
Lecture 01:
Introduction

CS343 – Operating Systems

Branden Ghena – Fall 2022

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162



Welcome to CS343!

• In brief: how does the operating system work and why?

• Role of the Operating System
• Manages hardware resources
• Provides abstractions to support processes

• Major topics
• Concurrency
• Scheduling
• Devices
• Virtual Memory
• File Systems

2



Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• CS211: Fundamentals of Programming II
• CS213: Intro to Computer Systems
• CS343: Operating Systems
• CE346: Microprocessor System Design
• CS397: Wireless Protocols for the IoT

3

Things I love



Today’s Goals

• Discuss the role of an Operating System

• Introduce theme and goals of the course

• Describe how this class is going to function

• Explore trends in OS history

4



5

• What is an OS?

• Logistics

•Operating Systems History

• CS343 Focus

Outline



Computers come in incredible diversity

6

years

Ratio of 
Computers 
to People

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Bell’s Law:
New computer 
class every 10 
years

Number 
crunching, Data 
Storage, Massive 
Internet Services,
ML, …

Productivity,
Interactive

Streaming 
from/to the 
physical worldMotes

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8


Computing timescales are increasingly large

7

Jeff Dean
(Google AI):
“Numbers Everyone 
Should Know”



Operating systems are at the heart of these challenges

• OSes make advancing technology available to rapidly evolving 
applications. They do so with two major goals:

1. Provide abstractions to applications to enable hardware compatibility

• Why: allow reuse of common features, avoid low-level details

• Challenges: What are the correct abstractions?

2. Manage sharing of resources across many applications

• Why: protect applications, enforce fair access

• Challenges: What are the mechanisms and what are the policies?

• Good operating systems do these quickly, efficiently, and securely

8



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

Physical 
computer

9



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

Operating 
System

Physical 
computer

10



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

File 
System

Process 
Manager

NetworkVirtual 
MemoryOperating 

System
Device Drivers Interrupt Handlers Boot and Init

Physical 
computer

11



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

File 
System

Process 
Manager

NetworkVirtual 
MemoryOperating 

System
Device Drivers Interrupt Handlers Boot and Init

Hardware Abstraction Layer

Application Interface

Physical 
computer

12



What’s part of the OS?

• OS kernel – the only code 
without security restrictions

• Process scheduling
(who uses CPU)

• Memory allocation
(who uses RAM)

• Accesses hardware devices
• Outputs graphics
• Reads/writes to network
• Read/write to disks
• Handles boot-up and power-

down

• OS distribution – the kernel + 
lots of other useful stuff

• GUI / Window manager

• Command shell

• Software package manager
• “app store”, yum, apt, brew

• Common software libraries

• Useful apps:
• Text editor, compilers, web 

browser, web server, SSH, anti-
virus, file-sharing, media libraries, 

13



Before operating systems

• User could only run one program at a time.

• Had to insert the program disk before 
booting the machine.

• Program had to control the hardware 
directly
• This is a nuisance because hardware is complicated
• Program will only be compatible with one set of 

hardware

• An example (at right): 1983 “King’s Quest” game 
for IBM PC Jr.

14



Embedded systems often run without operating systems

• “Bare-metal” embedded systems

• Application must handle:
• Boot and initialization

• All hardware it wants to interact with

• Applications are not portable
• Rewrite, mostly from scratch, for new microcontroller

• No malloc, no segfaults
• Instead invalid memory accesses likely crash the whole system

• Imagine if each CS211 segfault resulted in the EECS server rebooting…

15



What is an Operating System?

• Referee
• Manage protection, isolation, and sharing of resources
• Resource allocation and communication

• Illusionist
• Provide clean, easy-to-use abstractions of physical resources

• Infinite memory, dedicated machine
• Higher level objects: files, users, messages
• Masking limitations, virtualization

• Glue
• Common services

• Storage, Window system, Networking
• Sharing, Authorization
• Look and feel

16



Example: File Systems

• Referee
• Prevent users from accessing other’s files without permission

• Illusionist
• Files can grow infinitely large

• Where a file exists in memory or disk isn’t important!

• Glue
• Default file system types, named directories, file explorer

17



Architecture of a lecture

18

A
tt

en
ti

o
n

Time (minutes)

0 20 25 50 53 78 80

Practice 
Questions

Wrapup
+ Bonus

Open
Question

Full



Break + xkcd

19https://xkcd.com/934/

Open question:

Are modern web browsers 
basically operating systems?



20

•What is an OS?

• Logistics

•Operating Systems History

• CS343 Focus

Outline



Course staff

• Teaching Assistant
• Aman Khalid

• PhD student in systems

• Peer Mentors (4)
• Dilan Nair

• Dimitri Hatzisavas

• Garrett Weil

• Timothy Sinaga

• All recently took CS343 as students

21

Their role: support student 
questions via office 
hours and campuswire



Lecture

• 12:30-1:50 pm, Tuesdays and Thursdays
• Tech, LR4

• Provides background on materials
• And an immediate chance for you to ask questions

• Automatically recorded so you can review

• Textbook:
• Modern Operating Systems (4th Edition), Tanenbaum and Bos

• Very useful reference. Lecture will be relatively in sync with it

• Other references are in the syllabus

22



Asking questions

• Class and office hours are always an option!

• Campuswire: (similar to piazza)
• Post questions

• Answer each other’s questions

• Find lab partners

• Information from the course staff

• Post private info just to course staff

• Please do not email me! Post to Campuswire instead!
• I’ll be updating roster again a few times

23



Labs

• These are a significant amount of the learning in this class
• Hands-on experience with the topics we’re talking about

• Labs primarily involve written code in C

• Can be quite a bit of work

• Work on these in groups of up to three students
• Preferably two or three

• Goal: collaboration, not splitting labs

• If you don’t work on it, you’re not going to learn from it

• Pair programming more often results in code written right the first time

24



Lab logistics

• Getting Started Lab
• Learn how everything works

• Queuing/Scheduling Lab
• OS application scheduling

• Producer-Consumer Lab
• Concurrency and locks

• Device Driver Lab
• Driver for a GPU

• Paging Lab
• Memory management

25

• Getting started lab is special
• One week deadline (due 09/27)

• Must do alone

• All-or-nothing grading

• Normally teams of 2 or 3 
students
• Find partners now!

• We’ll put out a survey soon for 
those who don’t know anyone



Academic integrity

• This is something I take very seriously

• Collaboration good; plagiarism bad
• You should know where that line is, and be nowhere near it 
• When in doubt, ask the instructor before you do something you’re not sure 

about

• At no point should you see someone else’s solutions
• Not your colleagues’, not your friends’, not your cousin’s, not something 

you found online

• I report everything suspicious to the dean

26



Midterm exams

• Test on your knowledge of course material
• In-person, on paper

• I’ll allow a notes sheet

• Not cumulative. Two midterms on two halves of the class

• First midterm will be during class time: October 20th

• Second midterm will be during exam week: December 7th (Wednesday)

27



Course grade

• 20% Midterm (first half of the course)

• 20% Final (second half of the course)

• 60% Labs
• 05% Getting Started Lab (individual)
• 10% Producer-Consumer Lab
• 10% Queuing/Scheduling Lab
• 15% Device Driver Lab
• 15% Paging Lab

• This class is NOT curved
• Standard 93% A, 90% A-, 87% B+, etc. applies

28



Late policy

• You can submit labs late

• 20% penalty to maximum grade per day late
• Example: three days late means maximum grade is 40%

• We will be flexible with deadlines for problems outside of your 
control
• Sick, family emergency, broken computer

• Contact me! (via Campuswire)

29



Slip days

• Slip days let you turn in a homework late and receive no penalty

• Each student gets 4 slip days
• Apply to labs
• You don’t need to tell us you’re using them, we’ll just automatically apply 

them at the end of the year
• Be sure to coordinate about them on partner assignments

• Examples:
• Turn in Scheduling Lab four days late
• Turn in Scheduling Lab three days late and Paging lab one day late
• Turn in Paging Lab five days late with only a one-day penalty

30



COVID Update - Fall 2022 Edition

• Masks in class are not mandatory
• You’re still welcome to wear one if you want, but I won’t make you

• I’ll wear one sometimes

• If you are sick, do not come to class
• Even if there’s an exam that day!!

• We will be flexible with deadlines as necessary

• Lectures are being recorded automatically

31



Expectations

• Give yourself time to complete labs
• Dealing with C code

• Handling a large code base

• Dealing with concurrency!!

• You’ll learn a lot through the challenge

• Don’t fall behind on lecture materials
• Material builds on itself, like in CS213

• Use course staff to help you out
• Office hours & Campuswire are for your benefit

32



Break + First Tasks

1. Getting Started Lab
• Makes sure you’ve got everything set up to do all the labs

• Should be available right now

• Get this done on time

2. Find partner(s) for assignments
• We’ll put out a form in the next few days if you don’t know people in the 

class

3. Take a break, chat with your neighbors, look at your phone, 
reset your brain for a minute

33



34

•What is an OS?

• Logistics

• Operating Systems History

• CS343 Focus

Outline



Computer History

• Check out the textbook!
• In-depth history

• Entertaining writing with just the right amount of sarcasm

• This isn’t a computer history course
• But there is a good reason to understand the lineage of the techniques we 

explore in this course

35



Early evolution of computing systems – Batch

• 1955: Batch systems
• Collect a bunch of program punch cards and write them all one magnetic 

tape.

• Run the tape through the mainframe to execute all the jobs in sequence.

• OS responsibility
• Libraries for I/O

• Problems
• I/O is VERY slow. 80-90% of total time just waiting.

36



Early evolution of computing systems – Multiprogramming

• 1960s: Multiprogramming (IBM OS/360)
• Keep multiple runnable jobs in memory at once.
• Allows overlap I/O of one job with computing of another.

• Uses asynchronous I/O and interrupts or polling to detect I/O 
completion

• OS responsibility
• Schedule jobs
• Monitor I/O

• Problems
• Still need to submit all jobs in advance

37



Early evolution of computing systems – Timesharing

• 1960s-70s: Timesharing (MULTICS, Unix)
• Multiple user terminals connected to one machine

• Allows interactive use of machine to be efficient (because another user’s 
job can run while you’re thinking).

• OS responsibility
• Multiple users (with permissions!)

• Scheduling processes

• Application interface

• Shell tools

38



Later evolution of computer systems – PC

• 1980s-90s: Personal Computers (IBM PC, Macintosh)
• Graphical user interfaces were developed

• Mainframe OS concepts (like networking) were applied to PCs

• Magnetic disk (hard drive) capacity becomes huge, but still slow

• OS responsibility
• Look and feel of a system, particularly for non-experts

• Tools that were distributed with the OS had significant business results

• Computers are bought for Excel or for Lotus 1-2-3

39



Later evolution of computer systems – Mobile and Cloud

• 2000s-10s: Mobile and pervasive computing, Cloud Computing
• Slow hardware is once again common (phones & wearables)

• OS manages sensitive information like location and internet behavior

• Fast flash storage is common.

• Server hardware is shared by many different cloud computing customers

• OS responsibility
• Diverse hardware drivers

• Security

• Massive parallelism

40



Simplified 
History of 
Unix-like 
Operating 
Systems

Operating 
systems are very 
interconnected



An example: Android Operating System

• Kernel - Linux
• With modifications particularly 

in power management

• And additional drivers

• Distribution
• Look and feel of “Android”

• App framework

• Some of this changes per 
vendor (Samsung vs Google)

42



Operating systems have evolved with hardware in a cycle

• Sophisticated operating 
systems first arose on 
mainframes.

• OS ideas migrated to smaller 
machines as those machines 
became more powerful.

• In 2022, a smart watch has
1 GB RAM, 32 GB SSD storage,
two CPU cores, and a real OS.

43



Future OS directions

• Manage increasingly specialized hardware
• Post-Moore’s law, general-purpose CPUs loose out to special-purpose chips

• OS must maintain abstractions while enabling capabilities

• Energy as another resource
• Already considered in laptop/smartphone worlds

• Increasingly important to data center operations as well

• Very small-scale, ubiquitous devices
• Computers are becoming part of everything around us

• How do we develop applications for those devices and coordinate them?

44



45

•What is an OS?

• Logistics

•Operating Systems History

• CS343 Focus

Outline



Schedule for first half of the course

1. Scheduling
• Managing CPU utilization

• Workload, Queuing, Real-time

2. Concurrency
• Dealing with the realities of modern-day computing

• Sources, Control, Challenges

46



Schedule for second half of the course

3. Device Drivers
• Management and abstraction of devices

• Interrupts, DMA, Abstractions

4. Virtual Memory
• Management and abstraction of memory

• Paging, Allocation, Security

5. File Systems
• Management and abstraction of data

• Principles, Examples

47



Why do we care about OS?

• Performance
• Speed is influenced by

• Parallelism, resource contention, memory management

• Generally OS overhead

• Security
• Process and data isolation when actually all running together

• The biggest security vulnerabilities break abstractions

• Meltdown and Spectre

48



49

•What is an OS?

• Logistics

•Operating Systems History

• CS343 Focus

Outline


