Lecture 08:
Synchronization Bugs

CS343 — Operating Systems
Branden Ghena — Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Harsha Madhyastha (Michigan), Shivaram Venkataraman (Wisconsin), and UC Berkeley C5162

Northwestern

Today’s Goals

« Common synchronization bugs
 Deadlock
» Livelock

« Methods to avoid, prevent, and recover in the presence of
deadlock

* Discuss how thread-safe data structures might work

 Touch on what concurrency looks like in other languages

Outline

- Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages

Common synchronization bugs

 Atomicity violation
» Critical section is violated (due to missing lock)

 Order violation
« Something happens sooner (or later) than expected

 Deadlock
« Two threads wait indefinitely on each other

e Livelock (not that common in practice)
« Two threads repeatedly block each other from proceeding and retry

Atomicity violation

« It's relatively easy to find and protect critical sections,
 But often we forget to add locks around other uses of the shared data.

* Obvious critical section is here:
* Two threads should not enter this at once

 But, we also have to make sure that 7le
Is not modified elsewhere.

» Even if this one-line close was atomic we
have to make sure it doesn’t run during
the above critical section.

Main Thread

if (file == NULL) {
file = open("~/myfile.txt");

}

write(file, "hello file");

Some Other Thread
close(file);

Order violation

« Code often requires a certain ordering of operations, especially:
« Objects must be initialized before they're used
 Objects cannot be freed while they are still in use

file = open("file.dat");
thread create(child fcn); child fen() {

// do some work write(file, "hello");

}

close(file);
Close must happen after
write, but code does not
enforce this ordering.

Why is this difficult?

» It seems like we can just add lots of locks and semaphores to be
safe, right?
« Still tricky! Too many locks can cause deadlock — indefinite waiting.

- How about just one big lock?

* (+) Cannot deadlock with one lock (unless there are interrupts)
* (-) However, this would /imit concurrency

« If every task requires the same lock, then unrelated tasks cannot
proceed in parallel.

« Concurrent code is always difficult to write ®
 Although somewhat easier with some higher-level languages

Locking granularity

« Coarse grained lock:
« Use one (or a few) locks to protect all (or large chunks of) shared state
» Linux kernel < version 2.6.39 used one "Big Kernel Lock”
 Essentially only one thread (CPU core) could run kernel code

o It's simple but there is much contention for this lock, and concurrency is
limited

 Fine grained locks:
« Use many locks, each protecting small chunks of related shared state
 Leads to more concurrency and better performance
« However, there is greater risk of deadlock

Outline

 Synchronization bugs
- Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages

R a7 2N
oz .v MW«M& .\"T.Q)ﬂw .u.lz o '

\
| ;
; .
9 -
" > B
. A\ i .
: , 2y Y) V\
\ .. hl) . \ /
! X n ,.u. k = 3 .» e
& e \ L g) e

Deadlock

A concurrency bug arising when:
« Two threads are each waiting for the other to release a resource.
« While waiting, the threads cannot release the resource already held.
 Or at least do notrelease it
 So the two threads warit forever.

 Can arise when multiple shared resources are used.
« For example, acquiring two or more locks.

11

Deadlock versus starvation

« Each segment of road can be viewed as a resource
« Car must own the segment under them
« Must acquire segment that they are moving into

* Deadlock: Two cars in opposite directions meet in middle

« Starvation (not deadlock): Eastbound traffic doesn't stop for
westbound traffic

12

Simple example: four-way stop

» Traffic rules state that you must yield to the car on your right if you
reach the intersection simultaneously.

* This rule usually works well.
» But there’s a problem if m
four cars arrive simultaneously. - " (\\
__ Clrcular
waltmgI

—@\\'(‘

Dining philosophers

* A theoretical example of deadlock

» There are N philosophers sitting in a circle and N chopsticks
« left and right of each philosopher

* Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat
5. Replace chopsticks

- If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

14

Dining philosophers

* A theoretical example of deadlock

» There are N philosophers sitting in a circle and N chopsticks
« left and right of each philosopher

* Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat
5. Replace chopsticks

- If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

« A solution: one philosopher must grab right before left

15

Dining philosophers

« A solution: one philosopher must grab right before left

16

Dining philosophers

« A solution: one philosopher must grab right before left

17

Dining philosophers

« A solution: one philosopher must grab right before left
» Adding an asymmetry will allow both resources to eventually be obtained

18

Deadlock with locks

Thread A
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B
y.Acquire();
x.Acquire();

X.Release();
y.Release();

* This is @ Nondeterministic Deadlock
» Whether it occurs depends on scheduling

19

No deadlock in the lucky case

Thread A
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B

y.Acquire();

X.Acquire();

X.Release();
y.Release();

Thread B waits until
Thread A is finished

20

But deadlock can still occur

Thread A Thread B
X.Acquire();

y.Acquire();
y.Acquire();

X.Acquire();

--Unreachable--

y.Release(); x.Release();
X.Release(); y.Release();

Thread A waits until
y is available

Thread B waits until
X is available

21

Deadlocks involve circular dependencies

Thread
B

22

Deadlock can occur on any shared resource

« Example deadlock if the system only has 2 MB of memory

Thread A Thread B

AllocateOrWait(1l MB) AllocateOrWait(1l MB)
AllocateOrWait(l MB) AllocateOrWait(1l MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

e Could deadlock on access to hardware as well

23

Interrupts can cause deadlocks too

Thread A
acquire()

Interrupt Handler

acquire() Deadlock
release()

« Thread cannot continue until the interrupt is finished
» Interrupt cannot finish until the thread continues

24

Reentrant library functions

 Functions that can safely and successfully be called again while
currently in the middle of its execution are called “reentrant”
« Reentrant functions must only modify local variables and input
« Must also never call non-reentrant functions

malloc () is thread-safe because it uses locks around shared memory

 Malloc is NOT reentrant and it will cause deadlock

« Same goes for print !

« Must not be called in an interrupt or signal handler!
 This matters in PCLab too

25

Break + Check your understanding

void List Insert(list t *L, int key) {

pthread_mutex_lock(&L->1lock);

node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
pthread_mutex_unlock(&L->1lock);
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread mutex unlock(&L->lock);

return; // success

Is it safe to call
List_Insert from an
interrupt?

26

Break + Check your understanding

void List Insert(list t *L, int key) {

pthread_mutex_lock(&L->1lock);

node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
pthread_mutex_unlock(&L->1lock);
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread mutex unlock(&L->lock);

return; // success

Not safe!

If another thread has
acquired the mutex,

there will be a deadlock

27

Outline

 Synchronization bugs
- Deadlock
» Solving deadlocks
« Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages

How Should a System Deal With Deadlock?

 Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isnt prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

29

Deadlock avoidance

 Idea: When a thread requests a resource, OS checks if it would
result in an unsafe state that could lead to deadlock
« If not, grant the resource
« If so, wait until other threads release resources

Must stop acquire
Thread A Thread B ust Stop acq

x.Acquire(); L here to prevent
y.Acquire(); unsafe state

X.Acquire();
y.Acquire(); -
" X.Release();
y.Release(); y.Release();
X.Release();

30

Banker’s Algorithm for avoiding deadlock

e Each thread states maximum resource needs in advance

 OS allows a particular thread to claim a resource if

- (available resources - requested) > maximum remaining that might be
needed by any thread

* For Dining Philosophers, a request for a chopstick is allowed if:

1. Not the last chopstick
2. Or is the last chopstick but a philosopher will have two afterwards

» See the textbook for more details

31

How Should a System Deal With Deadlock?

 Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn't
prone to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

32

Preventing Deadlocks: deadlock requires four conditions

1. Mutual exclusion
« Threads cannot access a critical section simultaneously.
 In other words, we're using locks so there is the potential for waiting.

2. Hold-and-wait
« Threads do not release locks while waiting for additional locks.

3. No preemption
 Locks are always held until released by the thread.
 E.qg., if there is no method to cance/ a lock.

4. Circular wait
« Thread is waiting on a thread that is waiting on the original thread.
 This can involve just two threads or a chain of many threads.

Can eliminate deadlock by eliminating any one of these conditions

33

1. Do not have mutual exclusion

« Lockfree/waitfree data structures

void* mythread(void* arg) { void* mythread(void* arg) {
for (int i=0; i<LOOPS; i++) { for (int i=0; i<LOOPS; i++) {
pthread mutex lock(&lock); atomic_fetch _and add(
counter++; &counter, 1);
pthread mutex unlock(&lock); }
} return NULL;
return NULL; }

34

2. Avoid hold and wait with trylock()

« We can avoid deadlock if we release the first lock after noticing
that the second lock is unavailable.

« Trylock() tries to acquire a lock, but returns a failure code instead
of waiting if the lock is taken:

1 top:
. i 2 lock (L1);
This code cannot deadlock; ; if (trylock (L2) == -1) |
even if another thread does s unlock (L1) ;
the same with L2 first, then L1. 5 goto top;
6 }

 However it can /ivelock... we'll come back to this

36

3. No preemption
« The OS could take away the lock from a blocked thread and give it

back before the thread resumes
 This sounds pretty complicated to get right

» Non-lock resources are easier here
« Temporarily take away memory from a thread by swapping it to disk

37

4. Avoiding Circular Wait

» This is the most practical way to avoid deadlock.

» The simplest solution is to always acquire locks in the same order.
« If you hold lock X and are waiting for lock Y,
« Then holder of Y cannot be waiting on you,

« Because they would have already acquired X before acquiring Y.

« However, in practice it can be difficult to know when locks will be
acquired because they can be buried in subroutines.

38

Ordered locking for dining philosophers

» The chopsticks are shared resources, like
locks

« If we require the lower-numbered
chopstick to be grabbed first, this
eliminates circular waiting.

* Philosophers A, B, C grab /eft then right.

« However philosopher D will grab
right then left.

« If everyone tries to start at once, A & D race to
grab chopstick 0 first, and the winner eats first.

« While one is waiting to grab its first chopstick a
neighbor will be able to grab two chopsticks.

Check your understanding

 In what order must Thread B acquire the three locks to avoid
deadlock?

Thread A Thread B
y.Acquire(); P??
X.Acquire();

z.Acquire();

z.Release();
X.Release();
y.Release();

Check your understanding

 In what order must Thread B acquire the three locks to avoid
deadlock?

« The same order!! (at least y first, for the two-thread case)

Thread A Thread B

y.Acquire(); y.Acquire();
x.Acquire(); x.Acquire();
z.Acquire(); z.Acquire();
z.Release(); z.Release();
x.Release(); x.Release();

y.Release(); y.Release();

How Should a System Deal With Deadlock?

 Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isnt prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out
how to recover from it

42

Deadlock Recovery: how to deal with a deadlock?

« Terminate thread, force it to give up resources

 Dining Philosophers Example: Remove a dining philosopher
* In AllocateOrWait example, OS kills a process to free up some memory

« Not always possible—killing a thread holding a lock leaves world
inconsistent

* Roll back actions of deadlocked threads
« Common techniques in databases (transactions)

« Of course, if you restart in exactly the same way, you may enter deadlock
again

43

Modern OS approach to deadlocks

« Make sure the systemn isn't involved in any deadlock
« Hopefully by prevention
« Generally, be very careful about this stuff in the kernel

» Ignore deadlock in applications (“Ostrich Algorithm™)
 User can just restart them anyways

44

Break + Check your understanding

» Is there a possibility of deadlock?
« If so, how could we fix it?

Thread A
usb.Acquire();
webcam.Acquire();

webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();

usb.Release();
printer.Release();

Thread C
webcam.Acquire();
printer.Acquire();

printer.Release();
webcam.Release();

45

Break + Check your understanding

« Is there a possibility of deadlock? Yes
« If so, how could we fix it? One solution: Global ordering of resources

« Example: usb, then webcams, then printers always in that order

Thread A
usb.Acquire();
webcam.Acquire();

webcam.Release();
usb.Release();

Thread B

usb.Acquire();
printer.Acquire();

printer.Release();
usb.Release();

Thread C
webcam.Acquire();
printer.Acquire();

printer.Release();
webcam.Release();

46

Break + Check your understanding

« Is there a possibility of deadlock? Yes
« If so, how could we fix it? One big lock still works too!

Thread A
lock.acquire();
usb.Acquire();
webcam.Acquire();

webcam.Release();
usb.Release();
lock.release();

Thread B
lock.acquire();
printer.Acquire();
usb.Acquire();

usb.Release();
printer.Release();
lock.release();

Thread C
lock.acquire();
webcam.Acquire();
printer.Acquire();

printer.Release();
webcam.Release();
lock.release();

47

Outline

 Synchronization bugs
 Deadlock
» Solving deadlocks

* Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages

Common synchronization bugs

 Atomicity violation
» Critical section is violated (due to missing lock)

 Order violation
« Something happens sooner (or later) than expected

 Deadlock
« Two threads wait indefinitely on each other

e Livelock (not that common in practice)
« Two threads repeatedly block each other from proceeding and retry

49

Livelock while avoiding deadlock

// thread 1 // thread 2
getLocksl12(lockl, lock2) { getLocks21(lockl, lock2) {
lockl.acquire(); lock2.acquire();
while (lock2.locked()) { while (lockl.locked()) {
// attemﬁt to step aside // attemﬁt to step aside
// for the other thread // for the other thread
lockl.release(); lock2.release();
wait(); wait();
lockl.acquire(); lock2.acquire();
} }
lock2.acquire(); lockl.acquire();

} }

50

Avoiding hold and wait could lead to livelock

» Avoiding hold and wait can /ivelock
« Two threads could get stuck in this loop forever
 Unlikely to occur for any length in personal computing setting

 Very possibly stuck forever (or at least extended periods) in a constrained
computing setting

« Example: embedded system with known tasks at the start

1 top:

2 lock (L1) ;

3 1f (trylock (L2) == —-1) {
4 unlock (L1);

5 goto top;

6 }

51

Livelock in agents

« Livelock is more common in agent-based programs
« All of agent’s options lead to a lack of forward progress

« One example: video games
* The character can still move and take actions
 But cannot complete the level

52

Livelock versus Deadlock 1 top:
2 lock (L1);
- Livelock is a condition where ; lfuﬁgz]ic(’zi)(fz) T
two threads repeatedly take action, goto top;
but still dont make progress. 6)

» Differs from deadlock because deadlock is always permanent.

» Livelock involves retries that may lead to progress,
but there is no guarantee of progress.
« A malicious scheduler can always keep the livelock stuck

« Any randomness in the timing of retries will fix livelock.
» In practice, livelock is a much less serious concern than deadlock.

53

Outline

 Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages

Systems interact with each other

 Scheduling and Concurrency problems are not exclusive

 Sharing mutexes between threads can lead to a big problem for
schedulers based on priority
 Especially dangerous for real-time OS scenarios

56

A problem with priority schedulers: priority inversion

 Other concepts from OS still apply when we're scheduling
» Particularly locks and synchronization

» Imagine Task 1 and Task 3 both need to share a lock

Release\ .
A losk Task 1 is
Skt e waiting on
S | Task 2 Ioc'i g igé Task 2!!
o = =

esks (N 0

| | | | —
0 2 4 6 8 10

57

Priority inversion occurred on Pathfinder!

« Bus management missed deadlines while
waiting on meteorology because medium-
priority tasks were taking too long

» System rebooted when deadline was missed

2 S 3 8
S | comms g 2 g | £ &
o Q| \ a4t . = v
wo (N BB WB 0D
| | | | | |
| | | | | | >
0 2 4 6 8 10

58

Priority inheritance solution to priority inversion

» A solution is to temporarily increase priority for tasks holding
resources that high priority tasks need

————_Task 3 inherits priority of
Task 1 while holding
lock Task 1 needs

A

Task 1

Acquire

Priority

59

Quick Break! + xkcd (not relevant, just funny)

https://xkcd.com/336/

IF YOU DONTTURN IN
AT LEAST ONE HOMEWDRIKK
ASSIGNMENT, YoU LL
FAIL THIS CLASS. YEAH. BUTIF I CAN FAIL
THIS CLASS THE GRADES
\ ON MY RERORT CARD WILL
BE INALPHABETICAL ORDER!

/

60

Outline

 Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

 Threadsafe data structures

 Concurrency in other languages

Thread-safe data structures

* “Thread safe” — works even if used by multiple threads concurrently
 Can apply to various libraries, functions, and data structures

 Simple data structures implementations are usually not thread safe
« Some global state needs to be shared among all threads
» Need to protect critical sections

 Challenge: multiple function calls each access same shared structure
« Need to identify the critical section in each and lock it with shared lock

62

Linked List

void List Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node _t));
if (new == NULL) {
perror("malloc");
return; // fail
}
new->key = key;
new->next = L->head;
L->head = new;
return; // success

63

Concurrent Linked List — Big lock approach

void List Insert(list_t *L, int key) {
pthread_mutex_lock(&L->lock);
node t *new = malloc(sizeof(node t));
if (new == NULL) {
perror("malloc");

Most important part
of this example.

pthread mutex unlock(&L->lock); < Don't fOFQEt to unlock
} return; // fail if returning early.
new->key = key;
new->next = L->head; Much better than counter
L->head = new; example, because we are

pthread_mutex_unlock(&L->lock); only serializing the list itself.
return; // success

} Hopefully the rest of the
code can run concurrently.

64

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node _t));
if (new == NULL) {
perror("malloc");
return; // fail
} Check your understanding:
new->key = key;
new->next = L->head;

L->head = new; Where is the critical section here?

return; // success

65

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {
node t *new = malloc(sizeof(node t));

if (new == NULL) {
perror("malloc");
return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

Check your understanding:

Where is the critical section here?

66

What about malloc? Is that safe to use??

void List Insert(list_t *L, int key) {

node t *new = malloc(sizeof(node t));
if (new == NULL) {
perror("malloc");

return; // fail « Thread-safe functions
} « Capable of being called concurrently
new->key = key; and still functioning correctly
new->next = L->head; (Because they use locks!)
L->head = new;
return; // success « How would we know if malloc is thread-
} safe?

 Must check the documentation

67

Must check the library documentation to determine thread safety

» https://man7.org/linux/man-pages/man3/malloc.3.html

 Malloc (and free) is indeed thread-safe
ATTRIBUTES top

For an explanation of the terms used in this section, see

attributes(7).
Interface Attribute Value
malloc(), free(), Thread safety | MT-Safe
calloc(), realloc()

o If it wasn’t, we would have to consider it another shared resource
that needs to be locked

https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List — Only lock critical section

void List Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));
if (new == NULL) {

perror("malloc");

return; // fail
}
new->key = key;
pthread_mutex_lock(&L->lock);
new->next = L->head;
L->head = new;
pthread_mutex_unlock(&L->lock);
return; // success

 Now new node is created
locally in parallel

* Only actual access to the
linked list is serialized

69

Concurrent Queue

« Separate head & tail locks
« Allows concurrent add & remove

O 00 9N Ul e N

10
11
12
13
14
15
16
17
18
19

« Up to 2 threads can access without waiting

typedef struct _ _node_t {

int value;
struct __ _node_t *next;
} node_t;

typedef struct _ _queue_t {

node_t ~head;
node_t *tail;
pthread_mutex_t headLock;
pthread_mutex_t taillock;

} queue_t;

void Queue_Init (queue_t =*q) {

node_t *tmp = malloc(sizeof(node_t));
tmp->next = NULL;

g->head = g->tail = tmp;
pthread_mutex_init (&g—->headLock, NULL) ;
pthread_mutex_init (&g—->taillock, NULL);

21
22
23
24
25
26
7
28
29
30
31
32
33

N

35
36
37
38
39
40

42
43
44

46

void Queue_Enqueue (queue_t *qg, int value)
node_t *tmp = malloc(sizeof (node_t));
assert (tmp != NULL) ;
tmp—->value = value;
tmp->next = NULL;

(pthread_mutex_lock (&§g->taillock) ;
g->tail->next = tmp;
g->tail = tmp;
mlpthread_mutex_unlock(&q—>tailLock);
}

int Queue_Dequeue (queue_t *q, int *value)
ﬂWpthread_mutex_lock(&q—>headLock);
node_t xtmp = g->head;
node_t *newHead = tmp->next;
if (newHead == NULL) {

ﬁ;pthread_mutex_unlock(&q—>headLock);

return -1; // queue was empty

}
x*value = newHead->value;
qg->head = newHead;
L pthread_mutex_unlock (&§q->headLock) ;
free (tmp) ;
return 0;

Concurrent Queue

21 void Queue_Enqueue (queue_t *g, int value) {

22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL) ;
o Vi r” : 24 tmp—->value = value;
tailLock” controls adding elements 2 Cmb-onoxt = NOLLS
- . . 26
* LOOkS Slmllar tO LIStInsert 27 m|pthread_mute:h:_lf::>ck(J.~:=q—>tailLf::>ck),:
1 typedef struct __ node_t { 28 q->taill->next = tmp;
2 int value; 29 m q->tail = tmp;
3 struct _ node_t xnext ; 30 “wpthread_mutex_unlock (&g->taillock);
4 } node_t; 31 }
5 32
6 typedef struct __queue_t { 33 intﬂQueue_Dequeue(queue_t xq, int =*xvalue) ({
7 node_t xhead; 34 pthread_mutex_lock (&g->headLock) ;
8 node_t xtail; 35 node_t xtmp = g->head;
9 pthread_mutex_t headLock; 36 node_t *newHead = tmp->next;
10 pthread_mutex_t taillock; 37 if (newHead == NULL) ({
11 } queue_t; 38 : pthread_mutex_unlock (&g—->headLock) ;
12 39 return -1; // queue was empty
13 void Queue_Init (queue_t =xq) { 40 }
14 node_t *tmp = malloc(sizeof(node_t)); 41 x*value = newHead->value;
15 tmp->next = NULL; 42 g->head = newHead;
16 g->head = g->tail = tmp; 43 L pthread_mutex_unlock (&§g->headLock) ;
17 pthread_mutex_init (&g->headLock, NULL); 44 free (tmp) ;
18 pthread_mutex_init (&g—>taillock, NULL); 45 return 0;

19 } 46 } 71

Concurrent Queue .

void Queue_Enqueue (queue_t *g, int value) {

22 node_t *tmp = malloc(sizeof (node_t));

] 23 assert (tmp != NULL) ;

« Head lock controls removing elements 2 tmp->value = value;
from front 25 tmp->next = NULL;

. . 26
 Needs to lock almost entire function 27 (\pthread_mutex_lock (sg->taillLock) ;
1 typedef struct __ node_t { 28 q->taill->next = tmp;
2 int value; 29 N q->tail = tmp;
3 struct _ node_t xnext ; 30 "wpthread_mutex_unlock (&g—->taillLock);
4 } node_t; 31 }
5 32
6 typedef struct __queue_t { 33 intﬂQueue_Dequeue(queue_t xq, int =*xvalue) ({
7 node_t xhead; 34 pthread_mutex_lock (&g->headLock) ;
8 node_t xtail; 35 node_t xtmp = g->head;
9 pthread_mutex_t headLock; 36 node_t *newHead = tmp->next;
10 pthread_mutex_t tailLock; 37 ifﬁ(neWHead == NULL) {
11 } queue_t; 38 "mpthread_mutex_unlock (&§g—>headLock) ;
12 39 return -1; // queue was empty
13 void Queue_Init (queue_t =xq) { 40 }
14 node_t *tmp = malloc(sizeof(node_t)); 41 x*value = newHead->value;
15 tmp->next = NULL; 42 g->head = newHead;
16 g->head = g->tail = tmp; 43 g pthread_mutex_unlock (&g->headLock) ;
17 pthread_mutex_init (&g->headLock, NULL); 44 free (tmp) ;
18 pthread_mutex_init (&g—>taillock, NULL); 45 return 0;

19 } 46 } 72

Concurrent Hash Table

« Each bucket is implemented with a
Concurrent List
« We don't have to define any locks!
 (Locks are in the lists)

* A thread can access a bucket
without blocking other threads’
access to buckets.

e Hash tables are ideal for
concurrency.

« Hash (bucket id) can be calculated
without accessing a shared resource.

are used
for huge NoSQL databases.

0 N O Ul W N =

L T e
Ny U e W= O WO

18
19
20
21
22

#define BUCKETS (101)

typedef struct _ _hash_t {
list_t 1lists[BUCKETS];
} hash_t;

void Hash_Init (hash_t =*H) {
int i;
for (1 = 0; 1 < BUCKETS; i++) {
List_TInit (&H->1lists[i]);
}
}

int Hash_Insert (hash_t xH, int key) {

int bucket = key % BUCKETS;

return List_Insert (&H->1lists[bucket], key);
}

int Hash_Lookup(hash_t xH, int key) {
int bucket = key % BUCKETS;
return List_Lookup (&H->1lists[bucket], key);

73

Lock-free data structures

« In our original example, we put a lock around counter++
« We could have instead used atomic fetch and add to update counter
* Lock-free and sti// atomic!!

* This is possible with more complex data structures as well
 Often based on a compare-and-swap (CAS) approach
e https://www.cs.cmu.edu/~410-s05/lectures/| 31 LockFree.pdf

« Warning: these are not to be taken lightly
 Atomic instructions have performance costs on processors
 Getting this correct involves really understanding hardware
« https://abseil.io/docs/cpp/atomic _danger

74

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://abseil.io/docs/cpp/atomic_danger

Break + Question: Where is the critical section for vector?

typedef struct {
size t size;
size t count;
int** data;

} vector t;

volid vector add(vector t* v, 1nt* item) {

(v—->count == v->size) {
v—->8lze *= 2;
v—>data = realloc(v->data, sizeof(int*)*v->size):;

J

v—->data|[v->count++] = 1tem;

J

75

Break + Question: Where is the critical section for vector?

typedef struct {
size t size;
size t count;
int** data;

} vector t;

volid vector add(vector t* v, 1nt* item) {

(v—>count == v->size) {
v—->8lze *= 2;
v—>data = realloc(v->data, sizeof(int*)*v->size):;

J

v—->data|[v—->count++] = 1tem;

J

76

Outline

 Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

- Concurrency Iin other languages

Javascript

« Javascript (in browsers) is strictly single-threaded
« Therefore, no data races!

« A Javascript function will never be interrupted unless it makes an
asynchronous call
console.log("1");
setTimeout(function(){console.log("2");},0);
console.log("3™);
setTimeout(function(){console.log("4"); },1000);
« Will always output: 1 3 2 4 in that order
 Even timers only trigger whenever the current code is finished

78

Python

* Provides all the same primitives we discussed!
https://docs.python.org/3/library/concurrency.html

threading — Thread-based parallelism

L]

o o o o O

o O

Thread-Local Data And some nicer things

Thread Objects with some_ lock:

Lock Objects # do something..

RLock Objects

Condition Objects Is equivalent to

Semaphore Objects some_lock.acquire()
» Semaphore Example try:

Event Objects # do something..

Timer Objects finally:

Barrier Objects some_lock.release()

79

https://docs.python.org/3/library/concurrency.html

Python threads are concurrent but not parallel

» Python uses one big lock technique for thread safety

. G
. T

. T

obal Interpreter Lock (GIL)
Nreads that are I/O bound still

get a performance boost

nreads that are CPU bound do

not increase performance

« Multiprocessing library does

employ parallelism by spawning

entirely new processes

« Each with their own python interpreter

Multi-threading

acquire GIL release GIL ‘

\\[countdown() |/
Thread 1 -\- B ammanrasnasnaynanraneas

acquire GIL

wait for GIL r countdown()
Thread 2 -

waiting to be
selected to run
(overhead)

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a

80

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a

Java

 Java has synchronized

public class Counter {

keyword for surrounding int mfotal = 0;
Critica| sections publa synch:onized toid addone() {
» Automatically releases the lock rota = v
when exiting early: '
public void addOneVersion2() throws Exception {
Aot val;

synchronized(this) {
val = mTotal;
val++;

if (val = Integer.MAX_VALUE) {

throw new Exception("value is too large™);

 Similar to
« Python: “with self.lock:”

* Objective-C: “@synchronized” ,%,Total - val;
¥

System.out.println("new value is " + val);

81

Rust

 Rust’s opinion on sharing memory is amusingly to refer to Go’s opinion

Do not communicate by sharing memory; instead, share memory by communicating.

--Effective Go

 Rust has a strong concept of ownership
A writeable (mutable) reference to an object can only be held in one place
« Once an object is passed to another thread, the passer no longer has access
« Solves many concurrency issues due to lack of shared memory

 Rust locks have lifetimes enforced by the compiler
 Lock goes out-of-scope at the end of the function, relocking automatically

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html 82

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

Advice for the future

« Be aware of issues when writing multithreaded code

 Use threadsafe data structures when possible
 In languages that provide them...

« Map your problem onto a classical concurrency problem
* Producer/Consumer
« Readers/Writers

« One big lock for correctness isn’t the worst idea ever
« But with some care (possibly a lot of care) we can do better

83

Outline

 Synchronization bugs
 Deadlock
» Solving deadlocks

e Livelock

* Priority Inversion

* Threadsafe data structures

 Concurrency in other languages

