
Lecture 10:
Device Drivers

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162



Administrivia

• Scheduler Lab grades are posted now too
• Generally went well for people

• Easy for simple mistakes to cost lots of points though

• Make sure you’re testing edge cases on your code!

• I can provide feedback about where you lost points if you make a private 
Campuswire post requesting it

• Driver Lab is available now, and you’re ready for it
• There is a bugfix I emailed about last night

• Without it, the parallel port won’t work

2



Today’s Goals

• Explore how software for device I/O is architected.

• Discuss OS considerations at multiple software layers.

• Investigate an example device driver.

3



4

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline



Writing software to manage devices

• Kernel software for managing a device is a device driver
• 70% of Linux code is device drivers

• 15.3 Million lines of source code

• Big challenge for device drivers
• How do we enable interactions with so many varied devices?

• Need abstractions to allow software to interact with them easily

• Need mechanisms to reuse a lot of code for commonalities

5



General software abstractions

• When building large 
software projects, we like 
to define layers of code
• Makes it clear what is 

handled where

• Enables swapping out 
implementations when 
desired

6



Linux Kernel Layering

7



Linux Kernel Layering

8



Linux Kernel Layering

9



Linux Kernel Layering

10



Linux Kernel Layering

11



Abstraction: everything is a file!

• Hardware: treat devices like memory
• They can be read and written at addresses

• Software: treat devices like files
• They can be read and written

• They may be created or destroyed (plugged/unplugged)

• They can be created in hierarchies. Example:

• SATA devices
• SSD

• USB devices
• Webcam

• Microphone

12



Linux device classes

• Character devices
• Accessed as a stream of bytes (like a file)
• Example: Webcam, Keyboard, Headphones
• We will focus on these

• Block devices
• Accessed in blocks of data (like a disk)
• Can hold entire filesystems
• Example: Disks, Flash drives

• Network interfaces
• See CS340 (Computer Networking)
• Accessed through transfer of data packets

13

dev

char

Serial

Parallel

block

SATA

SCSI

net

Ethernet

WiFi

video

2D

3D



System layers when interacting with devices

• User applications
• Do useful things

• I/O subsystem
• Receive syscalls, route to device drivers

• Device drivers
• Translate application requests into device interactions

• Interrupt Handler
• Receive events from hardware

• Hardware
• Do useful things

14

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware



15

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline



Where we are at in the system

16

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Processes



Communication with devices

• Interactions occur through system calls
• Open/Close

• Read/Write

• Seek, Flush

• Ioctl

• And various others

17



Accessing devices

• Open/Close
• Inform device that something is using it (or not)

• Argument is path to device (like path to file)

• Get a file descriptor that the other operations act on

• “/dev” directory is populated with devices

18



Interacting with devices

• Same read/write commands you’ve likely seen before
• These are actually syscalls!

• Read
• ssize_t read(int fd, void *buf, size_t count);

• Write
• ssize_t write(int fd, const void *buf, size_t count);

19



Arbitrary device interactions

• ioctl – I/O Control
• int ioctl(int fd, unsigned long request, ...);

• Request number followed by an arbitrary list of arguments
• “request” may be broken in fields: command, size, direction, etc.

• Catch-all for device operations that don’t fit into file I/O model
• Combine with “magic numbers” to form some special action

• Reset device, Start action, Change setting, etc.

• Read the device documentation to find these

20



Asynchronous I/O operations

• Previous examples were all synchronous I/O calls
• Read/Write will block process until complete

• Easy to use, but not always most efficient method

• Asynchronous I/O calls also exist
• POSIX AIO library

• aio_read/aio_write – enqueue read/write request

• aio_error – check status of an I/O request

• aio_return – get result of a completed I/O request

21



Synchronous blocking read example

22

Read

Continue 
Process

Driver sets up 
request

Block Process

Driver handles 
response

Unblock Process

DMA Read

Process Kernel Device

Context Switch

Context Switch

DMA Request

Interrupt



Asynchronous read example

23

aio_read

Driver sets up 
request

Do other 
work

Driver handles 
response

DMA Read

Process Kernel Device

Context Switch

DMA Request

Interruptaio_error
aio_return

Continue 
Process

Ready

Context Switch



Asynchronous read example with early request

24

aio_read

aio_error

Driver sets up 
request

Do other 
work

Driver handles 
response

DMA Read

Process Kernel Device

Context Switch

DMA Request

Interruptaio_error
aio_return

Do other 
work

Continue 
Process

Not Ready

Ready

Context Switch



Break + Open Question

• Could you re-create the asynchronous I/O interface using threads?

25



Break + Open Question

• Could you re-create the asynchronous I/O interface using threads?

• aio_read creates a new thread, which does the actual blocking read

• Thread will essentially block immediately

• aio_error / aio_return get data from that worker thread

• Synchronized with locks

• Thread exits after aio_return occurs

• This is basically the underlying implementation for glibc POSIX AIO

26



27

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline



Where we are at in the system

28

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Processes



Kernel I/O subsystem

• The OS kernel does various things for devices that are not specific 
to the individual device
• Manages permissions

• Routes call to appropriate driver

• Schedules requests to drivers

29



Kernel needs to handle process memory

• Buffering
• Kernel may need to hold on to a copy of data

• Especially in asynchronous case

• When copies are done and how many times is a big kernel efficiency 
question

• Address translation
• All the data user processes give to the kernel comes with virtual addresses

• Pointers are either going to have to be translated

• Or memory is going to need to be copied

30



31

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline



Where we are at in the system

32

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Processes



Device drivers

• Device-specific code for communicating with device
• Supports some interfaces above and below

• Possibly file syscalls above and memory-mapped I/O below
• Possibly internal API above and below..

• Examples
• Specific disk drivers are

layered on top of SATA driver
• Keyboard driver is layered

on top of USB driver
• Ethernet driver has various

network interfaces layered
above it

33



Example: possible driver layers for an SD card

34

Block device interface

Various filesystems

Generic SD Card Driver

microSDHC UHS-I Driver

Generic SPI Interface Driver

Intel SPI Controller Driver

Memory-Mapped I/O



Device I/O is handled by device drivers 

• Communication is up to the hardware
• Port-mapped I/O or memory-mapped I/O

• Or function calls to a lower-level driver

• Interaction design is up to the driver (and OS)
• Programed I/O

• Synchronous or with interrupts

• Direct Memory Access

• Needs hardware support

• With interrupts

35



Device drivers are often designed with two “halves”

• Top half
• Interrupt handler

• Continues next transaction

• Or signals for bottom half to continue (often with shared variable)

• Bottom half
• Implements interface that higher layers require

• Performs logic to start device requests

• Wait for I/O to be completed

• Synchronously (blocking) or asynchronously (return to kernel)

• Handle responses from the device when complete

36



Virtualizing one device for many users

• Some devices need to be virtualized
• Software that emulates unique devices for each higher level user even 

though only a single hardware resource actually exists

37

Process 1 Process 2

Kernel

Disk Driver

Virtualized Disk



Life cycle of an 
I/O request

38

Device Driver
Bottom Half

Device Driver
Top Half

Device
Hardware

Kernel I/O
Subsystem

User
Program



How are devices found anyways?

• At boot, the OS kernel searches for devices attached to it
• Action is usually called “probe”

• Starts up drivers for each device it finds

• A significant amount of time is spent in device discovery

• Run “dmesg” on linux to see printouts from this process
• Live demo!

39



Break + SMBC webcomic

• Not really relevant to class, 
just amuses me

• Take a break and reset 
your brains for a minute

40https://www.smbc-comics.com/comic/2011-02-18



41

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline



Nautilus kernel

• http://cs.iit.edu/~khale/nautilus/

• Small, light-weight kernel for research use
• All the basic features for getting an x86-64 computer to boot

• And just about nothing else

• Created by Kyle Hale (Illinois Institute of Technology)
and Peter Dinda (Northwestern)

• Example use case: experiment with virtual memory strategies

42

http://cs.iit.edu/~khale/nautilus/


Nautilus character device abstraction

• Character device: a device that can read/write arbitrary characters
• (as compared to Block devices that must read/write in chunks)

• Nautilus says every character device must have the following:
• get_characteristics() – every device has this, none particularly for chardev

• read() – single byte

• write() – single byte

• status() – determine if device is readable or writeable or both

43



Layering in Nautilus

44

Virtual Console Driver

Character Device Driver

Serial Port Parallel Port



Layering in Nautilus

45

Virtual Console Driver

Character Device Driver

Serial Port Parallel Port



Virtual console

• Allows keyboard input and text output for a user
• Generally, the basic terminal that you have open

• Could be implemented in all kinds of ways though

• Example: keyboard input plus printer output

• Any device that can read/write individual characters could act as a console

• So the virtual console just contains a nk_char_dev

• Passed into the virtual console at initialization

• Could be implemented with any hardware

46



Virtual console reads and writes to generic chardev

• Tries to write an entire string in blocking mode
• Should not return until the entire string is displayed

47



VC implements by calling into nk_char_dev

48



Layering in Nautilus

49

Virtual Console Driver

Character Device Driver

Serial Port Parallel Port



Each nk_char_dev holds an interface of function pointers

50



Simplified nk_char_dev_write: calls write() operation

51



Layering in Nautilus

52

Virtual Console Driver

Character Device Driver

Serial Port Parallel Port



A serial device implements the nk_char_dev operations

• Serial device implements all of those operations

• When you create a serial device, you actually make an 
nk_char_dev and initialize it with a chardevops
• All of the generic device operations call into the actual serial device

53



Simplified Serial device: pushes data into a queue

54



Serial queue operation

• Whenever a write comes in, we push data byte into a queue
• Serial output goes slowly, so many bytes could be queued up

• Then we enable interrupts and write the first byte to the MMIO 
register

• Then when an interrupt comes in, we pop the next byte from the 
queue and write it to the MMIO register
• Repeats until the queue is empty

55



Layering in Nautilus

56

Virtual Console Driver

Character Device Driver

Serial Port Parallel Port



Parallel port will be implemented by you!

• A little simpler than the serial port version
• Never queues bytes and instead only writes one at a time

• Reject additional bytes while the system is in operation

• Whenever an interrupt comes in, that byte is complete so you’re ready for 
the next one

• Same idea though, parallel port supports all the basic operations of 
an nk_char_dev
• When initialized, creates an nk_char_dev connected to its operations

57



58

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline



Si7021 temperature and humidity sensor

• Popular on embedded devices
• Also has a Linux driver!

• Connects to computer over I2C bus
• Two-wire, 100 Kbps low-power bus

• Like any other bus

• Takes an address

• Whether it’s a read or write transaction

• And an amount of data

• https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf

59

https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf


How do we make it do anything?

• Typically with I2C devices, you write a 1-2 byte command
• Then you read the data in the next transaction

• Commands are found in the datasheet

60



What will the driver look like?

• Layer below it will be I2C controller (function calls)

• In the driver we need to
• See what the request from the layer above is

• Perform an I2C write transaction with a command byte (0xE3)

• Wait until data is ready

• Perform an I2C read transaction to get the data

• Translate the data into meaningful units

61



What are the driver layers going to be?

• In Linux, some sensors are connected through the Industrial I/O 
subsystem (IIO)
• Handles sensor data specifically

• Get raw sample

• Get scaling value

• Get offset value

• Lower layers could change and
everything would still work
• USB->I2C converter for example

• Or a totally different sensor

62

Character Device

IIO Core

Si7021

Generic I2C Interface

Computer-Specific I2C Driver

Memory-Mapped I/O



Demo: Linux device driver code for Si7021

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si
7020.c

• Linux source code is all on Github!

But if you want to explore Linux code, a better link is:
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si70
20.c

• Creates linked databases for function calls and variable types

• Lists where it is defined

• Lists where it is used

• Makes it easy to hop up and down layers

63

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si7020.c
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si7020.c


OSes can make design choices about drivers

• Interface does not have to be like a file
• For example: could have a set of unique syscalls for each device

• Asynchronous model could be enforced
• Must register callback handlers with lower layer to get response

• Tock embedded operating system does both of these
• https://www.tockos.org/

64

https://www.tockos.org/


Demo: Tock device driver code for Si7021

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs

65

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs


66

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Nautilus Character Device

• Example Driver: Temperature Sensor

Outline


