Lecture 03:
Classical Scheduling

CS343 — Operating Systems
Branden Ghena — Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Shivaram Venkataraman (Wisconsin), and UC Berkeley C5162

Northwestern

Administriva

» Getting Started lab due tonight! - 11:59 pm
« Submission: your most-recent commit in git
« Should have a STATUS file with results
« Graded on completion

 Scheduling Lab should be available now!
« Groups of 1-3 students

Today’s Goals

« Introduce the concept and challenges of scheduling
» Explore scheduling for batch and interactive systems
« Identify important metrics for measuring scheduler performance

» Examine several scheduling policies that target these metrics

Outline

- Scheduling Overview

* Scheduler Metrics

 Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

» Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Lies your operating system always told you

 “Every process on your computer gets to run at the same time!”
 This is an /llusion

« My desktop at home (running Windows)
 Current load: 250 processes with 2987 threads
« 1 CPU with 4 cores each capable of 2 threads

« So how does the magic work?

Processes don’t run all the time

» OS schedules processes

 Decides which of many competing
processes to run.

The three basic
process states:

pahceg (NN » A blocked process is not ready to
P taed run and is waiting on I/O

 I/O means input/output — anything
other than computing.
/O: '”'“a /O: done « For example, reading/writing disk,

sending network packet, waiting for
keystroke, condvar/semaphore!

Blocked « While waiting for results, the OS
blocks the process, waiting to do more
computation until the result is ready

Multiprogramming processes

The three basic
process states:

1/O: |n|t|a

Descheduled

<«———~ | Ready
Scheduled

/ I/O: done

Blocked

» Even with a single processor, the
OS can provide the illusion of
many processes running
simultaneously

» And also use this opportunity to get
more useful work done

» When one process is Blocked, OS
can schedule a different process
that is Ready

» OS can also swap between various
Ready processes so they all make
progress

Scheduling

« We know that multiple processes will be sharing the CPU
 Possibly multiple threads in each process
 Possibly multiple cores in the CPU

 Scheduling is creating a policy for sharing the CPU
« Which process/thread is chosen to run, and when?
« When (if ever) does the OS change which process is running?

Scheduling terminology

 Job - an execution unit handled by the scheduler (a.k.a. “task”)
» Thread or process (doesn’t matter in this context)
« Moves between Ready and Blocked queues

« Workload — set of jobs
* Arrival time of each job
« Run time of each job

When can the OS make scheduling decisions?

« Whenever the OS is actually running
e j.e. after a context switch

* Possible triggers
» System calls
« Process/Thread creation/termination
 I/O requests
 Synchronization primitives (futex/condvar/semaphore)

« Hardware events (interrupts)
« I/O complete
 Timer triggers

10

Goal of most schedulers: always have a job running

« The schedulers we look at in class are “work-conserving”
 Always keeps scheduled resource busy if possible
« When in doubt, make sure some job is running on the processor
« Remember this for the lab and for exams!

« Counter-examples of “non-work-conserving” schedulers
« Network I/O scheduling may rate-limit to avoid overloading network
» Energy-limited systems may choose to run nothing to preserve energy

11

First scheduler: FIFO Scheduling

e First In, First Out (FIFO)
» also known as First Come First Served (FCFS)

* Policy
« First job to arrive gets scheduled first
* Let a job continue until it is complete
« Then schedule next remaining job with earliest arrival

A B C

0 20 40 60 80

Time

100 120

13

Outline

 Scheduling Overview

 Scheduler Metrics

 Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

» Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

Metrics for systems

 Metric — standard for measuring something
« Mathematical optimization: objective function
« Economics: utility function

* For different computing scenarios, different metrics will be most
important
« Computing systems have different goals and uses
« Performance metrics are often in conflict with each other

 Operating Systems are full of tradeoffs

15

A global scheduling metric

 Fairness
« Each job should get a “fair” share of the processor

 Fair means different things of course
 Could be “each job gets equal time”
 Could be “each job starts in order it arrives”
 Could be “each job is handled based on its priority”

 Scheduler should be fair with regards to the goals of the system it
runs on

16

Other scheduling metrics
« Performance

* How many jobs does the system complete?
« How quickly are jobs completed?

» Responsiveness
« How responsive does the system fee/to users

* Energy use, types of jobs run, processor cores used, etc.

17

Different systems have different important metrics

« Example: network server
« Request for home page
« Request for contact page

« Example: personal computer
« Text editor that the user is actively interacting with
« Compilation running in the background

« Example: autonomous vehicle

« Image recognition algorithms
 Radio

18

Different systems have different important metrics

« Example: network server — Batch System
« Request for home page
« Request for contact page

« Example: personal computer — Interactive System
« Text editor that the user is actively interacting with
« Compilation running in the background

« Example: autonomous vehicle — Real-time System

« Image recognition algorithms
 Radio

19

Break + Say hi to your neighbors

* Things to share
 Name

« Major

« One of the following
 Favorite Candy
 Favorite Pokemon
 Favorite Emoji

20

Break + Say hi to your neighbors

* Things to share
« Name -Branden

« Major -Electrical and Computer Engineering, and Computer Science

« One of the following
« Favorite Candy - Twix
« Favorite Pokemon - Eevee
- Favorite Emoji -

21

Outline

 Scheduling Overview

* Scheduler Metrics

- Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

» Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

What are batch systems?

 Systems designed to run a set of provided tasks
* No direct interaction with users
« Predominantly run-to-completion jobs

« Example: banking systems or payroll management

__|

A
« Modern example: network servers

 Tasks are serving requests
 Multiple types of requests, each with known runtimes

i

23

Metrics for batch systems

» Throughput
 Jobs completed per unit time
« Throughput = jobs_completed / total_duration
 Higher is better

e Turnaround time

 Duration from job arrival until job completion
T T T

turnaround — 'completion — 'arrival

 Lower is better
 Average turnaround time is computed across all jobs

24

Example: throughput and turnaround

* Process A arrives at t=10, finishes at t=40
* Process B arrives at t=10, finishes at t=60

Throughput = jobs_completed / total_duration

Tturnaround = Tcompletion o Tarrival

Throughput

Turnaround for A Turnaround for B

Average Turnaround

25

Example: throughput and turnaround

* Process A arrives at t=10, finishes at t=40 (duration 30)
» Process B arrives at t=10, finishes at t=60 (duration 20)

Throughput = jobs_completed / total_duration

Tturnaround = Tcompletion o Tarrival

Throughput
2 jobs / 50 time = 0.04

Turnaround for A Turnaround for B Average Turnaround
40-10 = 30 60-10 = 50 (30+50)/2 = 40

26

Batch scheduler metric

« Which metric is most relevant to a batch system scheduler with a
finite list of processes?
» Throughput or Turnaround

« Throughput only cares about sum of durations of jobs
« Throughput is the same no matter whether A or B goes first

 Turnaround accounts for delays in scheduling a job
« Swapping A and B would result in better average turnaround

Turnaround for A Turnaround for B Average Turnaround
60-10 = 50 30-10 = 20 (50+20)/2 = 35

27

Schedulers for batch systems

1. First In First Out
2. Shortest Job First

3. Preemptive Shortest Remaining Processing Time

28

1. FIFO Scheduling

e First In, First Out (FIFO)
« assumption for now: all jobs arrive at time zero

« What is the average turnaround for this workload?
« (10 + 20 + 30)/3 = 20

A B C
0 20 40 60 80

Time

100 120

30

Check your understanding — FIFOs with different durations

« What is a problematic scenario for FIFO scheduling?
* (consider job durations)

32

Check your understanding — FIFOs with different durations

« What is a problematic scenario for FIFO scheduling?

« One big job can cause lots of jobs behind it to wait
« Convoy effect — lots of small jobs stuck behind one big job

A B C

0 20 40 60 80 100 120
Time

 Average turnaround time = (100+110+120)/3 = 110
« Minimum average turnaround time = (10+20+120)/3 = 50

33

2. Shortest Job First

* Policy
« Schedule the job with the smallest duration first
* Let a job continue until it is complete
« Then schedule next remaining job with smallest duration

 Essentially: complete a job as soon as possible
« Minimizes the number of waiting jobs, minimizing average turnaround

B C A

Average Turnaround
(10+20+120)/3 = 50

0 20 40 60 80 100 120
Time

34

Shortest Job First can fail with late arrivals

« Scheduler’s previously optimal decision could be invalidated by
new job arrivals
« If B and C arrive late, they will have to wait because A is already running

[B,C arrive]
A B

0 20 40 60 80 100 120
Time

35

Check your understanding

« What is the average turnaround time for this example?
« B and C arrive at time 10

[B,C arrive]
A B

0 20 40 60 80 100 120
Time

36

Preemption

* Let's add a new scheduler capability: preemption

« OS can “deschedule” jobs that
are running

 This means it can make scheduling
decisions more frequently 1/0: |n|t|a
» System calls
« Interrupts
* Timers

Descheduled

<~——~ | Ready

Scheduled

/ I/O: done

Blocked

38

Context switching overhead

 Switching processes is expensive
 Context switch to OS is on the order of 1 us (1 millionth of a second)
 Switching registers and CPU mode

« Memory is often the larger expense though
« New process has different physical memory pages
« Which means that caches have to be cleared
 Caches will *warm up” as the process runs
* Less of a penalty to threads (only stack changes)

« Alternative option: cooperative scheduling through vyield()

39

Check your understanding

« What is the average turnaround time for this example?
« B and C arrive at time 10

. Average turnaround = ((100-0) + (110-10) + (120-10))/3 = 103.33333:

[B,C arrive]

A B C

0 20 40 60 80 100 120
Time

41

3. Preemptive Shortest Remaining Processing Time

 Also known as Shortest Time-to-Completion First

* Policy
« Schedule job with smallest duration first
* Preempt a running job when new jobs arrive
» Then schedule job with smallest remaining duration

» Essentially, reevaluate schedule when new information is gained

42

Shortest Remaining Processing Time example

A is preempted when B and C arrive at time 10

 Scheduler chooses B as new shortest remaining time
« B=10, C=10, A=90

[B,C arrive]
AlB C A

Average Turnaround
(120+10+20)/3 = 50

0 20 40 60 80 100 120
Time

43

Break + Starvation and scheduling

» Starvation can occur in schedulers
« When one job will never actually get a chance to run

» We've discussed:
« FIFO, Shortest Job First, and Shortest Remaining Processing Time
* Which of these can exhibit starvation?

44

Break + Starvation and scheduling

» Starvation can occur in schedulers
« When one job will never actually get a chance to run

» We've discussed:
« FIFO, Shortest Job First, and Shortest Remaining Processing Time
« Which of these can exhibit starvation?
 Shortest Remaining Processing Time
 Shortest Job First too if we allow new job arrivals (without preemption)

* Arriving short tasks could lead a long task to never be scheduled

45

Outline

 Scheduling Overview

* Scheduler Metrics

 Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

- Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

What are interactive systems?

« Every computer you directly interact with
 Desktops, laptops, smartphones

» Differences from batch systems
« Humans are “in-the-loop”
« Computer needs to feel responsive for programs they are using

- Many jobs have no predefined duration
* How long does Chrome run for?

» Still have some batch jobs though (background services)

47

Metric for interactive systems

» Response time
« Time from arrival until the job begins execution
« Doesn’t matter how long the job takes to run
T = T

response start ~ larrival

« Particularly good for interactive processes
« Need to quickly show that they are reacting to user inputs
 Exact total run duration isn't so important though

48

Schedulers for interactive systems

1. Round Robin

2. Multi-Level Feedback Queue

49

1. Round Robin

« Round Robin scheduling runs a job for a small &imesl/ice (quanta),
then schedules the next job

ABCABCABCABCABC

LI

0 5 10 15 20 25 30
Time

« If all jobs arrive at time 0
« Average responsetime=(0+1+2)/3=1

« Smaller timeslice means smaller response time

51

Check your understanding

ABCABCABCABCABC

L

0 5 10 15 20 25 30
Time

Round Robin scheduling:
 Avg turnaround time =
* Avg response time =

A B C

_

0 5 10 15 20 25 30
Time

Shortest Job first or SRPT:
 Avg turnaround time =
* Avg response time =

Different policies favor different metrics

ABCABCABCABCABC

11| [—

30

Tlme Tlme
Round Robin scheduling: Shortest Job first or SRPT:
 Avg turnaround time = 14 Avg turnaround time = 10
* Avg response time = 1 * Avg response time = 5

Better response time versus Better turnaround time

Remember, context switches are not free

ABCABCABCABCABC
3I0
Tlme Tlme
Round Robin scheduling: Shortest Job first or STCF:
» Context switches = 14 » Context switches = 2

« In a real OS, Round Robin would take an extra ~12 pus
* Plus more time lost with cold caches...

« Timeslice must be much greater than context switch time
« Usually timeslice is ~1 ms and context switch is ~1 ps

Handling a round-robin edge case

A B

C
. I —— C completes at time 12
10 1 I 1 1

0 5 15 20 25 30
Time

« What should the scheduler do?
1. Schedule nothing for the rest of the timeslice

2. Schedule a new job for the rest of the timeslice

3. Schedule a new job with a new, full timeslice

Assume quantum
(timeslice duration)
iS5

55

Handling a round-robin edge case

Assume quantum
A B (timeslice duration)

C
. I — C completes at time 12 is 5
10 1 I 1 1

0 5 15 20 25 30
Time

« What should the scheduler do?

Not work-conserving
2. Schedule a new job for the rest of the timeslice

3. Schedule a new job with a new, full timeslice

56

Handling a round-robin edge case

Assume quantum
A B (timeslice duration)

C
. I — C completes at time 12 is 5
10 1 I 1 1

0 5 15 20 25 30
Time

« What should the scheduler do?

Not work-conserving

ice Not fair

3. Schedule a new job with a new, full timeslice Correct!

57

Timeslices are attached to jobs

« Each job gets its own timeslice duration

 Jobs may use less than their entire timeslice voluntarily
* They could complete
» They could become blocked
» They could decide to yield

« The scheduler, however, should always provide a full timeslice
« In previous example: runtime of one job shouldn't affect another job

58

I/O creates scheduling overfap opportunities

A A A A A B BBBB

 Job A does I/O t
n?illisecglfjs ande\(/eeargh Ie/nO takes 10 ms: CF’“I I I I I
ok l I I I

* A is blocked during its I/O. 0 20 40 60 8 100 120 140

Time
o It's just waiting for data from the disk
* But it does not need the CPU

I/O creates scheduling overfap opportunities

 Job A does I/O every ten

milliseconds and each I/O takes 10 ms:

A is blocked during its I/O.

o It's just waiting for data from the disk
 But it does not need the CPU

« We can schedule another job during

process A's I/0O

* Once a job is blocked, the scheduler can
immediately move to the next job!

A A A A A B BBBB

Diskllll

0 20 40 60 80 100 120 140
Time

Disk l l

0 20 40 60 80 100 120 140
Time

Jobs can be I/O-bound or CPU-bound

« CPU-bound process
« Lots of computation between each I/O request
 Actually needs to do computation on a processor
« Example: doing matrix math

 I/O-bound process
* Very little computation between each I/O request
« Just needs a processor to figure out its next I/O request
« Example: searching a file system for a file name

62

Scheduling goal: I/0-bound before CPU-bound

 First maximize I/0
« Run the I/O-bound jobs as quickly as possible,
» So they can send next I/O request,
« And our disks, network cards, etc. are maximally used

 Then fill up the processor(s)
« Lots of room for multiprogramming between the I/0 requests
» Blocked jobs are still “progressing” as their I/0 is fetched

63

Scheduling goal: I/0-bound before CPU-bound

 First maximize I/0
« Run the I/O-bound jobs as quickly as possible,
» So they can send next I/O request,
« And our disks, network cards, etc. are maximally used

 Then fill up the processor(s)
« Lots of room for multiprogramming between the I/0 requests
» Blocked jobs are still “progressing” as their I/0 is fetched

« But how do you know when a job is going to use I/O?
« Can't know the future
 Can track past behavior of the job

64

2. Multi-Level Feedback Queue (MLFQ)

« General purpose scheduler to support multiple goals
« Good response time for interactive jobs
» Good turnaround time for batch jobs
 Achieves this by prioritizing I/O bound jobs over CPU bound jobs

* Policy
« Automatically attach priority to jobs:
» Interactive, I/O bound jobs should be highest priority
« CPU bound, batch jobs should be lowest priority
 Apply different round robin timeslices to each priority level

66

Multi-Level Feedback Queue Details

* Run highest priority level available High Priority] Q8 _...®_...
Q7

« Round robin among jobs there

* When all jobs at a level are blocked Q6

on I/O
« Move down to next lower level Q5
Q4 —-@
 Long running jobs lose priority Q3

» Processor usage quota at a given
level

Q2
« When used up, demote job one level . @
[Low Priority] Q1 —>

67

MLFQ Rules

1. If Priority(3,) > Priority(3,),
J, runs

2. If Priority(3,) = Priority(3,),
J, and J, run in Round Robin

3. Jobs start at top priority

4. When a job uses its time quota
for a level, demote it one level

5. Every S seconds, reset priority of
all jobs to top

[High Priority] Q8 —> @ —I-
Q7

Q6
Q5
Q4 — @
Q3
Q2

[Low Priority] Q1 _"®

68

MLFQ Example

Job’s priority

/ drops as it runs

Q
N

Priority —

Q
o

Time —

Q2

Higher priority
jobs run first

Time —

69

MLFQ avoids starvation with periodic priority reset

» Low priority jobs !Vlany new Priority reset
could starve if interactive jobs \
there are enough \ |
interactive jobs Q2 \W\W\W\Wm Q2 MLW

R A

« MLFQ avoids
starvation by ! ol
periodically B L
resetting priorities

Qo Qo
. N .
Time — Time —

Change timeslices to optimize response and turnaround

 Lower priority jobs are CPU bound, not interactive
* SO0 we can use longer timeslices to minimize context switches

Priority —

71

MLFQ parameters

« Every MLFQ implementation needs to choose a bunch of
parameters
 How many queues/priority levels?
« When does a job get demoted in priority?
« How often to reset priority for everything?
« How large is the timeslice at each priority level?

72

MLFQ in the wild

* The embedded OS I work on has an MLFQ scheduler!
« https://qgithub.com/tock/tock/blob/master/kernel/src/scheduler/mlfg.rs

« How many queues/priority levels?
* Three

« When does a job get demoted in priority?
« If it ever uses its whole timeslice without blocking

« How often to reset priority for everything?
« Every five seconds

« How large is the timeslice at each priority level?
« 10 ms, 20 ms, 50 ms

73

https://github.com/tock/tock/blob/master/kernel/src/scheduler/mlfq.rs

Outline

 Scheduling Overview

* Scheduler Metrics

 Batch Systems
1. First In First Out scheduling
2. Shortest Job First scheduling
3. Shortest Remaining Processing Time scheduling

» Interactive Systems
1. Round Robin scheduling
2. Multi-Level Feedback Queue scheduling

