
Lecture 07:
Condvars and Semaphores

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), and Shivaram Venkataraman (Wisconsin)

Administrivia

• Scheduler lab due by end-of-day today
• Remember that slip days are automatic, no need to ask

• PC lab available late tonight
• Practices concurrency issues: detecting and resolving them

2

Today’s Goals

• Consider another source of concurrency: interrupts

• Understand how we can apply locks to gain correctness and
maintain performance
• Counter

• Data Structures (bonus, if time is available)

• Signaling between threads to enforce ordering
• Condition Variables

• Semaphores

3

Review: Locks/Mutexes

• Simple mutual exclusion primitive

• Init(), Acquire()/Lock(), Release()/Unlock()

• Implementations trade complexity, fairness, and performance
• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks

4

5

• Interrupts

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Where else does concurrency come from?

• Processors introduce it for performance reasons by running
multiple processes and threads

• Interactions with the outside world introduce it because events
occur whenever they feel like it
• Network request arriving
• User presses a key
• Motion sensor triggers

• Also, we need some way to deal with errors the occur when
executing instructions
• No pathway for returning an error from an instruction

6

Interrupts

A way for the CPU to be, well, interrupted.

• CPU hardware switches to privileged mode
• Now any instruction can be executed, including privileged ones.

• Execution jumps to a predefined location
• Handler specified in the CPU’s interrupt vector table
• Lets the kernel deal with whatever the event was

• Used to support asynchronous I/O
• Lets a hardware device tell the CPU that some data is ready
• Remember that a disk operation is millions of times slower than an add.

• CPU has electrical pin(s) for hardware interrupts.

• There is also an instruction for software interrupts (like traps!)

Interrupt Vector Table

8

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt Vector Table

9

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Differences from traps

• When we performed a system call:
• We knew it was about to happen.

• Set up our registers in advance.

• Performed what looked sort of like a function call.

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order

execution, multiple cores and threads, and caches

10

Interrupt handlers

• Interrupt context
• Can’t just enter the kernel like we did with system calls
• Interrupt could have occurred while we were in the kernel

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire

core jumped to handling this interrupt

• Handled by the operating system
• Processes are interrupted, but otherwise not normally involved

11

Why are interrupts important to the kernel?

• Interrupts are a case where the kernel could have a data race with
itself!!
• Imagine being in the middle of an operation on a device

• When an interrupt comes in for that same device

• Data structures for the device could end up messed up

• Takeaway: concurrency isn’t just about processes and threads
• Many different software designs need to deal with it

12

Data race fix for single-core machines: disable interrupts

void lock() {

disable_interrupts();

}

void unlock() {

enable_interrupts();

}

13

• Disable interrupts to prevent preemption
during critical section
• Scheduler can’t run if the OS never takes

control

• Also stops data races in interrupt handlers

• Problems
• Doesn’t work by itself on multicore machines

• Need to use it AND mutexes

• Bad Idea™ to let processes disable the OS

• Process could freeze the entire computer

• Might screw up timing for interrupt handling

14

• Interrupts

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Review: Need to enforce mutual exclusion on critical sections

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal was

%d)\n", counter, 2*LOOPS);

return 0;

}

15

Naively locked counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

pthread_mutex_lock(&lock);

counter++;

pthread_mutex_unlock(&lock);

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

16

Problem: locking overhead decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds (Correct…)

17

• Formerly loop contained 3 instructions (mov, add, mov)

• Now it has
• Two function calls
• Multiple instructions inside of those
• Possibly even interaction with the OS…
• 3 instructions -> 60 instructions

When iterating
one billion times:

Simple mutual exclusion: one big lock

• Simple solution “one big lock”
• Find all the function calls that interact with shared memory

• Lock at the start of each function call and unlock at the end

• Essentially, no concurrent access
• Correct but poor performance

• If you’ve forgotten all of this years from now, “one big lock” will still work

18

Counter example with big lock technique

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

pthread_mutex_lock(&lock);

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

pthread_mutex_unlock(&lock);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

19

code posted with last
lecture on canvas

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

20

• Big lock technique basically returned us to single-threaded
execution time (and single-threaded implementation)

• Why is the no-lock multithreaded version so slow?
• Not 100% certain
• Likely something to do with hardware memory/cache consistency

Reducing lock overhead

• We want to enable parallelism, but deal with less lock overhead
• Need to increase the amount of work done when not locked

• Goal: lots of parallel work per lock/unlock event

• “Sloppy” updates to global state
• Keep local state that is operated on

• Occasionally synchronize global state with current local state

• Counter example
• Keep a local counter for each thread (not shared memory)

• Add local counter to global counter periodically

21

Sloppy counter example

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

int sloppy_count = 0;

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

sloppy_count++;

if (i%1000 == 0) {

pthread_mutex_lock(&lock);

counter += sloppy_count;

pthread_mutex_unlock(&lock);

sloppy_count = 0;

}

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

22

Offscreen Tail condition: don’t forget to update
“counter” again when the for loop is complete!

code posted with last
lecture on canvas

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multi-threaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

Sloppy lock (synchronize every 100): 2.150 seconds

Sloppy lock (synchronize every 10000): 1.472 seconds

Sloppy lock (synchronize every 1000000):
Sloppy lock (synchronize every 1000000000):

1.478 seconds
1.500 seconds

23

• Optimal for this counter example will be synchronizing once, when
entirely finished with the local sum

Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel
anyways

• Is concurrency worth it? What kinds of problems work best?

24

Break + Open Question

• Avoiding data races is challenging

• Synchronization means we’re running some code in parallel
anyways

• Is concurrency worth it? What kinds of problems work best?

• Problems that do not share data will still be HUGE wins!

• No (or few) data races. Big concurrency performance gains.

• Such problems are termed: embarrassingly parallel
• https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

25

https://en.wikipedia.org/wiki/Embarrassingly_parallel#Examples

26

• Interrupts

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Requirements for sensible concurrency

• Mutual exclusion
• Prevents corruption of data manipulated in critical sections

• Atomic instructions → Locks → Concurrent data structures

• Ordering (B runs after A)
• By default, concurrency leads to a lack of control over ordering

• We can use mutex’d variables to control ordering, but it’s inefficient:
• while(!myTurn) sleep(1);

• We would like cooperating threads to be able to signal each other.

• Park/unpark and futex could be used solve this problem

• But we want a higher-level abstraction

27

Barriers for all-or-nothing synchronization

• Barriers create synchronization points in the program
• All threads must reach barrier before any thread continues

• pthread_barrier_init(barrier_t)

• pthread_barrier_wait(barrier_t)

• Use case: neural network processing
• Spawn a pool of threads
• Each thread handles a portion of the input data
• Collect results from all threads at the end of the layer
• Distribute results to appropriate threads for next layer

28

Basic Signaling with Condition Variable (condvar)

• Queue of waiting threads
• Combine with a flag and a mutex to synchronize threads

• wait(condvar_t, lock_t)
• Lock must be held when wait() is called
• Puts the caller to sleep AND releases lock (atomically)
• When awoken, reacquires lock before returning

• signal(condvar_t)
• Wake a single waiting thread (if any are waiting)
• Do nothing if there are no waiting threads
• Called while holding the lock; action occurs after lock is released

29

Waiting for a thread to finish

pthread_t p1, p2;

// create child threads
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

...

// join waits for the child threads to finish
thr_join(p1, NULL);
thr_join(p2, NULL);

return 0; How to implement
join?

30

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Done flag tracks the event

• Condvar is used for ordering

• Mutex protects both!

31

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

32

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

• Child calls thr_exit()
• sets done to 1

• calls signal()

• unlocks mutex

33

Buggy attempts to wait for a child, no flag
P
a
re

n
t

C
h
ild

1) Without done variable, the child could run first and signal before
the parent starts waiting for the child. Parent waits forever…

Correct Code

34

Incorrect Code

Buggy attempts to wait for a child, no mutex
P
a
re

n
t

 C

h
ild

2) Without a lock, the parent could see done==0,
then the child could finish and signal,
then the parent would start waiting (after missing the signal).
Parent waits forever…

Correct Code

35

Incorrect Code

Must check condition with in a loop

1. Thread 1 calls condvar_wait()

2. Thread 2 does some work, calls condvar_signal()

3. Before Thread 1 is scheduled, Thread 3 executes and skips the
wait because the resource is ready!

4. Now Thread 1 will run, but the resource will not be ready

• There is no guarantee that the condition you’ve been waiting for is
true when you are awoken

• So, we must also use a “predicate loop.” (while, not if)

36

Spurious (fake) wakeups

• Pthreads allows wakeup to return
not just when a signaled, but also
when a timer expires or for no
reason at all!

• Spurious wakeups were included in
the specification because they may
allow some implementations be
more efficient.

• Should be safe since we have to
wait with a while loop anyways

37

Another Example: Produce/Consumer Problem

• We have multiple producers and multiple consumers that
communicate with a shared queue (FIFO buffer).
• Concurrent queue allows work to happen asynchronously.
• Buffer has finite size (does not dynamically expand)

• Two operations:
• Put, which should block (wait) if the buffer is full.
• Get, which should block (wait) if the buffer is empty.

• This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting.

• Example scenario: request queue in a multi-threaded web server.

38

Managing the buffer

• A simple implementation of a circular
buffer that stores data in a fixed-size
array.

• fill is the index of the tail

• use is the index of the head

• count = (fill – use) % MAX

This simple implementation assumes:

• Concurrency is managed elsewhere

• It will overwrite data if we try to put
more than MAX elements.

39

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

40

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

41

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is
empty
• Consumer signals empty after get

42

Managing the concurrency
• Always acquire mutex

• Must use same mutex in both functions

• Use two condvars

• Producer waits on empty while the
buffer is full
• Producer signals fill after put

• Consumer waits on fill while the buffer is
empty
• Consumer signals empty after get

• Loops re-check count condition after
breaking out of wait, to handle spurious
wakeups.

43

Broadcast makes more complex conditions possible

• Recall that signal wakes one waiting thread (FIFO)
• But there are times when threads are not all equivalent

• The signal may not be serviceable by any of the threads

• For example, consider memory allocation/free requests
• An allocation can only be serviced by free of >= size

• pthread_cond_broadcast wakes all threads
• This approach may be inefficient, but it may be necessary to ensure

progress

44

Condition Variable: rules of thumb

• Shared state determines if condition is true or not
• Check the state in a while loop before waiting on condvar

• Use a mutex to protect:
• The shared state on which condition is based, and
• Operations on the condvar

• Remember to acquire the mutex before calling cond_signal() and
cond_broadcast()

• Use different condvars for different conditions
• Sometimes, cond_broadcast() helps if you can’t find an elegant solution using
cond_signal()

45

Break + Administrivia

• Midterm exam is coming soon!
• Next week Thursday

• I’ll distribute a practice exam soon

• Covers all of class material through this week

• All of Scheduling and all of Concurrency

• We’ll have a review session in class next week Tuesday

• It’ll focus on some practice problems

46

47

• Interrupts

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

Generalizing Synchronization

• Condvars have no state or lock, just a waiting queue
• The rest is handled by the programmer

• Semaphores are a generalization of condvars and locks
• Includes internal (locked) state

• A little harder to understand and use, but can do everything

48

Semaphores (by Edsger Dijkstra, 1965)

• Keeps an internal integer value that determines
what happens to a calling thread

• Init(val)
• Set the initial internal value
• Value cannot otherwise be directly modified

• Up/Signal/Post/V() (from Dutch verhogen “increase”)
• Increase the value. If there is a waiting thread, wake one.

• Down/Wait/Test/P() (from Dutch proberen “to try”)
• Decrease the value. Wait if the value is negative.

49

Dijkstra invented
Dijkstra’s Algorithm!

Also Semaphores and the
entire field of Concurrent
Programming

https://en.wikipedia.org/
wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphores vs Condition Variables

• Semaphores

• Up/Post: increase value and
wake one waiting thread

• Down/Wait: decrease value
and wait if it’s negative

• Condition Variables

• Signal: wake one waiting thread

• Wait: wait

• Compared to CVs, Semaphores add an integer value that controls
when waiting is necessary
• Value counts the quantity of a shared resource currently available
• Up makes a resource available, down reserves a resource
• Negative value -X means that X threads are waiting for the

resource
50

Check your understanding

• How would we build a mutex out of a semaphore?
typdef struct {

sem_t sem;

} lock_t;

init(lock_t* lock){

}

acquire(lock_t* lock) {

}

release(lock_t* lock) {

}

51

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

value >= 0
sem_post(sem_t*): Increment value then

wake a single waiter

Check your understanding

• How would we build a mutex out of a semaphore?
typdef struct {

sem_t sem;

} lock_t;

init(lock_t* lock){
sem_init(&(lock->sem), 1);

}

acquire(lock_t* lock) {
sem_wait(&(lock->sem));

}

release(lock_t* lock) {
sem_post(&(lock->sem));

}

52

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

value >= 0
sem_post(sem_t*): Increment value then

wake a single waiter

Implementing a lock with a semaphore

• Choose an appropriate initial value for the semaphore

• To implement a Lock:
• Initialize to 1 (access to the critical section is the one shared resource)

• Lock → Down: (decreases the value and waits if negative)

• Will decrease the value to 0 if it lock is not already taken

• Will decrease the value to -1 and wait if the lock is taken (value was 0)

• Unlock → Up: (increases the value and wakes one waiting thread)

• If value was 0, then no thread was waiting, and no thread is woken

• If value was -1, then one thread was waiting, and it is woken

• If value was -x, then x threads are waiting, one is woken, value
becomes -(x-1).

• If value is already 1, Up should not be called. (Unlock before lock?!)

53

Semaphores reduce effort for numerical conditions
P
a
re

n
t

 C

h
ild

• Want parent to wait immediately so initialize to 0
• If child thread finishes first, semaphore increments to 1

Condition Variable

54

Semaphore

void thr_exit() {
sem_post(&s);

}

void thr_join() {
sem_wait(&s);

}

sem_init(&s, 0);

Readers-Writers Problem

• Some resources don’t need strict mutual exclusion, especially if
they have many read-only accesses. (eg., a linked list)

• Any number of readers can be active simultaneously, but

• Writes must be mutually exclusive AND cannot happen during read

• API:
• acquire_read_lock(), release_read_lock()

• acquire_write_lock(), release_write_lock()

55

Reader-writer Lock

• “lock” semaphore used as
a mutex

Reader-writer Lock

• “writelock” must be held
during read to block writes
or during write to block
reads.

• During reads
• Number of active readers is

counted.

• First/last reader handles
acquiring/releasing
writelock.

Classical concurrency problems

• Note that this particular solution could starve writers
• There might always be readers in the critical section

• Full solution to readers-writers problem with progress guarantee
• https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

• Generally: try to map your problem to one of these solved problems
• Producers/Consumers or Readers/Writers

• There are MANY solutions to these problems available online

58

https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

59

• Interrupts

• Applying Locks

• Ordering with Condition Variables

• Semaphores

Outline

60

• Bonus: Concurrent Data Structures

Outline

Thread-safe data structures

• “Thread safe” – works even if used by multiple threads concurrently
• Can apply to various libraries, functions, and data structures

• Simple data structures implementations are usually not thread safe
• Some global state needs to be shared among all threads

• Need to protect critical sections

• Challenge: multiple function calls each access same shared structure
• Need to identify the critical section in each and lock it with shared lock

61

Linked List

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

62

Concurrent Linked List – Big lock approach

void List_Insert(list_t *L, int key) {

pthread_mutex_lock(&L->lock);

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

pthread_mutex_unlock(&L->lock);

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread_mutex_unlock(&L->lock);

return; // success

}

63

Most important part
of this example.
Don’t forget to unlock
if returning early.

• Much better than counter
example, because we are
only serializing the list itself.
Hopefully the rest of the
code can run concurrently.

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

64

Check your understanding:

Where is the critical section here?

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

65

Check your understanding:

Where is the critical section here?

What about malloc? Is that safe to use??

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

66

• Thread-safe functions
• Capable of being called concurrently

and still functioning correctly
• (Because they use locks!)

• How would we know if malloc is thread-
safe?
• Must check the documentation

Must check the library documentation to determine thread safety

• https://man7.org/linux/man-pages/man3/malloc.3.html

• Malloc (and free) is indeed thread-safe

• If it wasn’t, we would have to consider it another shared resource
that needs to be locked

67

https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

pthread_mutex_lock(&L->lock);

new->next = L->head;

L->head = new;

pthread_mutex_unlock(&L->lock);

return; // success

}

68

• Now new node is created
locally in parallel

• Only actual access to the
linked list is serialized

Concurrent Queue

• Separate head & tail locks

• Allows concurrent add & remove
• Up to 2 threads can access without waiting

69

Concurrent Queue

• “tailLock” controls adding elements

• Looks similar to ListInsert

70

Concurrent Queue

• Head lock controls removing elements
from front

• Needs to lock almost entire function

71

Concurrent Hash Table

• Each bucket is implemented with a
Concurrent List
• We don’t have to define any locks!

• (Locks are in the lists)

• A thread can access a bucket
without blocking other threads’
access to other buckets.

• Hash tables are ideal for
concurrency.
• Hash (bucket id) can be calculated

without accessing a shared resource.

• Distributed hash tables are used
for huge NoSQL databases.

72

Lock-free data structures

• In our original example, we put a lock around counter++
• We could have instead used atomic_fetch_and_add to update counter
• Lock-free and still atomic!!

• This is possible with more complex data structures as well
• Often based on a compare-and-swap (CAS) approach
• https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf

• Warning: these are not to be taken lightly
• Atomic instructions have performance costs on processors
• Getting this correct involves really understanding hardware
• https://abseil.io/docs/cpp/atomic_danger

73

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://abseil.io/docs/cpp/atomic_danger

Break + Question: Where is the critical section for vector?

typedef struct {

size_t size;

size_t count;

int** data;

} vector_t;

void vector_add(vector_t* v, int* item) {

if (v->count == v->size) {

v->size *= 2;

v->data = realloc(v->data, sizeof(int*)*v->size);

}

v->data[v->count++] = item;

}

74

Break + Question: Where is the critical section for vector?

typedef struct {

size_t size;

size_t count;

int** data;

} vector_t;

void vector_add(vector_t* v, int* item) {

if (v->count == v->size) {

v->size *= 2;

v->data = realloc(v->data, sizeof(int*)*v->size);

}

v->data[v->count++] = item;

}

75

