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Today’s Goals

« Common synchronization bugs
 Deadlock
» Livelock

« Methods to avoid, prevent, and recover in the presence of
deadlock

* Discuss how thread-safe data structures might work

 Touch on what concurrency looks like in other languages



Outline

- Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages




Common synchronization bugs

 Atomicity violation
» Critical section is violated (due to missing lock)

 Order violation
« Something happens sooner (or later) than expected

 Deadlock
« Two threads wait indefinitely on each other

e Livelock (not that common in practice)
« Two threads repeatedly block each other from proceeding and retry



Atomicity violation

« It's relatively easy to find and protect critical sections,
 But often we forget to add locks around other uses of the shared data.

* Obvious critical section is here:
* Two threads should not enter this at once

 But, we also have to make sure that 7le
Is not modified elsewhere.

» Even if this one-line close was atomic we
have to make sure it doesn’t run during
the above critical section.

Main Thread

if (file == NULL) {
file = open("~/myfile.txt");

}

write(file, "hello file");

Some Other Thread
close(file);



Order violation

« Code often requires a certain ordering of operations, especially:
« Objects must be initialized before they're used
 Objects cannot be freed while they are still in use

file = open("file.dat");
thread create(child fcn); child fen() {

// do some work write(file, "hello");

}

close(file);
Close must happen after
write, but code does not
enforce this ordering.



Why is this difficult?

» It seems like we can just add lots of locks and semaphores to be
safe, right?
« Still tricky! Too many locks can cause deadlock — indefinite waiting.

- How about just one big lock?

* (+) Cannot deadlock with one lock (unless there are interrupts)
* (-) However, this would /imit concurrency

« If every task requires the same lock, then unrelated tasks cannot
proceed in parallel.

« Concurrent code is always difficult to write ®
 Although somewhat easier with some higher-level languages



Locking granularity

« Coarse grained lock:
« Use one (or a few) locks to protect all (or large chunks of) shared state
» Linux kernel < version 2.6.39 used one "Big Kernel Lock”
 Essentially only one thread (CPU core) could run kernel code

o It's simple but there is much contention for this lock, and concurrency is
limited

 Fine grained locks:
« Use many locks, each protecting small chunks of related shared state
 Leads to more concurrency and better performance
« However, there is greater risk of deadlock



Outline
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- Deadlock
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e Livelock
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Deadlock

A concurrency bug arising when:
« Two threads are each waiting for the other to release a resource.
« While waiting, the threads cannot release the resource already held.
 Or at least do notrelease it
 So the two threads warit forever.

 Can arise when multiple shared resources are used.
« For example, acquiring two or more locks.
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Deadlock versus starvation

« Each segment of road can be viewed as a resource
« Car must own the segment under them
« Must acquire segment that they are moving into

* Deadlock: Two cars in opposite directions meet in middle

« Starvation (not deadlock): Eastbound traffic doesn't stop for
westbound traffic

12



Simple example: four-way stop

» Traffic rules state that you must yield to the car on your right if you
reach the intersection simultaneously.

* This rule usually works well.
» But there’s a problem if m
four cars arrive simultaneously. - " (\\
__ Clrcular
waltmgI

—@\\'(‘




Dining philosophers

* A theoretical example of deadlock

» There are N philosophers sitting in a circle and N chopsticks
« left and right of each philosopher

* Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat
5. Replace chopsticks

- If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

14



Dining philosophers

* A theoretical example of deadlock

» There are N philosophers sitting in a circle and N chopsticks
« left and right of each philosopher

* Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat
5. Replace chopsticks

- If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

« A solution: one philosopher must grab right before left
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Dining philosophers

« A solution: one philosopher must grab right before left
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Dining philosophers

« A solution: one philosopher must grab right before left
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Dining philosophers

« A solution: one philosopher must grab right before left
» Adding an asymmetry will allow both resources to eventually be obtained
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Deadlock with locks

Thread A
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B
y.Acquire();
x.Acquire();

X.Release();
y.Release();

* This is @ Nondeterministic Deadlock
» Whether it occurs depends on scheduling

19



No deadlock in the lucky case

Thread A
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B

y.Acquire();

X.Acquire();

X.Release();
y.Release();

Thread B waits until
Thread A is finished

20



But deadlock can still occur

Thread A Thread B
X.Acquire();

y.Acquire();
y.Acquire();

X.Acquire();

--Unreachable--

y.Release(); x.Release();
X.Release(); y.Release();

Thread A waits until
y is available

Thread B waits until
X is available

21



Deadlocks involve circular dependencies

Thread
B

22



Deadlock can occur on any shared resource

« Example deadlock if the system only has 2 MB of memory

Thread A Thread B

AllocateOrWait(1l MB) AllocateOrWait(1l MB)
AllocateOrWait(l MB) AllocateOrWait(1l MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

e Could deadlock on access to hardware as well
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Interrupts can cause deadlocks too

Thread A
acquire()

Interrupt Handler

acquire() Deadlock
release()

« Thread cannot continue until the interrupt is finished
» Interrupt cannot finish until the thread continues
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Reentrant library functions

 Functions that can safely and successfully be called again while
currently in the middle of its execution are called “reentrant”
« Reentrant functions must only modify local variables and input
« Must also never call non-reentrant functions

malloc () is thread-safe because it uses locks around shared memory

 Malloc is NOT reentrant and it will cause deadlock

« Same goes for print !

« Must not be called in an interrupt or signal handler!
 This matters in PCLab too
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Break + Check your understanding

void List Insert(list t *L, int key) {

pthread_mutex_lock(&L->1lock);

node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
pthread_mutex_unlock(&L->1lock);
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread mutex unlock(&L->lock);

return; // success

Is it safe to call
List_Insert from an
interrupt?

26



Break + Check your understanding

void List Insert(list t *L, int key) {

pthread_mutex_lock(&L->1lock);

node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
pthread_mutex_unlock(&L->1lock);
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread mutex unlock(&L->lock);

return; // success

Not safe!

If another thread has
acquired the mutex,

there will be a deadlock

27
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How Should a System Deal With Deadlock?

 Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isnt prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

29



Deadlock avoidance

 Idea: When a thread requests a resource, OS checks if it would
result in an unsafe state that could lead to deadlock
« If not, grant the resource
« If so, wait until other threads release resources

Must stop acquire
Thread A Thread B ust Stop acq

x.Acquire(); L here to prevent
y.Acquire();  unsafe state

X.Acquire();
y.Acquire(); -
" X.Release();
y.Release(); y.Release();
X.Release();
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Banker’s Algorithm for avoiding deadlock

e Each thread states maximum resource needs in advance

 OS allows a particular thread to claim a resource if

- (available resources - requested) > maximum remaining that might be
needed by any thread

* For Dining Philosophers, a request for a chopstick is allowed if:

1. Not the last chopstick
2. Or is the last chopstick but a philosopher will have two afterwards

» See the textbook for more details
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How Should a System Deal With Deadlock?

 Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn't
prone to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

32



Preventing Deadlocks: deadlock requires four conditions

1. Mutual exclusion
« Threads cannot access a critical section simultaneously.
 In other words, we're using locks so there is the potential for waiting.

2. Hold-and-wait
« Threads do not release locks while waiting for additional locks.

3. No preemption
 Locks are always held until released by the thread.
 E.qg., if there is no method to cance/ a lock.

4. Circular wait
« Thread is waiting on a thread that is waiting on the original thread.
 This can involve just two threads or a chain of many threads.

Can eliminate deadlock by eliminating any one of these conditions

33



1. Do not have mutual exclusion

« Lockfree/waitfree data structures

void* mythread(void* arg) { void* mythread(void* arg) {
for (int i=0; i<LOOPS; i++) { for (int i=0; i<LOOPS; i++) {
pthread mutex lock(&lock); atomic_fetch _and add(
counter++; &counter, 1);
pthread mutex unlock(&lock); }
} return NULL;
return NULL; }

34



2. Avoid hold and wait with trylock()

« We can avoid deadlock if we release the first lock after noticing
that the second lock is unavailable.

« Trylock() tries to acquire a lock, but returns a failure code instead
of waiting if the lock is taken:

1 top:
. i 2 lock (L1);
This code cannot deadlock; ; if (trylock (L2) == -1) |
even if another thread does s unlock (L1) ;
the same with L2 first, then L1. 5 goto top;
6 }

 However it can /ivelock... we'll come back to this

36



3. No preemption
« The OS could take away the lock from a blocked thread and give it

back before the thread resumes
 This sounds pretty complicated to get right

» Non-lock resources are easier here
« Temporarily take away memory from a thread by swapping it to disk

37



4. Avoiding Circular Wait

» This is the most practical way to avoid deadlock.

» The simplest solution is to always acquire locks in the same order.
« If you hold lock X and are waiting for lock Y,
« Then holder of Y cannot be waiting on you,

« Because they would have already acquired X before acquiring Y.

« However, in practice it can be difficult to know when locks will be
acquired because they can be buried in subroutines.

38



Ordered locking for dining philosophers

» The chopsticks are shared resources, like
locks

« If we require the lower-numbered
chopstick to be grabbed first, this
eliminates circular waiting.

* Philosophers A, B, C grab /eft then right.

« However philosopher D will grab
right then left.

« If everyone tries to start at once, A & D race to
grab chopstick 0 first, and the winner eats first.

« While one is waiting to grab its first chopstick a
neighbor will be able to grab two chopsticks.



Check your understanding

 In what order must Thread B acquire the three locks to avoid
deadlock?

Thread A Thread B
y.Acquire(); P??
X.Acquire();

z.Acquire();

z.Release();
X.Release();
y.Release();



Check your understanding

 In what order must Thread B acquire the three locks to avoid
deadlock?

« The same order!! (at least y first, for the two-thread case)

Thread A Thread B

y.Acquire(); y.Acquire();
x.Acquire(); x.Acquire();
z.Acquire(); z.Acquire();
z.Release(); z.Release();
x.Release(); x.Release();

y.Release(); y.Release();



How Should a System Deal With Deadlock?

 Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isnt prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out
how to recover from it
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Deadlock Recovery: how to deal with a deadlock?

« Terminate thread, force it to give up resources

 Dining Philosophers Example: Remove a dining philosopher
* In AllocateOrWait example, OS kills a process to free up some memory

« Not always possible—killing a thread holding a lock leaves world
inconsistent

* Roll back actions of deadlocked threads
« Common techniques in databases (transactions)

« Of course, if you restart in exactly the same way, you may enter deadlock
again

43



Modern OS approach to deadlocks

« Make sure the systemn isn't involved in any deadlock
« Hopefully by prevention
« Generally, be very careful about this stuff in the kernel

» Ignore deadlock in applications (“Ostrich Algorithm™)
 User can just restart them anyways

44



Break + Check your understanding

» Is there a possibility of deadlock?
« If so, how could we fix it?

Thread A
usb.Acquire();
webcam.Acquire();

webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();

usb.Release();
printer.Release();

Thread C
webcam.Acquire();
printer.Acquire();

printer.Release();
webcam.Release();

45



Break + Check your understanding

« Is there a possibility of deadlock? Yes
« If so, how could we fix it? One solution: Global ordering of resources

« Example: usb, then webcams, then printers always in that order

Thread A
usb.Acquire();
webcam.Acquire();

webcam.Release();
usb.Release();

Thread B

usb.Acquire();
printer.Acquire();

printer.Release();
usb.Release();

Thread C
webcam.Acquire();
printer.Acquire();

printer.Release();
webcam.Release();

46



Break + Check your understanding

« Is there a possibility of deadlock? Yes
« If so, how could we fix it? One big lock still works too!

Thread A
lock.acquire();
usb.Acquire();
webcam.Acquire();

webcam.Release();
usb.Release();
lock.release();

Thread B
lock.acquire();
printer.Acquire();
usb.Acquire();

usb.Release();
printer.Release();
lock.release();

Thread C
lock.acquire();
webcam.Acquire();
printer.Acquire();

printer.Release();
webcam.Release();
lock.release();

47
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Common synchronization bugs

 Atomicity violation
» Critical section is violated (due to missing lock)

 Order violation
« Something happens sooner (or later) than expected

 Deadlock
« Two threads wait indefinitely on each other

e Livelock (not that common in practice)
« Two threads repeatedly block each other from proceeding and retry
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Livelock while avoiding deadlock

// thread 1 // thread 2
getLocksl12(lockl, lock2) { getLocks21(lockl, lock2) {
lockl.acquire(); lock2.acquire();
while (lock2.locked()) { while (lockl.locked()) {
// attemﬁt to step aside // attemﬁt to step aside
// for the other thread // for the other thread
lockl.release(); lock2.release();
wait(); wait();
lockl.acquire(); lock2.acquire();
} }
lock2.acquire(); lockl.acquire();

} }

50



Avoiding hold and wait could lead to livelock

» Avoiding hold and wait can /ivelock
« Two threads could get stuck in this loop forever
 Unlikely to occur for any length in personal computing setting

 Very possibly stuck forever (or at least extended periods) in a constrained
computing setting

« Example: embedded system with known tasks at the start

1 top:

2 lock (L1) ;

3 1f (trylock (L2) == —-1) {
4 unlock (L1);

5 goto top;

6 }
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Livelock in agents

« Livelock is more common in agent-based programs
« All of agent’s options lead to a lack of forward progress

« One example: video games
* The character can still move and take actions
 But cannot complete the level
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Livelock versus Deadlock 1 top:
2 lock (L1);
- Livelock is a condition where ; lfuﬁgz]ic(’zi)(fz) T
two threads repeatedly take action, goto top;
but still dont make progress. 6 )

» Differs from deadlock because deadlock is always permanent.

» Livelock involves retries that may lead to progress,
but there is no guarantee of progress.
« A malicious scheduler can always keep the livelock stuck

« Any randomness in the timing of retries will fix livelock.
» In practice, livelock is a much less serious concern than deadlock.
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Systems interact with each other

 Scheduling and Concurrency problems are not exclusive

 Sharing mutexes between threads can lead to a big problem for
schedulers based on priority
 Especially dangerous for real-time OS scenarios
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A problem with priority schedulers: priority inversion

 Other concepts from OS still apply when we're scheduling
» Particularly locks and synchronization

» Imagine Task 1 and Task 3 both need to share a lock

Release\ .
A  losk Task 1 is
Skt e waiting on
S | Task 2 Ioc'i g igé Task 2!!
o = =

esks (N 0

| | | | —
0 2 4 6 8 10
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Priority inversion occurred on Pathfinder!

« Bus management missed deadlines while
waiting on meteorology because medium-
priority tasks were taking too long

» System rebooted when deadline was missed

2 S 3 8
S | comms g 2 g | £ &
o Q| \ a4t . = v
wo (N BB WB 0D
| | | | | |
| | | | | | >
0 2 4 6 8 10
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Priority inheritance solution to priority inversion

» A solution is to temporarily increase priority for tasks holding
resources that high priority tasks need

————_Task 3 inherits priority of
Task 1 while holding
lock Task 1 needs

A

Task 1

Acquire

Priority

59



Quick Break! + xkcd (not relevant, just funny)

https://xkcd.com/336/

IF YOU DONTTURN IN
AT LEAST ONE HOMEWDRIKK
ASSIGNMENT, YoU LL
FAIL THIS CLASS.  YEAH. BUTIF I CAN FAIL
THIS CLASS THE GRADES
\ ON MY RERORT CARD WILL
BE INALPHABETICAL ORDER!

/
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Thread-safe data structures

* “Thread safe” — works even if used by multiple threads concurrently
 Can apply to various libraries, functions, and data structures

 Simple data structures implementations are usually not thread safe
« Some global state needs to be shared among all threads
» Need to protect critical sections

 Challenge: multiple function calls each access same shared structure
« Need to identify the critical section in each and lock it with shared lock
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Linked List

void List Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node _t));
if (new == NULL) {
perror("malloc");
return; // fail
}
new->key = key;
new->next = L->head;
L->head = new;
return; // success
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Concurrent Linked List — Big lock approach

void List Insert(list_t *L, int key) {
pthread_mutex_lock(&L->lock);
node t *new = malloc(sizeof(node t));
if (new == NULL) {
perror("malloc");

Most important part
of this example.

pthread mutex unlock(&L->lock); < Don't fOFQEt to unlock
} return; // fail if returning early.
new->key = key;
new->next = L->head;  Much better than counter
L->head = new; example, because we are

pthread_mutex_unlock(&L->lock); only serializing the list itself.
return; // success

} Hopefully the rest of the
code can run concurrently.
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Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node _t));
if (new == NULL) {
perror("malloc");
return; // fail
} Check your understanding:
new->key = key;
new->next = L->head;

L->head = new; Where is the critical section here?

return; // success
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Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {
node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

Check your understanding:

Where is the critical section here?
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What about malloc? Is that safe to use??

void List Insert(list_t *L, int key) {

node t *new = malloc(sizeof(node t));
if (new == NULL) {
perror("malloc");

return; // fail « Thread-safe functions
} « Capable of being called concurrently
new->key = key; and still functioning correctly
new->next = L->head;  (Because they use locks!)
L->head = new;
return; // success « How would we know if malloc is thread-
} safe?

 Must check the documentation
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Must check the library documentation to determine thread safety

» https://man7.org/linux/man-pages/man3/malloc.3.html

 Malloc (and free) is indeed thread-safe
ATTRIBUTES top

For an explanation of the terms used in this section, see

attributes(7).
Interface Attribute Value
malloc(), free(), Thread safety | MT-Safe
calloc(), realloc()

o If it wasn’t, we would have to consider it another shared resource
that needs to be locked


https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));
if (new == NULL) {

perror("malloc");

return; // fail
}
new->key = key;
pthread_mutex_lock(&L->lock);
new->next = L->head;
L->head = new;
pthread_mutex_unlock(&L->lock);
return; // success

 Now new node is created
locally in parallel

* Only actual access to the
linked list is serialized
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Concurrent Queue

« Separate head & tail locks
« Allows concurrent add & remove

O 00 9N Ul e N

10
11
12
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« Up to 2 threads can access without waiting

typedef struct _ _node_t {

int value;
struct __ _node_t *next;
} node_t;

typedef struct _ _queue_t {

node_t ~head;
node_t *tail;
pthread_mutex_t headLock;
pthread_mutex_t taillock;

} queue_t;

void Queue_Init (queue_t =*q) {

node_t *tmp = malloc(sizeof(node_t));
tmp->next = NULL;

g->head = g->tail = tmp;
pthread_mutex_init (&g—->headLock, NULL) ;
pthread_mutex_init (&g—->taillock, NULL);

21
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36
37
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39
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42
43
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void Queue_Enqueue (queue_t *qg, int value)
node_t *tmp = malloc(sizeof (node_t));
assert (tmp != NULL) ;
tmp—->value = value;
tmp->next = NULL;

(pthread_mutex_lock (&§g->taillock) ;
g->tail->next = tmp;
g->tail = tmp;
mlpthread_mutex_unlock(&q—>tailLock);
}

int Queue_Dequeue (queue_t *q, int *value)
ﬂWpthread_mutex_lock(&q—>headLock);
node_t xtmp = g->head;
node_t *newHead = tmp->next;
if (newHead == NULL) {

ﬁ;pthread_mutex_unlock(&q—>headLock);

return -1; // queue was empty

}
x*value = newHead->value;
qg->head = newHead;
L pthread_mutex_unlock (&§q->headLock) ;
free (tmp) ;
return 0;



Concurrent Queue

21 void Queue_Enqueue (queue_t *g, int value) {

22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL) ;
o Vi r” : 24 tmp—->value = value;
tailLock” controls adding elements 2 Cmb-onoxt = NOLLS
- . . 26
* LOOkS Slmllar tO LIStInsert 27 m|pthread_mute:h:_lf::>ck(J.~:=q—>tailLf::>ck),:
1 typedef struct __ node_t { 28 q->taill->next = tmp;
2 int value; 29 m q->tail = tmp;
3 struct _ node_t xnext ; 30 “wpthread_mutex_unlock (&g->taillock);
4 } node_t; 31 }
5 32
6 typedef struct __queue_t { 33 intﬂQueue_Dequeue(queue_t xq, int =*xvalue) ({
7 node_t xhead; 34 pthread_mutex_lock (&g->headLock) ;
8 node_t xtail; 35 node_t xtmp = g->head;
9 pthread_mutex_t headLock; 36 node_t *newHead = tmp->next;
10 pthread_mutex_t taillock; 37 if (newHead == NULL) ({
11 } queue_t; 38 : pthread_mutex_unlock (&g—->headLock) ;
12 39 return -1; // queue was empty
13 void Queue_Init (queue_t =xq) { 40 }
14 node_t *tmp = malloc(sizeof(node_t)); 41 x*value = newHead->value;
15 tmp->next = NULL; 42 g->head = newHead;
16 g->head = g->tail = tmp; 43 L pthread_mutex_unlock (&§g->headLock) ;
17 pthread_mutex_init (&g->headLock, NULL); 44 free (tmp) ;
18 pthread_mutex_init (&g—>taillock, NULL); 45 return 0;

19 } 46 } 71



Concurrent Queue .

void Queue_Enqueue (queue_t *g, int value) {

22 node_t *tmp = malloc(sizeof (node_t));

] 23 assert (tmp != NULL) ;

« Head lock controls removing elements 2 tmp->value = value;
from front 25 tmp->next = NULL;

. . 26
 Needs to lock almost entire function 27 (\pthread_mutex_lock (sg->taillLock) ;
1 typedef struct __ node_t { 28 q->taill->next = tmp;
2 int value; 29 N q->tail = tmp;
3 struct _ node_t xnext ; 30 "wpthread_mutex_unlock (&g—->taillLock);
4 } node_t; 31 }
5 32
6 typedef struct __queue_t { 33 intﬂQueue_Dequeue(queue_t xq, int =*xvalue) ({
7 node_t xhead; 34 pthread_mutex_lock (&g->headLock) ;
8 node_t xtail; 35 node_t xtmp = g->head;
9 pthread_mutex_t headLock; 36 node_t *newHead = tmp->next;
10 pthread_mutex_t tailLock; 37 ifﬁ(neWHead == NULL) {
11 } queue_t; 38 "mpthread_mutex_unlock (&§g—>headLock) ;
12 39 return -1; // queue was empty
13 void Queue_Init (queue_t =xq) { 40 }
14 node_t *tmp = malloc(sizeof(node_t)); 41 x*value = newHead->value;
15 tmp->next = NULL; 42 g->head = newHead;
16 g->head = g->tail = tmp; 43 g pthread_mutex_unlock (&g->headLock) ;
17 pthread_mutex_init (&g->headLock, NULL); 44 free (tmp) ;
18 pthread_mutex_init (&g—>taillock, NULL); 45 return 0;

19 } 46 } 72



Concurrent Hash Table

« Each bucket is implemented with a
Concurrent List
« We don't have to define any locks!
 (Locks are in the lists)

* A thread can access a bucket
without blocking other threads’
access to buckets.

e Hash tables are ideal for
concurrency.

« Hash (bucket id) can be calculated
without accessing a shared resource.

are used
for huge NoSQL databases.
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#define BUCKETS (101)

typedef struct _ _hash_t {
list_t 1lists[BUCKETS];
} hash_t;

void Hash_Init (hash_t =*H) {
int i;
for (1 = 0; 1 < BUCKETS; i++) {
List_TInit (&H->1lists[i]);
}
}

int Hash_Insert (hash_t xH, int key) {

int bucket = key % BUCKETS;

return List_Insert (&H->1lists[bucket], key);
}

int Hash_Lookup(hash_t xH, int key) {
int bucket = key % BUCKETS;
return List_Lookup (&H->1lists[bucket], key);
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Lock-free data structures

« In our original example, we put a lock around counter++
« We could have instead used atomic fetch and add to update counter
* Lock-free and sti// atomic!!

* This is possible with more complex data structures as well
 Often based on a compare-and-swap (CAS) approach
e https://www.cs.cmu.edu/~410-s05/lectures/| 31 LockFree.pdf

« Warning: these are not to be taken lightly
 Atomic instructions have performance costs on processors
 Getting this correct involves really understanding hardware
« https://abseil.io/docs/cpp/atomic _danger
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Break + Question: Where is the critical section for vector?

typedef struct {
size t size;
size t count;
int** data;

} vector t;

volid vector add(vector t* v, 1nt* item) {

(v—->count == v->size) {
v—->8lze *= 2;
v—>data = realloc(v->data, sizeof(int*)*v->size):;

J

v—->data|[v->count++] = 1tem;

J
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Break + Question: Where is the critical section for vector?

typedef struct {
size t size;
size t count;
int** data;

} vector t;

volid vector add(vector t* v, 1nt* item) {

(v—>count == v->size) {
v—->8lze *= 2;
v—>data = realloc(v->data, sizeof(int*)*v->size):;

J

v—->data|[v—->count++] = 1tem;

J
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Outline

 Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

- Concurrency Iin other languages




Javascript

« Javascript (in browsers) is strictly single-threaded
« Therefore, no data races!

« A Javascript function will never be interrupted unless it makes an
asynchronous call
console.log("1");
setTimeout(function(){console.log("2");},0);
console.log("3™);
setTimeout(function(){console.log("4"); },1000);
« Will always output: 1 3 2 4 in that order
 Even timers only trigger whenever the current code is finished
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Python

* Provides all the same primitives we discussed!
https://docs.python.org/3/library/concurrency.html

threading — Thread-based parallelism

L]

o o o o O

o O

Thread-Local Data And some nicer things

Thread Objects with some_ lock:

Lock Objects # do something..

RLock Objects

Condition Objects Is equivalent to

Semaphore Objects some_lock.acquire()
» Semaphore Example try:

Event Objects # do something..

Timer Objects finally:

Barrier Objects some_lock.release()
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Python threads are concurrent but not parallel

» Python uses one big lock technique for thread safety

. G
. T

. T

obal Interpreter Lock (GIL)
Nreads that are I/O bound still

get a performance boost

nreads that are CPU bound do

not increase performance

« Multiprocessing library does

employ parallelism by spawning

entirely new processes

« Each with their own python interpreter

Multi-threading

acquire GIL release GIL ‘

\\[ countdown() |/
Thread 1 -\- B ammanrasnasnaynanraneas

acquire GIL

wait for GIL r countdown()
Thread 2 -

waiting to be
selected to run
(overhead)

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
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Java

 Java has synchronized

public class Counter {

keyword for surrounding int mfotal = 0;
Critica| sections publa synch:onized toid addone() {
» Automatically releases the lock rota = v
when exiting early: '
public void addOneVersion2() throws Exception {
Aot val;

synchronized(this) {
val = mTotal;
val++;

if (val = Integer.MAX_VALUE) {

throw new Exception("value is too large™);

 Similar to
« Python: “with self.lock:”

* Objective-C: “@synchronized” ,%,Total - val;
¥

System.out.println("new value is " + val);
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Rust

 Rust’s opinion on sharing memory is amusingly to refer to Go’s opinion

Do not communicate by sharing memory; instead, share memory by communicating.

--Effective Go

 Rust has a strong concept of ownership
A writeable (mutable) reference to an object can only be held in one place
« Once an object is passed to another thread, the passer no longer has access
« Solves many concurrency issues due to lack of shared memory

 Rust locks have lifetimes enforced by the compiler
 Lock goes out-of-scope at the end of the function, relocking automatically

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html 82
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Advice for the future

« Be aware of issues when writing multithreaded code

 Use threadsafe data structures when possible
 In languages that provide them...

« Map your problem onto a classical concurrency problem
* Producer/Consumer
« Readers/Writers

« One big lock for correctness isn’t the worst idea ever
« But with some care (possibly a lot of care) we can do better
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