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Welcome to CS343!

• In brief: how does the operating system work and why?

• Role of the Operating System
• Manages hardware resources
• Provides abstractions to support processes

• Major topics
• Concurrency
• Scheduling
• Devices
• Virtual Memory
• File Systems
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Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• CS211: Fundamentals of Programming II
• CS213: Intro to Computer Systems
• CS343: Operating Systems
• CE346: Microprocessor System Design
• CS397: Wireless Protocols for the IoT
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Things I love



Today’s Goals

• Discuss the role of an Operating System

• Introduce theme and goals of the course

• Describe how this class is going to function

• Explore trends in OS history
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Computers come in incredible diversity
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Computing timescales are increasingly large
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Operating systems are at the heart of these challenges

• OSes make advancing technology available to rapidly evolving 
applications. They do so with two major goals:

1. Provide abstractions to applications to enable hardware compatibility

• Why: allow reuse of common features, avoid low-level details

• Challenges: What are the correct abstractions?

2. Manage sharing of resources across many applications

• Why: protect applications, enforce fair access

• Challenges: What are the mechanisms and what are the policies?

• Good operating systems do these quickly, efficiently, and securely
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What’s part of the OS?

• OS kernel – the only code 
without security restrictions

• Process scheduling
(who uses CPU)

• Memory allocation
(who uses RAM)

• Accesses hardware devices
• Outputs graphics
• Reads/writes to network
• Read/write to disks
• Handles boot-up and power-

down

• OS distribution – the kernel + 
lots of other useful stuff

• GUI / Window manager

• Command shell

• Software package manager
• “app store”, yum, apt, brew

• Common software libraries

• Useful apps:
• Text editor, compilers, web 

browser, web server, SSH, anti-
virus, file-sharing, media libraries, 
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Before operating systems

• User could only run one program at a time.

• Had to insert the program disk before 
booting the machine.

• Program had to control the hardware 
directly
• This is a nuisance because hardware is complicated
• Program will only be compatible with one set of 

hardware

• An example (at right): 1983 “King’s Quest” game 
for IBM PC Jr.
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Embedded systems often run without operating systems

• “Bare-metal” embedded systems

• Application must handle:
• Boot and initialization

• All hardware it wants to interact with

• Applications are not portable
• Rewrite, mostly from scratch, for new microcontroller

• No malloc, no segfaults
• Instead invalid memory accesses likely crash the whole system

• Imagine if each CS211 segfault resulted in the EECS server rebooting…
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What is an Operating System?

• Referee
• Manage protection, isolation, and sharing of resources
• Resource allocation and communication

• Illusionist
• Provide clean, easy-to-use abstractions of physical resources

• Infinite memory, dedicated machine
• Higher level objects: files, users, messages
• Masking limitations, virtualization

• Glue
• Common services

• Storage, Window system, Networking
• Sharing, Authorization
• Look and feel
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Example: File Systems

• Referee
• Prevent users from accessing other’s files without permission

• Illusionist
• Files can grow infinitely large

• Where a file exists in memory or disk isn’t important!

• Glue
• Default file system types, named directories, file explorer
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Architecture of a lecture
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Break + xkcd

19https://xkcd.com/934/

Open question:

Are modern web browsers 
basically operating systems?
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Course staff

• Teaching Assistant
• Aman Khalid

• PhD student in systems

• Peer Mentors (4)
• Dilan Nair

• Dimitri Hatzisavas

• Garrett Weil

• Timothy Sinaga

• All recently took CS343 as students
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Their role: support student 
questions via office 
hours and campuswire



Lecture

• 12:30-1:50 pm, Tuesdays and Thursdays
• Tech, LR4

• Provides background on materials
• And an immediate chance for you to ask questions

• Automatically recorded so you can review

• Textbook:
• Modern Operating Systems (4th Edition), Tanenbaum and Bos

• Very useful reference. Lecture will be relatively in sync with it

• Other references are in the syllabus
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Asking questions

• Class and office hours are always an option!

• Campuswire: (similar to piazza)
• Post questions

• Answer each other’s questions

• Find lab partners

• Information from the course staff

• Post private info just to course staff

• Please do not email me! Post to Campuswire instead!
• I’ll be updating roster again a few times
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Labs

• These are a significant amount of the learning in this class
• Hands-on experience with the topics we’re talking about

• Labs primarily involve written code in C

• Can be quite a bit of work

• Work on these in groups of up to three students
• Preferably two or three

• Goal: collaboration, not splitting labs

• If you don’t work on it, you’re not going to learn from it

• Pair programming more often results in code written right the first time
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Lab logistics

• Getting Started Lab
• Learn how everything works

• Queuing/Scheduling Lab
• OS application scheduling

• Producer-Consumer Lab
• Concurrency and locks

• Device Driver Lab
• Driver for a GPU

• Paging Lab
• Memory management
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• Getting started lab is special
• One week deadline (due 09/27)

• Must do alone

• All-or-nothing grading

• Normally teams of 2 or 3 
students
• Find partners now!

• We’ll put out a survey soon for 
those who don’t know anyone



Academic integrity

• This is something I take very seriously

• Collaboration good; plagiarism bad
• You should know where that line is, and be nowhere near it 
• When in doubt, ask the instructor before you do something you’re not sure 

about

• At no point should you see someone else’s solutions
• Not your colleagues’, not your friends’, not your cousin’s, not something 

you found online

• I report everything suspicious to the dean
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Midterm exams

• Test on your knowledge of course material
• In-person, on paper

• I’ll allow a notes sheet

• Not cumulative. Two midterms on two halves of the class

• First midterm will be during class time: October 20th

• Second midterm will be during exam week: December 7th (Wednesday)
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Course grade

• 20% Midterm (first half of the course)

• 20% Final (second half of the course)

• 60% Labs
• 05% Getting Started Lab (individual)
• 10% Producer-Consumer Lab
• 10% Queuing/Scheduling Lab
• 15% Device Driver Lab
• 15% Paging Lab

• This class is NOT curved
• Standard 93% A, 90% A-, 87% B+, etc. applies
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Late policy

• You can submit labs late

• 20% penalty to maximum grade per day late
• Example: three days late means maximum grade is 40%

• We will be flexible with deadlines for problems outside of your 
control
• Sick, family emergency, broken computer

• Contact me! (via Campuswire)
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Slip days

• Slip days let you turn in a homework late and receive no penalty

• Each student gets 4 slip days
• Apply to labs
• You don’t need to tell us you’re using them, we’ll just automatically apply 

them at the end of the year
• Be sure to coordinate about them on partner assignments

• Examples:
• Turn in Scheduling Lab four days late
• Turn in Scheduling Lab three days late and Paging lab one day late
• Turn in Paging Lab five days late with only a one-day penalty
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COVID Update - Fall 2022 Edition

• Masks in class are not mandatory
• You’re still welcome to wear one if you want, but I won’t make you

• I’ll wear one sometimes

• If you are sick, do not come to class
• Even if there’s an exam that day!!

• We will be flexible with deadlines as necessary

• Lectures are being recorded automatically
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Expectations

• Give yourself time to complete labs
• Dealing with C code

• Handling a large code base

• Dealing with concurrency!!

• You’ll learn a lot through the challenge

• Don’t fall behind on lecture materials
• Material builds on itself, like in CS213

• Use course staff to help you out
• Office hours & Campuswire are for your benefit
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Break + First Tasks

1. Getting Started Lab
• Makes sure you’ve got everything set up to do all the labs

• Should be available right now

• Get this done on time

2. Find partner(s) for assignments
• We’ll put out a form in the next few days if you don’t know people in the 

class

3. Take a break, chat with your neighbors, look at your phone, 
reset your brain for a minute
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Computer History

• Check out the textbook!
• In-depth history

• Entertaining writing with just the right amount of sarcasm

• This isn’t a computer history course
• But there is a good reason to understand the lineage of the techniques we 

explore in this course
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Early evolution of computing systems – Batch

• 1955: Batch systems
• Collect a bunch of program punch cards and write them all one magnetic 

tape.

• Run the tape through the mainframe to execute all the jobs in sequence.

• OS responsibility
• Libraries for I/O

• Problems
• I/O is VERY slow. 80-90% of total time just waiting.
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Early evolution of computing systems – Multiprogramming

• 1960s: Multiprogramming (IBM OS/360)
• Keep multiple runnable jobs in memory at once.
• Allows overlap I/O of one job with computing of another.

• Uses asynchronous I/O and interrupts or polling to detect I/O 
completion

• OS responsibility
• Schedule jobs
• Monitor I/O

• Problems
• Still need to submit all jobs in advance
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Early evolution of computing systems – Timesharing

• 1960s-70s: Timesharing (MULTICS, Unix)
• Multiple user terminals connected to one machine

• Allows interactive use of machine to be efficient (because another user’s 
job can run while you’re thinking).

• OS responsibility
• Multiple users (with permissions!)

• Scheduling processes

• Application interface

• Shell tools
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Later evolution of computer systems – PC

• 1980s-90s: Personal Computers (IBM PC, Macintosh)
• Graphical user interfaces were developed

• Mainframe OS concepts (like networking) were applied to PCs

• Magnetic disk (hard drive) capacity becomes huge, but still slow

• OS responsibility
• Look and feel of a system, particularly for non-experts

• Tools that were distributed with the OS had significant business results

• Computers are bought for Excel or for Lotus 1-2-3
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Later evolution of computer systems – Mobile and Cloud

• 2000s-10s: Mobile and pervasive computing, Cloud Computing
• Slow hardware is once again common (phones & wearables)

• OS manages sensitive information like location and internet behavior

• Fast flash storage is common.

• Server hardware is shared by many different cloud computing customers

• OS responsibility
• Diverse hardware drivers

• Security

• Massive parallelism
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Simplified 
History of 
Unix-like 
Operating 
Systems

Operating 
systems are very 
interconnected



An example: Android Operating System

• Kernel - Linux
• With modifications particularly 

in power management

• And additional drivers

• Distribution
• Look and feel of “Android”

• App framework

• Some of this changes per 
vendor (Samsung vs Google)
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Operating systems have evolved with hardware in a cycle

• Sophisticated operating 
systems first arose on 
mainframes.

• OS ideas migrated to smaller 
machines as those machines 
became more powerful.

• In 2022, a smart watch has
1 GB RAM, 32 GB SSD storage,
two CPU cores, and a real OS.
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Future OS directions

• Manage increasingly specialized hardware
• Post-Moore’s law, general-purpose CPUs loose out to special-purpose chips

• OS must maintain abstractions while enabling capabilities

• Energy as another resource
• Already considered in laptop/smartphone worlds

• Increasingly important to data center operations as well

• Very small-scale, ubiquitous devices
• Computers are becoming part of everything around us

• How do we develop applications for those devices and coordinate them?
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Schedule for first half of the course

1. Scheduling
• Managing CPU utilization

• Workload, Queuing, Real-time

2. Concurrency
• Dealing with the realities of modern-day computing

• Sources, Control, Challenges
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Schedule for second half of the course

3. Device Drivers
• Management and abstraction of devices

• Interrupts, DMA, Abstractions

4. Virtual Memory
• Management and abstraction of memory

• Paging, Allocation, Security

5. File Systems
• Management and abstraction of data

• Principles, Examples
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Why do we care about OS?

• Performance
• Speed is influenced by

• Parallelism, resource contention, memory management

• Generally OS overhead

• Security
• Process and data isolation when actually all running together

• The biggest security vulnerabilities break abstractions

• Meltdown and Spectre
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