locality

50

TLB caches page table entries

• Translation Lookaside Buffer
• Fully-associative cache (only compulsory misses)

• Holds a subset of the page table (VPN->PPN mapping and permissions)

• On a TLB miss, go check the real page table (done in hardware)

51

Address translation with TLB

52

hardware
hardware or software
software

Virtual Address

TLB
Lookup

Page Table
“Walk”

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access
Permitted

Protection
Fault

SEGFAULT

Page
in Mem

Check cacheFind in Disk Find in Mem

Context switches with a TLB

• A process must only access its own page table entries in the TLB!
• Otherwise, the mapping is wrong, and it accesses another process…

• OS needs to manage the TLB

• Option 1: Flush TLB on each context switch
• Costly to lose recently cached translations

• Option 2: Track with process each entry corresponds to
• x86-64 Process Context Identifiers (12-bit -> 4096 different processes)

• Extra state for the OS to manage if it has more processes than that

53

Software controlled TLBs

• Some RISC CPUs have a software-managed TLB
• TLB still used for translation, but a miss causes a fault for OS to handle

• OS looks in page table for proper entry

• OS evicts an existing entry from TLB

• OS inserts correct entry into TLB

• Special instruction allows OS to write to TLB

• Hardware is simpler and OS has control over the TLB functionality

• Can prefetch page table entries it thinks might be important

• Can flush entries relevant to other processes

• TLB misses take longer to complete, however

54

55

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

• Paging improvements
• Improving translation speed

• Improving table storage size

Outline

Paging disadvantages

1. Page tables are slow to access
• Memory access for page table before any other memory access

• TLB can speed this up considerably for common execution

2. Page tables require a lot of storage space
• Mapping must exist for each virtual page, even if unused

• Becomes a serious issue on 64-bit systems

56

Why do page tables take so much storage space?

• For every virtual page,
there must exist an entry
in the page table
• Even though most virtual

addresses aren’t used!

• 32-bit address space with 4 kB pages -> 1 million entries
• At least 8 MB of storage

• 64-bit address space would require 36 exabytes of page table storage…

57

• How do we eliminate extraneous
entries from the page tables?

Create multiple page tables, each with useful mappings only

58

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

2 0

3 0

4 0

5 1 7

6 0

7 0

Create multiple page tables, each with useful mappings only

59

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

2 0

3 0

4 0

5 1 7

6 0

7 0

• Collect groups of page table entries
(call them “page table entry pages”?)

Create multiple page tables, each with useful mappings only

60

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

4 0

5 1 7

• Collect groups of page table entries

• Only keep groups that have valid
mappings in them

Create multiple page tables, each with useful mappings only

61

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

Virtual Page
Number

Valid? Physical Page
Number

4 0

5 1 7

• Collect groups of page table entries

• Only keep groups that have valid
mappings in them

• Remaining groups are now separate
tables

• Collect groups of page table entries

• Only keep groups that have valid
mappings in them

• Remaining groups are now separate
tables

• Create a directory of page tables to
collect existing page tables

Create multiple page tables, each with useful mappings only

62

Virtual Page
Number Range

Valid? Page Table
Address

0-1 1

2-3 0

4-5 1

6-7 0

Virtual Page
Number

Valid? Physical Page
Number

0 1 2

1 1 3

Virtual Page
Number

Valid? Physical Page
Number

4 0

5 1 7

Multilevel page tables

63

Level 1

Page Table
(Directory)

Level 2

Page Tables

Data Pages

Valid page

Root of the Current

L1 Page Table
(Hardware register)

p1

offset

p2

Virtual Address
p1 p2 offset

01112212231

10-bit

L1
index

10-bit

L2
index

Invalid page

P
h
y
s
ic

a
l
M

e
m

o
ry

Valid data in RAM

Unused RAM

Valid page table

Invalid page table

Multilevel page table logistics

• Virtual address is broken down into three or more parts
• Highest bits index into highest-level page table

• A missing entry at any level triggers a page fault

• Size of tables in memory
proportional to number of
pages of virtual memory used
• Small processes can

have proportionally small
page tables

64

Multilevel page tables can keep nesting

• Even page table
directory is often
sparse, so break
it up too

• x86-64
• Four levels of

page table

• 48-bit addresses
(256 TB RAM
ought to be
enough for
everyone right?)

65

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

9 bits 9 bits 12 bits
48-bit Virtual

Address:
Offset

Virtual
P2 index

Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Intel Ice Lake (2019): 5 layers!!

66

Check your understanding – multilevel page table

• How many memory loads
per read are there now?

67

Check your understanding – multilevel page table

• How many memory loads
per read are there now?
• 6

• As in each memory access
takes six times as long

• TLB is extremely
important

68

Additional optimization: large pages

• Always using large pages results in wasted memory
• Example: 1 MB page where only 1 KB is used

• Always using small pages results in unnecessary page table entries
• Example: 250 entries in a row to represent 1 MB of memory

• Can we mix in larger pages opportunistically?
• Small pages normally

• Large pages occasionally

• Huge pages rarely

69

x86-64 allows multiple-sized pages: 4 KB

• Normal x86-64 paging

70

x86-64 allows multiple-sized pages: 2 MB

71

• Page Size bit triggers
walk to skip next table
and go straight to
2 MB page in memory

• Remaining address
bits are used as offset
into larger page

x86-64 allows multiple-sized pages: 1 GB

72

• Can also skip straight
to 1 GB pages

• With a bit of extra
hardware, TLB can
hold large page entries
• Occupies a single TLB

entry for 1 GB of data
(250000 normal entries)

Other data structures for paging

• If hardware handles TLB misses
• Need a regular structure it can “walk” to find page table entry

• x86-64 needs to use multilevel page tables

• If software handles TLB misses
• OS can use whatever data structure it pleases

• Example: inverted page tables

• Only store entries for virtual pages with valid physical mappings

• Use hash of VPN+PCID to find the entry you need

73

74

• Address Spaces

• Methods of address translation

• Segmentation

• Paging

• Paging improvements
• Improving translation speed

• Improving table storage size

Outline

