Lecture 01: Introduction

CS343 – Operating Systems Branden Ghena – Fall 2022

Some slides borrowed from: Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162

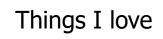
Northwestern

Welcome to CS343!

- In brief: how does the operating system work and why?
- Role of the Operating System
 - Manages hardware resources
 - Provides **abstractions** to support processes
- Major topics
 - Concurrency
 - Scheduling
 - Devices
 - Virtual Memory
 - File Systems

Branden Ghena (he/him)

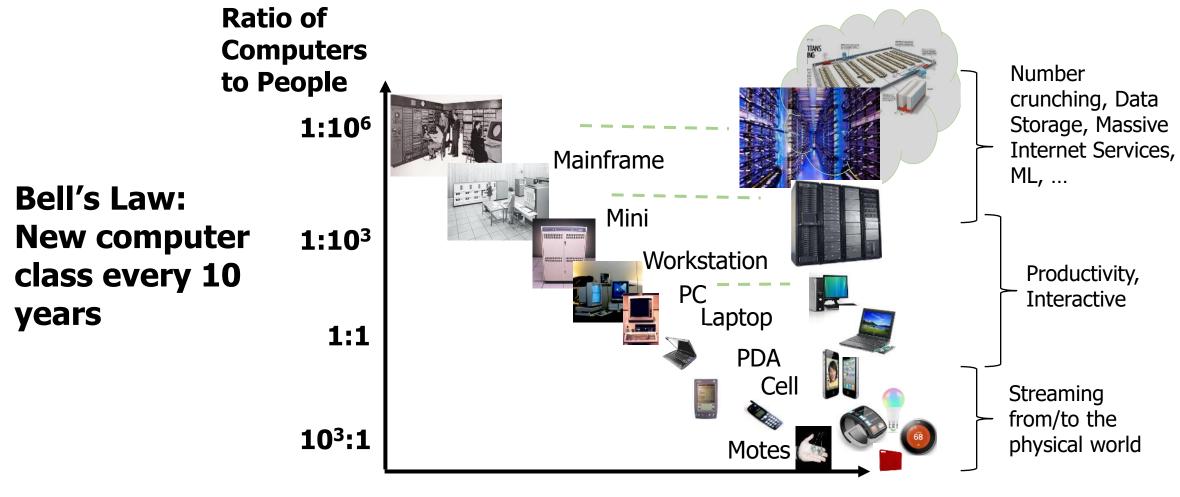
- Assistant Faculty of Instruction
- Education
 - Undergrad: Michigan Tech
 - Master's: University of Michigan
 - PhD: University of California, Berkeley
- Research
 - Resource-constrained sensing systems
 - Low-energy wireless networks
 - Embedded operating systems
- Teaching
 - Computer Systems
 - CS211: Fundamentals of Programming II
 - CS213: Intro to Computer Systems
 - CS343: Operating Systems
 - CE346: Microprocessor System Design
 - CS397: Wireless Protocols for the IoT



Today's Goals

• Discuss the role of an Operating System

• Introduce theme and goals of the course


• Describe how this class is going to function

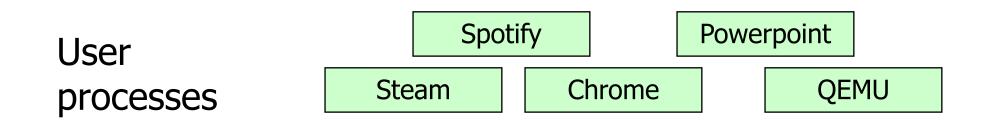
• Explore trends in OS history

Outline

- What is an OS?
- Logistics
- Operating Systems History
- CS343 Focus

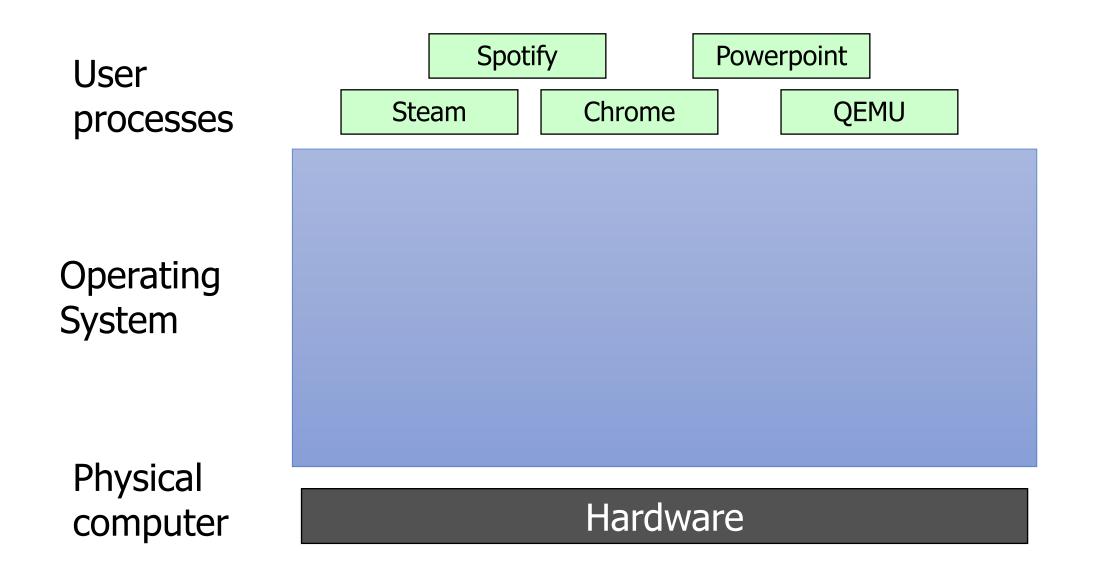
Computers come in incredible diversity

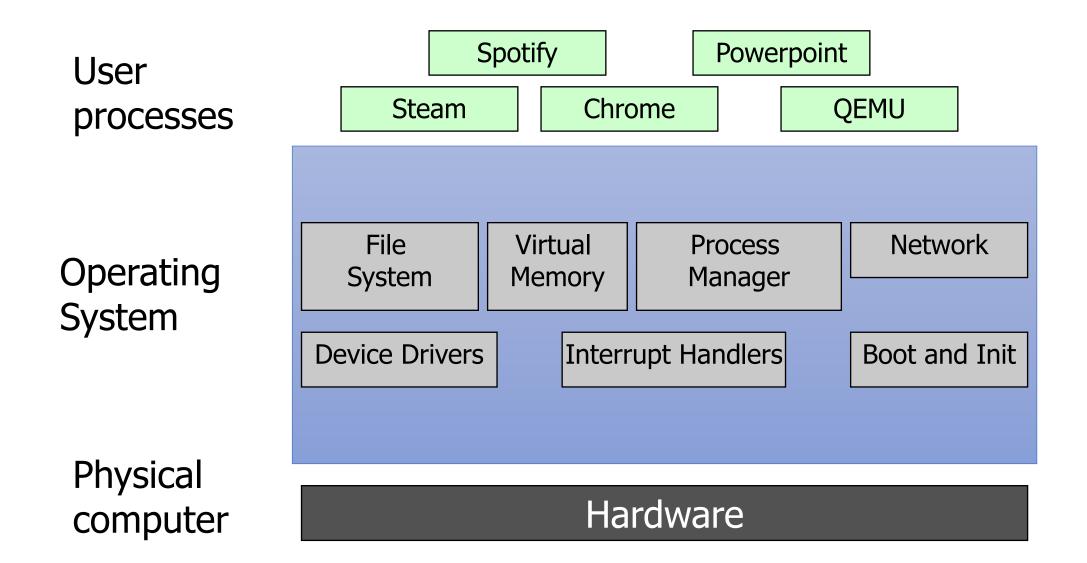
years

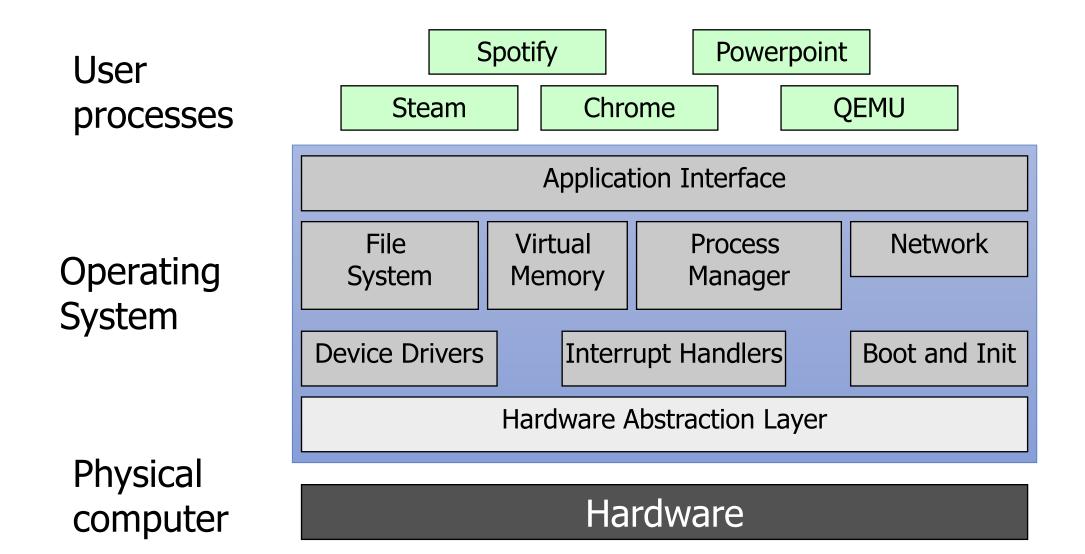

Computing timescales are increasingly large

Jeff Dean (Google AI): "Numbers Everyone Should Know"

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	25 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	3,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from disk	20,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

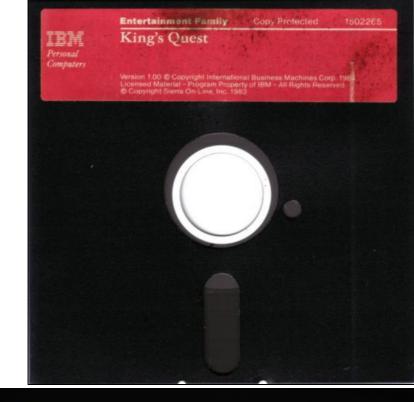

Operating systems are at the heart of these challenges


- OSes make advancing technology available to rapidly evolving applications. They do so with two major goals:
 - 1. Provide **abstractions** to applications to enable hardware compatibility
 - Why: allow reuse of common features, avoid low-level details
 - Challenges: What are the correct abstractions?
 - 2. Manage **sharing of resources** across many applications
 - Why: protect applications, enforce fair access
 - Challenges: What are the mechanisms and what are the policies?
- Good operating systems do these quickly, efficiently, and securely



Physical computer

Hardware


What's part of the OS?

- OS kernel the only code without security restrictions
- Process scheduling (who uses CPU)
- Memory allocation (who uses RAM)
- Accesses hardware devices
 - Outputs graphics
 - Reads/writes to network
 - Read/write to disks
 - Handles boot-up and powerdown

- OS distribution the kernel + lots of other useful stuff
- GUI / Window manager
- Command shell
- Software package manager
 - "app store", yum, apt, brew
- Common software libraries
- Useful apps:
 - Text editor, compilers, web browser, web server, SSH, antivirus, file-sharing, media libraries,

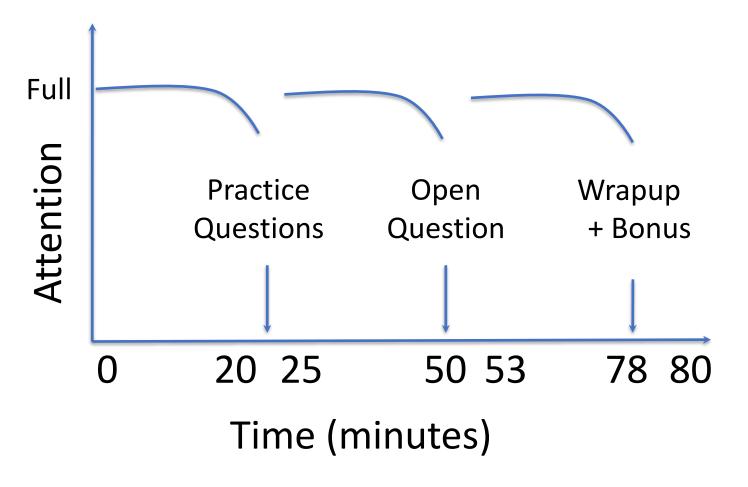
Before operating systems

- User could only run one program at a time.
- Had to insert the program disk before booting the machine.
- Program had to control the hardware directly
 - This is a nuisance because hardware is complicated
 - Program will only be compatible with one set of hardware
- An example (at right): 1983 "King's Quest" game for IBM PC Jr.

Embedded systems often run without operating systems

- "Bare-metal" embedded systems
- Application must handle:
 - Boot and initialization
 - All hardware it wants to interact with
- Applications are not portable
 - Rewrite, mostly from scratch, for new microcontroller
- No malloc, no segfaults
 - Instead invalid memory accesses likely crash the whole system
 - Imagine if each CS211 segfault resulted in the EECS server rebooting...

- Referee
 - Manage protection, isolation, and sharing of resources
 - Resource allocation and communication
- Illusionist
 - Provide clean, easy-to-use abstractions of physical resources
 - Infinite memory, dedicated machine
 - Higher level objects: files, users, messages
 - Masking limitations, virtualization



- Glue
 - Common services
 - Storage, Window system, Networking
 - Sharing, Authorization
 - Look and feel

Example: File Systems

- Referee
 - Prevent users from accessing other's files without permission
- Illusionist
 - Files can grow infinitely large
 - Where a file exists in memory or disk isn't important!
- Glue
 - Default file system types, named directories, file explorer

Architecture of a lecture

Break + xkcd

ANDIM IMA A PC. MAC AND SINCE YOU DO EVERYTHING THROUGH A BROWSER NOW, WE'RE PRETTY INDISTINGUISHABLE.

Open question:

Are modern web browsers basically operating systems?

https://xkcd.com/934/

Outline

- What is an OS?
- Logistics
- Operating Systems History
- CS343 Focus

Course staff

- Teaching Assistant
 - Aman Khalid
 - PhD student in systems

- Peer Mentors (4)
 - Dilan Nair
 - Dimitri Hatzisavas
 - Garrett Weil
 - Timothy Sinaga

Their role: support student questions via office hours and campuswire

• All recently took CS343 as students

Lecture

- 12:30-1:50 pm, Tuesdays and Thursdays
 - Tech, LR4
- Provides background on materials
 - And an immediate chance for you to ask questions
 - Automatically recorded so you can review
- Textbook:
 - Modern Operating Systems (4th Edition), Tanenbaum and Bos
 - Very useful reference. Lecture will be relatively in sync with it
 - Other references are in the syllabus

Asking questions

- Class and office hours are always an option!
- Campuswire: (similar to piazza)
 - Post questions
 - Answer each other's questions
 - Find lab partners
 - Information from the course staff
 - Post private info just to course staff
- Please do not email me! Post to Campuswire instead!
 - I'll be updating roster again a few times

Labs

- These are a significant amount of the learning in this class
 - Hands-on experience with the topics we're talking about
 - Labs primarily involve written code in C
 - Can be quite a bit of work
- Work on these in groups of up to three students
 - Preferably two or three
 - Goal: collaboration, not splitting labs
 - If you don't work on it, you're not going to learn from it
 - Pair programming more often results in code written right the first time

Lab logistics

- Getting Started Lab
 - Learn how everything works
- Queuing/Scheduling Lab
 OS application scheduling
- Producer-Consumer Lab
 - Concurrency and locks
- Device Driver Lab
 Driver for a GPU
- Paging Lab
 - Memory management

- Getting started lab is special
 - One week deadline (due 09/27)
 - Must do alone
 - All-or-nothing grading

- Normally teams of 2 or 3 students
 - Find partners now!
 - We'll put out a survey soon for those who don't know anyone

Academic integrity

- This is something I take very seriously
- Collaboration good; plagiarism bad
 - You should know where that line is, and be nowhere near it
 - When in doubt, ask the instructor *before* you do something you're not sure about
- At no point should you see someone else's solutions
 - Not your colleagues', not your friends', not your cousin's, not something you found online
- I report everything suspicious to the dean

Midterm exams

- Test on your knowledge of course material
 - In-person, on paper
 - I'll allow a notes sheet
- Not cumulative. Two midterms on two halves of the class
- First midterm will be during class time: October 20th
- Second midterm will be during exam week: December 7th (Wednesday)

Course grade

- 20% Midterm (first half of the course)
- 20% Final (second half of the course)
- 60% Labs
 - 05% Getting Started Lab (individual)
 - 10% Producer-Consumer Lab
 - 10% Queuing/Scheduling Lab
 - 15% Device Driver Lab
 - 15% Paging Lab
- This class is NOT curved
 - Standard 93% A, 90% A-, 87% B+, etc. applies

Late policy

- You can submit labs late
- 20% penalty to maximum grade per day late
 - Example: three days late means maximum grade is 40%

- We will be flexible with deadlines for problems outside of your control
 - Sick, family emergency, broken computer
 - Contact me! (via Campuswire)

Slip days

- Slip days let you turn in a homework late and receive no penalty
- Each student gets **4 slip days**
 - Apply to **labs**
 - You don't need to tell us you're using them, we'll just automatically apply them at the end of the year
 - Be sure to coordinate about them on partner assignments
- Examples:
 - Turn in Scheduling Lab four days late
 - Turn in Scheduling Lab three days late and Paging lab one day late
 - Turn in Paging Lab five days late with only a one-day penalty

COVID Update - Fall 2022 Edition

- Masks in class are not mandatory
 - You're still welcome to wear one if you want, but I won't make you
 - I'll wear one sometimes

- If you are sick, do not come to class
 - Even if there's an exam that day!!
 - We will be flexible with deadlines as necessary
 - Lectures are being recorded automatically

Expectations

- Give yourself time to complete labs
 - Dealing with C code
 - Handling a large code base
 - Dealing with concurrency!!
 - You'll learn a lot through the challenge
- Don't fall behind on lecture materials
 - Material builds on itself, like in CS213
- Use course staff to help you out
 - Office hours & Campuswire are for your benefit

Break + First Tasks

- 1. Getting Started Lab
 - Makes sure you've got everything set up to do all the labs
 - Should be available right now
 - Get this done on time
- 2. Find partner(s) for assignments
 - We'll put out a form in the next few days if you don't know people in the class
- 3. Take a break, chat with your neighbors, look at your phone, reset your brain for a minute

Outline

- What is an OS?
- Logistics
- Operating Systems History
- CS343 Focus

Computer History

- Check out the textbook!
 - In-depth history
 - Entertaining writing with *just* the right amount of sarcasm

- This isn't a computer history course
 - But there is a good reason to understand the lineage of the techniques we explore in this course

Early evolution of computing systems – Batch

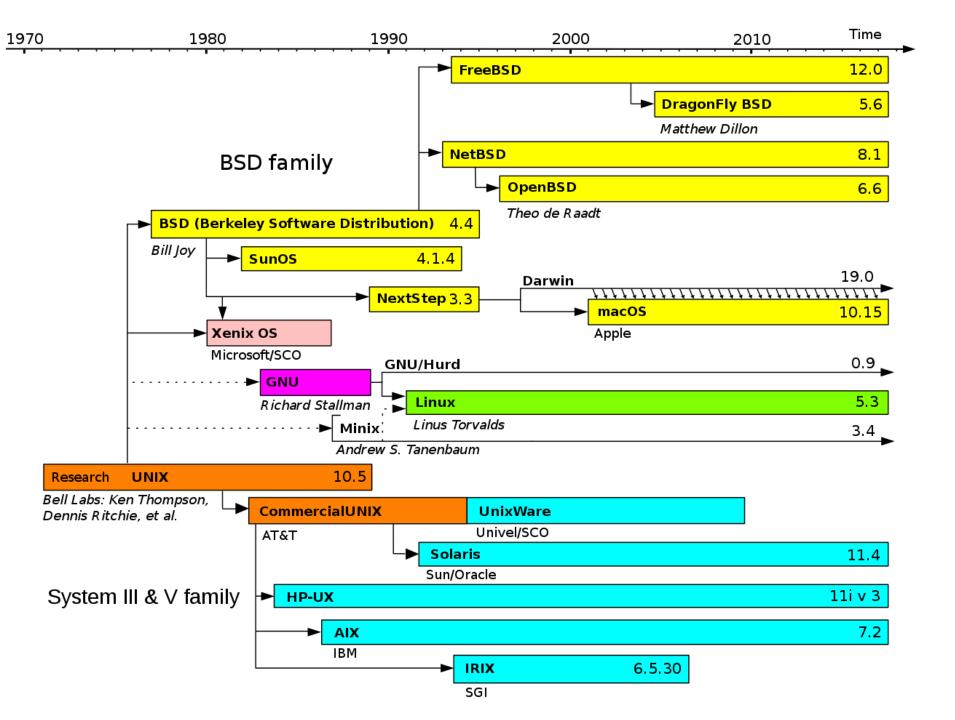
- 1955: Batch systems
 - Collect a bunch of program punch cards and write them all one magnetic tape.
 - Run the tape through the mainframe to execute all the jobs in sequence.
- OS responsibility
 - Libraries for I/O
- Problems
 - I/O is VERY slow. 80-90% of total time just waiting.

Early evolution of computing systems – Multiprogramming

- 1960s: Multiprogramming (IBM OS/360)
 - Keep multiple runnable jobs in memory at once.
 - Allows overlap I/O of one job with computing of another.
 - Uses asynchronous I/O and interrupts or polling to detect I/O completion
- OS responsibility
 - Schedule jobs
 - Monitor I/O
- Problems
 - Still need to submit all jobs in advance

Early evolution of computing systems – Timesharing

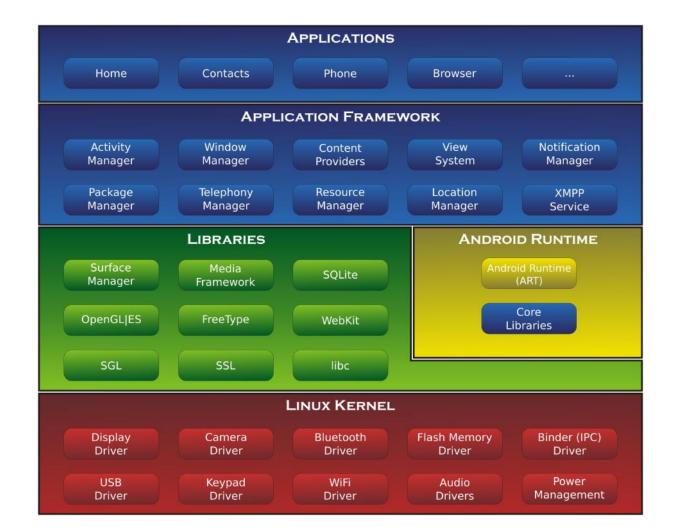
- 1960s-70s: Timesharing (MULTICS, Unix)
 - Multiple user terminals connected to one machine
 - Allows *interactive* use of machine to be efficient (because another user's job can run while you're thinking).
- OS responsibility
 - Multiple users (with permissions!)
 - Scheduling processes
 - Application interface
 - Shell tools


Later evolution of computer systems – PC

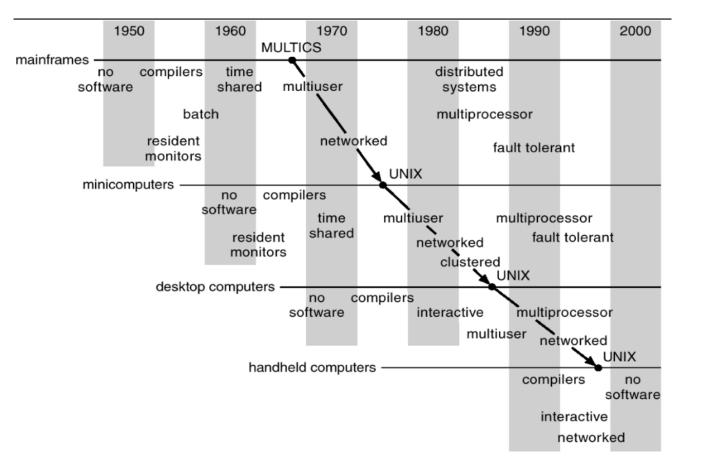
- 1980s-90s: Personal Computers (IBM PC, Macintosh)
 - Graphical user interfaces were developed
 - Mainframe OS concepts (like networking) were applied to PCs
 - Magnetic disk (hard drive) capacity becomes huge, but still slow
- OS responsibility
 - Look and feel of a system, particularly for non-experts
 - Tools that were distributed with the OS had significant business results
 - Computers are bought for Excel or for Lotus 1-2-3

Later evolution of computer systems – Mobile and Cloud

- 2000s-10s: Mobile and pervasive computing, Cloud Computing
 - Slow hardware is once again common (phones & wearables)
 - OS manages sensitive information like location and internet behavior
 - Fast flash storage is common.
 - Server hardware is shared by many different cloud computing customers
- OS responsibility
 - Diverse hardware drivers
 - Security
 - Massive parallelism


Simplified History of Unix-like Operating Systems

Operating systems are very interconnected


An example: Android Operating System

- Kernel Linux
 - With modifications particularly in power management
 - And additional drivers

- Distribution
 - Look and feel of "Android"
 - App framework
 - Some of this changes per vendor (Samsung vs Google)

Operating systems have evolved with hardware in a cycle

- Sophisticated operating systems first arose on mainframes.
- OS ideas migrated to smaller machines as those machines became more powerful.
- In 2022, a **smart watch** has 1 GB RAM, 32 GB SSD storage, two CPU cores, and a real OS.

Future OS directions

- Manage increasingly specialized hardware
 - Post-Moore's law, general-purpose CPUs loose out to special-purpose chips
 - OS must maintain abstractions while enabling capabilities
- Energy as another resource
 - Already considered in laptop/smartphone worlds
 - Increasingly important to data center operations as well
- Very small-scale, ubiquitous devices
 - Computers are becoming part of everything around us
 - How do we develop applications for those devices and coordinate them?

Outline

- What is an OS?
- Logistics
- Operating Systems History
- CS343 Focus

Schedule for first half of the course

- 1. Scheduling
 - Managing CPU utilization
 - Workload, Queuing, Real-time
- 2. Concurrency
 - Dealing with the realities of modern-day computing
 - Sources, Control, Challenges

Schedule for second half of the course

3. Device Drivers

- Management and abstraction of devices
- Interrupts, DMA, Abstractions
- 4. Virtual Memory
 - Management and abstraction of memory
 - Paging, Allocation, Security

5. File Systems

- Management and abstraction of data
- Principles, Examples

Why do we care about OS?

- Performance
 - Speed is influenced by
 - Parallelism, resource contention, memory management
 - Generally OS overhead

- Security
 - Process and data isolation when actually all running together
 - The biggest security vulnerabilities break abstractions
 - Meltdown and Spectre

Outline

- What is an OS?
- Logistics
- Operating Systems History
- CS343 Focus