
Lecture 04:
Advanced Scheduling

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Wang Yi (Uppsala), and UC Berkeley CS149 and CS162

Today’s Goals

• Describe real-time systems

• Understand scheduling policies based on deadlines

• Explore modern operating system schedulers

2

3

• Scheduling Overview

• Scheduler Metrics

• Batch Systems
1. First In First Out scheduling

2. Shortest Job First scheduling

3. Shortest Remaining Processing Time scheduling

• Interactive Systems
1. Round Robin scheduling

2. Multi-Level Feedback Queue scheduling

Outline

Jobs can be I/O-bound or CPU-bound

• CPU-bound process
• Lots of computation between each I/O request

• Actually needs to do computation on a processor

• Example: doing matrix math

• I/O-bound process
• Very little computation between each I/O request

• Just needs a processor to figure out its next I/O request

• Example: searching a file system for a file name

4

Scheduling goal: I/O-bound before CPU-bound

• First maximize I/O
• Run the I/O-bound jobs as quickly as possible,

• So they can send next I/O request,

• And our disks, network cards, etc. are maximally used

• And our processor becomes free again quickly (faster than a timeslice)

• Then fill up the processor(s)
• Lots of room for multiprogramming between the I/O requests

• Blocked jobs are still “progressing” as their I/O is fetched

5

Scheduling goal: I/O-bound before CPU-bound

• First maximize I/O
• Run the I/O-bound jobs as quickly as possible,

• So they can send next I/O request,

• And our disks, network cards, etc. are maximally used

• Then fill up the processor(s)
• Lots of room for multiprogramming between the I/O requests

• Blocked jobs are still “progressing” as their I/O is fetched

• But how do you know when a job is going to use I/O?
• Can’t know the future

• Can track past behavior of the job

6

2. Multi-Level Feedback Queue (MLFQ)

• General purpose scheduler to support multiple goals
• Good response time for interactive jobs

• Good turnaround time for batch jobs

• Achieves this by prioritizing I/O bound jobs over CPU bound jobs

• Policy
• Automatically attach priority to jobs:

• Interactive, I/O bound jobs should be highest priority

• CPU bound, batch jobs should be lowest priority

• Apply different round robin timeslices to each priority level

7

Multi-Level Feedback Queue Details

• Run highest priority level available
• Round robin among jobs there

• When all jobs at a level are blocked
on I/O
• Move down to next lower level

• Long running jobs lose priority
• Processor usage quota at a given

level

• When used up, demote job one level

8

MLFQ Rules

1. If Priority(J1) > Priority(J2),
J1 runs

2. If Priority(J1) = Priority(J2),
J1 and J2 run in Round Robin

3. Jobs start at top priority

4. When a job uses its time quota
for a level, demote it one level

5. Every S seconds, reset priority of
all jobs to top

9

MLFQ Example

10

P
ri
o
ri
ty

Time

Job’s priority
drops as it runs

Higher priority
jobs run first

Time

MLFQ avoids starvation with periodic priority reset

• Low priority jobs
could starve if
there are enough
interactive jobs

• MLFQ avoids
starvation by
periodically
resetting priorities

11

Many new
interactive jobs

Priority reset

Time Time

Change timeslices to optimize response and turnaround

• Lower priority jobs are CPU bound, not interactive
• So we can use longer timeslices to minimize context switches

12Time

P
ri
o
ri
ty

MLFQ parameters

• Every MLFQ implementation needs to choose a bunch of
parameters
• How many queues/priority levels?

• When does a job get demoted in priority?

• How often to reset priority for everything?

• How large is the timeslice at each priority level?

13

MLFQ in the wild

• The embedded OS I work on has an MLFQ scheduler!
• https://github.com/tock/tock/blob/master/kernel/src/scheduler/mlfq.rs

• How many queues/priority levels?
• Three

• When does a job get demoted in priority?
• If it ever uses its whole timeslice without blocking

• How often to reset priority for everything?
• Every five seconds

• How large is the timeslice at each priority level?
• 10 ms, 20 ms, 50 ms

14

https://github.com/tock/tock/blob/master/kernel/src/scheduler/mlfq.rs

15

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Normal OSes don’t cut it for all use cases

• Some environments need very specialized systems
• Flight controls

• Autonomous vehicles

• Space exploration

• In each of these scenarios
• Computer failures are unacceptable

• Humans can’t intervene to resolve issues

• We’re going to need a computer system with performance guarantees

16

Example: Pathfinder

17

Radiation-hardened IBM CPU

Pathfinder had periodic tasks that must be executed

21

Tasks to execute

time

Scheduler
(kernel)Manage

Bus

Comms

Weather

Report

Comms
Manage

Bus

Weather

Report

Real-Time Operating Systems

• Goal: guaranteed performance
• Meet deadlines even if it means being unfair or slow

• Limit how bad the worst case is

• Usually mathematically

• It’s not about speed, it’s about guaranteed performance
• Good turnaround and response time are nice, but insufficient

• Predictability is key to providing a guarantee

• RTOS is actually a whole other class worth of material
• Last taught by Peter Dinda in 2005…

22

Types of real-time schedulers

• Hard real-time:
• Meet all deadlines

• Otherwise decline to accept the job

• Ideally: determine in advance if deadlines will be met

• Soft real-time
• Attempt to meet deadlines with high probability

• Often good enough for many non-safety-critical applications

• Quadcopter software

23

Real-time jobs

• Preemptable jobs with known deadlines (D) and computation (C)
• Computation duration here are the worst-case execution times

• Computation MUST complete before deadline and start after arrival

• Can happen anywhere between those boundaries though

24

Job
arrives

Deadline

Computation

Prior scheduling policies don’t apply here

25

Round Robin example
Need to
account for
deadlines!

Types of real-time jobs

• Aperiodic
• Jobs we are already accustomed to
• Unpredictable start times, no deadlines (not real-time)

• Sporadic
• Unpredictable start time, has a deadline
• Must decide feasibility at runtime and either accept or reject job

• Periodic (we’ll focus on these)
• Recurs at a certain time interval
• Deadline for completion is before the start of the next time interval

• i.e. deadline equals the period
• Can decide feasibility of schedule at compile-time

26

Periodic real-time jobs

• Repeat at their deadline
• New work cannot be started until the deadline

• Work can take place anytime between deadlines

• But MUST finish before the deadline hits

27

Job
arrives

Deadline
and

new arrival

Computation Computation Compu tation

Deadline
and

new arrival

Deadline
and

new arrival

Break + xkcd

28https://xkcd.com/2433/

29

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

30

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

31

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

32

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Earliest Deadline First (EDF) Scheduling

• Priority scheduling with pre-emption

• Highest priority given to task with soonest deadline
• Task = (Period, Duration)

33

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

DeadlineInitial arrival

Schedulability test for EDF

• Guarantees schedule feasibility if total load is not more than 100%
• All deadlines will be met

• For n tasks with computation time C and deadline (period) D
• A feasible schedule exists if utilization is less than or equal to one:

𝑈 =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

34

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

35

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

36

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

1/3 + 2/5 + 4/15 = 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

37

0 5 10 15

1/3 + 2/5 + 4/15 = 1

Can’t start a job before its period

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

38

0 5 10 15

Earliest deadline changes,
preempting Job B

1/3 + 2/5 + 4/15 = 1

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

39

0 5 10 15

Schedule repeats at least common multiple

1/3 + 2/5 + 4/15 = 1

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

40

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

41

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

1/2 + 1/3 + 1/4 = 1.08

A

B

C

Check your understanding

• Can we schedule the following workload?
• Job A: period 2, computation 1

• Job B: period 3, computation 1

• Job C: period 4, computation 1

42

0 5 10 15

U =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 1

Missed deadline!

1/2 + 1/3 + 1/4 = 1.08

A

B

C

Break + Thinking

• Where do the job deadlines come from? Provide an example.

43

Break + Thinking

• Where do the job deadlines come from? Provide an example.

• Real-world constraints!

• Autonomous vehicle:

• “If I don’t finish the detection algorithm by time N,
then I will no longer be able to stop in time to avoid what it detects.”

• In this example, deadline might vary with velocity,
or maybe we just choose a deadline based on fastest velocity.

44

45

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Earliest Deadline First tradeoffs

Good qualities

• Simple concept and simple schedulability test

• Excellent CPU utilization

Bad qualities

• Hard to implement in practice
• Need to constantly recalculate task priorities
• CPU time spent in scheduler needs to be counted against load

• Unstable: Hard to predict which job will miss deadline
• Utilization was greater than 1, so we knew there was a problem
• But we had to work out the whole schedule to see Job C missed

46

Rate Monotonic Scheduling (RMS)

• Priority scheduling

• Assign fixed priority of 1/Period for each job
• Makes the scheduling algorithm simple and stable

• Only lowest priority jobs might miss deadlines

• If any fixed-priority scheduling algorithm can schedule a workload,
So can Rate Monotonic Scheduling
• There could be dynamic-priority systems that beat it

• But they would be more complicated and take more cycles to run

47

Rate Monotonic Scheduling example

• Schedule the following workload with RMS
• Job A: period 3, computation 1 -> Priority 1/3

• Job B: period 5, computation 2 -> Priority 1/5

48

0 5 10 15

A

B

Schedulability test for RMS

• Schedulability is more complicated for RMS unfortunately
• For a workload of n jobs with computation time C and period D

𝑈 =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 𝑛 ∗ (2
1
𝑛 − 1)

• U(1) = 1.0

• U(2) = 0.828

• U(3) = 0.779

…

• U(∞) = 0.693

49

Lower Bound on schedulability

RMS schedulability test is conservative

𝑈 =

𝑖=1

𝑛
𝐶𝑖
𝐷𝑖

≤ 𝑛 ∗ (2
1
𝑛 − 1)

• 0 ≤ 𝑈 ≤ 𝑛 ∗ (2
1

𝑛 − 1)
• Schedulable! (so less than 69% is always schedulable)

• 𝑛 ∗ (2
1

𝑛 − 1) < 𝑈 ≤ 1
• Maybe schedulable

• 1 < 𝑈
• Not schedulable

50

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

51

0 5 10 15

A

B

C

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1

• Job B: period 5, computation 2

• Job C: period 15, computation 4

52

0 5 10 15

1/3 + 2/5 + 4/15 = 1

U = 1
Maybe schedulable!

A

B

C

Check your understanding

• Can we schedule the following workload with RMS?
• Job A: period 3, computation 1 -> Highest priority

• Job B: period 5, computation 2 -> Middle priority

• Job C: period 15, computation 4 -> Lowest priority

53

0 5 10 15

1/3 + 2/5 + 4/15 = 1

U = 1
Maybe schedulable!

A

B

C

Rate Monotonic Scheduling tradeoffs

Upsides
• Still conceptually simple

• Easy to implement

• Stable (lower priority jobs will fail to meet deadlines in overload)

Downsides
• Lower CPU utilization

• Might not be able to utilize more than 70% of the processor

• Non-precise schedulability analysis

54

Break + Open Question

• How would you handle sporadic jobs in these systems?
• Unpredictable start time, has a deadline, not repeated

55

Break + Open Question

• How would you handle sporadic jobs in these systems?
• Unpredictable start time, has a deadline, not repeated

• Must decide feasibility at runtime and either accept or reject job
• Calculate new Utilization accounting for the additional job

• Determine whether the schedule will definitely (or maybe) work

• Schedule or reject the job

• If scheduled, works just like any other job

• Either EDF based on deadline of the job

• Or given an RMS priority, based on period (duration)

56

57

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

Priority scheduling policies

• Systems may try to set priorities according to some policy goal

• MLFQ Example:
• Give interactive jobs higher priority than long calculations

• Prefer jobs waiting on I/O to those consuming lots of CPU

• Try to achieve fairness:
• elevate priority of threads that don’t get CPU time

(ad-hoc, bad if system overloaded)

58

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Linux O(1) scheduler (Linux 2.6)

• Goals
• Keep the runtime of the scheduler itself short

• Avoid O(n) algorithms
• Instead, only adjust a single job when it is swapped

• Predictable algorithm
• Identify interactive versus noninteractive processes with heuristics

• Processes with long average sleep time get a priority boost

• Note my machines right now:
• Ubuntu VM: 332 processes (867 threads)
• Windows: 224 processes (2591 threads)
• MacOS: 430 processes (2249 threads)
• Major concern: many processes mean O(n) could be long…

59

Priority in Linux O(1) scheduler

• MLFQ-Like Scheduler with 140 Priority Levels
• 40 for user tasks, 100 soft “realtime” tasks

• Timeslice depends on priority – linearly mapped onto timeslice
range

60

Kernel/Realtime Tasks User Tasks

0 100 139

Workings of the O(1) scheduler

• Round robin at priority
levels like MLFQ

• Each priority level gets a
run quota

• On expiration of quota
• Recalculate priority

• Insert in expired queue

• When all jobs are gone
from active queue
• Swap expired and active

queue pointers

61

https://www.ibm.com/developerworks/library/l-scheduler/index.html

Priorities can lead to starvation

• The policies we’ve studied so far:
• Always prefer to give the CPU to a prioritized job

• Non-prioritized jobs may never get to run

• But priorities were a means, not an end

• The goal was to serve a mix of CPU-bound, I/O bound, and
Interactive jobs effectively on common hardware
• Give the I/O bound ones enough CPU to issue their next file operation and

wait (on those slow discs)

• Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

• Let the CPU bound ones grind away without too much disturbance

62

Idea: proportional-share scheduling

• Many of the policies we’ve studied always prefer to give CPU to a
prioritized job
• Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally
• Give each job a share of the CPU according to its priority

• Low-priority jobs get to run less often

• But all jobs can at least make progress (no starvation)

63

First attempt: lottery scheduling

• Give out “tickets” according to proportion each job should receive

• Every quantum:
• Draw one ticket at random
• Schedule that job to run

• If there are N jobs,
probability of pick a job is:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑖)

σ𝑗=0
𝑛−1 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑗𝑜𝑏𝑗)

• Definitely not suitable for real-time systems!

64

1

10

Better idea: stride scheduling

• Same idea, but remove the random element

• Give each job a stride number inversely proportional to priority
• Priority: A=100, B=50, C=10

• Stride: A=1, B=2, C=10

• Scheduler
• Pick job with lowest cumulative strides and run it

• Increment its cumulative strides by its stride number

• Essentially: low-stride (high-ticket) jobs get run more often
• But starvation is no longer possible

65

𝑠𝑡𝑟𝑖𝑑𝑒 =
𝑁

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

Where N is some
arbitrary large number
This example: 100

Stride scheduling example

• Workload
• Priority: A=100, B=50, C=10

• Stride: A=1, B=2, C=10

66

Step

Dynamic Priority (a.k.a. Pass)

ResultA B C

1 0 0 0 A

2 1 0 0 B

3 1 2 0 C

4 1 2 10 A

5 2 2 10 A

6 3 2 10 B

7 3 4 10 A

Proportional-share scheduling is impossible instantaneously

• Goal: each process gets an
equal share of processor

• N threads “simultaneously”
execute on 1/Nth of processor

• Doesn’t work in the real world
• Jobs block on I/O

• OS needs to give out timeslices

67

At any time t
we want to observe:

CPU
Time

T1 T2 T3

t/N

Linux Completely Fair Scheduler (CFS)

• Track processor time given to
job so far

• Scheduling decision
• Choose thread with minimum

processor time to schedule
• “Repairs” illusion of fairness

• Update processor time when the
job finishes
• Timeslice expiration is a big

update
• Blocking I/O results in maintaining

small processor time

68

CPU
Time T1

T2
T3

t/N

What if we make shares
proportional over a longer
period?

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

69

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?

70

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Check your understanding. What’s the problem here?
• Timeslice needs to stay much greater than context switch time

71

Linux CFS: responsiveness and throughput

• Constraint 1: target latency
• Want a maximum duration before a job gets some service

• Dynamically set timeslice based on number of jobs

• Quanta = Target_latency / N

• 20 ms max latency => 5 ms timeslice for 4 jobs, or 0.1 ms for 200 jobs

• Constraint 2: avoid excessive overhead
• Don’t want to spend all our time context switching if there are many jobs

• Set a minimum length for timeslices

• Quanta = max(Target_latency/N, minimum_length)

72

CFS priorities are applied as “virtual runtime”

• Virtual runtime doesn’t have to
match wall time

• Create a conversion from actual
runtime to virtual runtime
• High priority jobs:

1 second realtime
-> 0.5 seconds virtual time

• Low priority jobs:

1 second realtime
-> 2 seconds virtual time

• Scheduler makes decisions solely
based on equal virtual runtime

73

Physical
CPU Time B

A

Virtual
CPU Time

B A

B is higher
priority than A

Multicore scheduling

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries
to reschedule it on the same CPU
• Cache reuse

• Grouping threads could help or hurt…

• Implementation-wise, helpful to have per-core scheduling data
structures
• Each core can make its own scheduling decisions

• Can steal work from other cores, if nothing to do

74

Active work in scheduling

• Getting scheduling right on multicore can be difficult
• No way to know whether a process will be more I/O or CPU bound in the

future

• Want to keep threads on the same core, but also not waste cores

• In 2016, researchers found issues in Linux scheduler
implementation that lead to 13%+ slowdown in jobs
• https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-

wasted-cores/

• Another metric: energy use

75

https://blog.acolyer.org/2016/04/26/the-linux-scheduler-a-decade-of-wasted-cores/

Summary on schedulers

If You care About: Then Choose:

CPU Throughput First-In-First-Out

Average Turnaround Time Shortest Remaining Processing Time

Average Response Time Round Robin

Favoring Important Tasks Priority

Fair CPU Time Usage Linux CFS

Meeting Deadlines EDF or RMS

76

77

• Real Time Operating Systems
• Earliest Deadline First scheduling

• Rate Monotonic scheduling

• Modern Operating Systems
• Linux O(1) scheduler

• Lottery and Stride scheduling

• Linux Completely Fair Scheduler

Outline

78

• Bonus

A problem with priority schedulers: priority inversion

• Other concepts from OS still apply when we’re scheduling
• Particularly locks and synchronization

• Imagine Task 1 and Task 3 both need to share a lock

79

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Task 3

Task 2

Task 1

P
ri
o
ri
ty Acquire

lock

p
re

e
m

p
t

re
le

a
se

d
o
n
e

Release
lock Task 1 is

waiting on
Task 2!!

Priority inversion occurred on Pathfinder!

• Bus management missed deadlines while
waiting on meteorology because medium-
priority tasks were taking too long
• System rebooted when deadline was missed

80

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Weather

Comms

Manage Bus

P
ri
o
ri
ty

p
re

e
m

p
t

re
le

a
se

d
o
n
e

Priority inheritance solution to priority inversion

• A solution is to temporarily increase priority for tasks holding
resources that high priority tasks need

81

Preempted
by Task 3

b
lo

ck

p
re

e
m

p
t

0 2 4 6 8 10

Task 3

Task 2

Task 1

P
ri
o
ri
ty Acquire

lock

At Priority 1

re
le

a
se

d
o
n
e

Release
lock

d
o
n
e

Task 3 inherits priority of
Task 1 while holding
lock Task 1 needs

