
Lecture 16:
OS Design and RAID

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern)

Today’s Goals

• Discuss principles guiding OS design.

• Describe several classes of OS kernel.

• Also:

• Explore topic of RAID – redundancy in disks.

2

3

• OS Design Principles

• Kernel Designs

• RAID

Outline

Disclaimer

• This is the most abstract part of the class

• These ideas can take a long time to sink in
• Best to introduce them and repeat them

4

Interface design

• Three guiding principles per Tanenbaum

1. Simplicity

2. Completeness

3. Efficiency

5

1. Simplicity

• Simple interfaces are easier to understand and use

“Perfection is reached not when there is no longer anything to add,
but when there is no longer anything to take away.”
- Antoine de St. Exupéry (French writer and aviator)

• Fork() is a great example

6

Simplicity means avoiding premature optimization

• Do not let perfect stand in the way of good
• It’s more important to have something working than nothing at all

• First step is to make it work “good enough”
• Optimization can come later based on usage

• Otherwise you might be failing Amdahl’s Law

7

Simplicity reduces bugs

• Interfaces that match expectations end up being used correctly

• Features are the source of mistakes
• Code that doesn’t exist has no bugs

8

2. Completeness

• Interfaces should make it possible to do everything users need to

• Simple things should be simple, difficult things should be possible

• For system design, this usually means moving extra functionality
into userspace libraries
• Managing heap memory is a good example

9

OSes have a long lifetime

• OSes in the real world have a tendency towards very long lifetimes
• Planning for the future is difficult

• Maintaining support for the past is crippling

• POSIX standard was created in 1988
• 3 years before the first webcam

• 10 years before WiFi

• eSata port example

10

3. Efficiency

• Implementations should be efficient
• Given simplicity and completeness goals first

• Efficiency should meet user’s expectations as well
• Which is faster: seek or read?

• If it’s not seek, developers are going to write bad code

• Also, seek should be cut from the interface (simplicity)

11

Other OS principles

• Two others I want to pull out of the chapter
• See textbook for many more lessons and examples

1. Separate policy and mechanism

2. Project management is hard

12

Separation of policy and mechanism

• Exemplified in schedulers and virtual memory
• Mechanism for switching threads

• Policy for when to do so

• Could swap out either without changing the other

• Be explicit about which is which

13

Project management is hard

• Mythical Man Month
• Large projects involve an enormous amount of planning and testing

• They are NOT highly parallelizable

• The person-month idea is that time and number of developers are
exchangeable
• In the general case, this is false

• Brook’s Law: “Adding manpower to a late software project makes it later.”

14

15

• OS Design Principles

• Kernel Designs

• RAID

Outline

Monolithic kernel

• This is the model we have been learning

• All OS services occur within the kernel

• Applications request service from the kernel

• Hardware can only be accessed by the kernel

16

Microkernel

• Most services are
userspace programs

• OS kernel implements
minimum features to
support them
• Requests for services

are often
Inter-Process
Communication (IPC)

17

Exokernel

• Goal: separate security and abstraction
• OS should provide security only

• Everything else goes in applications

• If an application is allowed to access a certain region of the disk
• Monolithic: constrain it to a particular filesystem included in the kernel

• Exokernel: give it raw access to those disk blocks and it can decide

• Application libraries can implement filesystem stuff

• Upside: applications can be more efficient

• A downsides: surrenders “look and feel” of the system

18

Hybrid kernels

• Most real operating systems are not any of these extremes
• But exhibit qualities for each as desirable

• Often some lowest level drivers are in the kernel
• But higher level stuff are userspace services

• Example: the OS needs to support USB
• But printers can be run as services

• Example: heap region is given to programs to manage
• Libraries like malloc can manage it in userspace

19

20

• OS Design Principles

• Kernel Designs

• RAID

Outline

Failure rates for disks are a serious problem

• Problem: disks fail
• HDDs have physical actuators that wear out

• SSDs have limited numbers of writes

• Big problem: servers have many disks
• Assume rate of failure per year of disk is 1%

• And failures aren’t correlated

• And a server has 264 disks

• What are the odds that a disk will fail this year?

• 1 – (1 – 0.1)264 = 93% odds that at least one disk will fail

21

Database server at Northwestern

• 264 fast (10k RPM) magnetic disks
(for production)

• 56 slow (7200 RPM) magnetic disks
(for backup)

• ~150 TB storage capacity

• Comprised of 6 physical chassis (boxes) in one big
cabinet, about the size of a coat closet.

22

Redundant Array of Independent Disks (RAID)

• Observation in 1988 (Patterson, Gibson, Katz)
• Servers could use high-quality mainframe disk drives

OR

• Servers could use several redundant consumer disk drives

• Furthermore array of disks improves multiple things at once
• Reduce impact of a failure by storing data redundantly on multiple disks.

• Increase capacity by making multiple disks available to store data.

• Increase throughput by accessing data in parallel on multiple disks.

23

Basic idea of RAID

• Combine many disks to create one superior virtual disk.

• The RAID array provides the same interface as a single disk.

OS thinks it’s dealing with
this:

Sector r/w
requests

But it’s just an illusion. The reality is:

Sector r/w
requests

RAID virtual
disk

How does RAID fit into the OS?

• RAID can be implemented in software or hardware

• Software RAID means that the OS is responsible for assembling
multiple disks into a RAID.
• Implements a generic block device.

• Hardware RAID requires a specialized controller card that
coordinates the multiple disks, presenting interface of one disk.
• OS just needs a driver for the RAID controller, like any other disk

controller.

25

RAID levels

• RAID 0 – Striping:
• Distribute data across 2 disks for twice the peak throughput.

• RAID 1 – Mirroring:
• Copy data onto 2 disks to tolerate failure of one.

• RAID 4/5/6 – Parity:
• Keep parity bits around for each block to check for errors and rebuild.

• Typically involves 3+ disks.

26

RAID 0 – Striping (for throughput and capacity)

• Divide the logical disk into chunks
(A1, A2, A3 …) 1 or more blocks in size

• Distribute the chunks regularly over two or
more (N) physical disks.

• (+) Throughput for both random and
sequential access scales with N.

TRAID0 = N * Tdisk

• (+) Capacity also scales by N.

• (+) Cost per byte is identical

• (–) But Mean Time To Failure is worse
because failure of a single disk is
catastrophic:

MTTFRAID0 = MTTFdisk/N

27

RAID 1 – Mirroring (for fault tolerance)

• Duplicate each chunk on each of N
physical disks.

• (+) It is impossible to lose data unless all
disks fail simultaneously.
• i.e., failure window is reduced to the time it

takes to replace a broken disk.

• (–) Write throughput is not improved

• (–) Capacity is the same as a single disk

• (–) Cost per byte is greater
$RAID1 = N * $disk

28

Check your understanding – RAID 1

• (–) Write throughput is not improved

• Is write throughput reduced in RAID 1?
Or is it the same as a single disk?

• What about read throughput?

29

Check your understanding – RAID 1

• (–) Write throughput is not improved

• Is write throughput reduced in RAID 1?
Or is it the same as a single disk?
• Same as a single disk

• Write can go to both disks in parallel

• What about read throughput?
• Better than a single disk

• Can read two different blocks at once!

30

RAID 4 – Parity (for fault tolerance, capacity & throughput)

Redundant data

• Distribute the chunks across the
first (N-1) disks.

• On the Nth disk, store a
corresponding parity chunk.
• Parity block is redundant data

about a set of chunk (a stripe)

• Can tolerate loss of any one
disk

• Parity disk becomes bottleneck
for writes limiting throughput

31

How does parity work?

• Even parity – add a 0 or 1 such that the total number of 1’s is
even.
• There also exists odd parity which makes the total number of 1’s odd

• Examples (Even Parity):
• 0b0000_0000 – zero ones -> parity bit = 0

• 0b1111_1111 – eight ones -> parity bit = 0

• 0b0110_1101 – five ones -> parity bit = 1

• If a single bit is lost, the parity bit allows us to infer the value of
the lost bit

32

Check your understanding – Parity Recovery

• What are the values of the missing bits?

• [0, 0, 1, 0, ?, 0, 1, 1] – Even Parity: 1

• [0, ?, 1, 1, 1, 0, 0, 0] – Even Parity: 0

33

Check your understanding – Parity Recovery

• What are the values of the missing bits?

• [0, 0, 1, 0, ?, 0, 1, 1] – Even Parity: 1
• Value must be a 0

• Because parity plus ones is already even

• [0, ?, 1, 1, 1, 0, 0, 0] – Even Parity: 0
• Value must be a 1

• Because parity plus ones is not currently even

34

Parity can only fix a single error

• What if two bits are missing?

• [?, 0, 1, 0, ?, 0, 1, 1] – Even Parity: 1
• Could both be zeros

• Could both be ones

• Impossible to tell which

• More advanced “error correcting codes” are possible to detect/fix
two or more errors
• Hamming Code (single error correcting, double error detecting)

35

Parity chunk in RAID

• Parity is computed bit-wise across corresponding chunks.

• Chunks are one or more blocks (multiple of 4 kB) in size

• Writing a small file will involve one disk plus the parity disk.
• (parity disk can become a bottleneck)

• Writing a large file will involve all the disks.

Disk 0 Disk 1 Disk 2 Disk 3 (parity)
0001 0010 1100 1100 0000 1111 0000 1111 1101 1111 0011 0001 1100 0010 1111 0010

1111 1111 1111 1111 0001 0001 0001 0001 1101 1001 0110 0110 0011 0111 1000 1000

0000 0000 0000 0000 1101 1011 0011 0011 1111 0011 0011 1000 0010 1000 0000 1011

Useful storage capacity Redundancy overhead

36

Rebuilding an array after failure

• If a disk fails, then we remove it and replace it with a working disk.

• Then scan through the entire array to compute and write missing data.
• This is called “rebuilding” the array

• We cannot tolerate another disk failure until rebuild completes.

• Reads/writes can continue while array is rebuilding!

Disk 0 Disk 1 Disk 2 Disk 3 (parity)
0001 0010 1100 1100 1101 1111 0011 0001 1100 0010 1111 0010

1111 1111 1111 1111 1101 1001 0110 0110 0011 0111 1000 1000

0000 0000 0000 0000 1111 0011 0011 1000 0010 1000 0000 1011

Disk failed!

37

RAID 5 – Distributed Parity (the winner in practice)

• Distribute parity chunks across
the disks, to avoid a small-write
bottleneck

• (+) Failure of one disk is OK

• (+) Throughput is good

TRAID5 = (N-1) * Tdisk

• (+) Cost per byte is good
$RAID1 = N/(N-1) * $disk

• (–) High overhead for small N

• (–) Failure risk is high for large N

• N is typically 3 to 8

RAID 6 – Double Parity (for large arrays)

• Add another disk and keep two
parity chunks per stripe
• 2nd parity is computed differently

• (+) Failure of two disks is OK

• (~) Throughput is less:

TRAID5 = (N-2) * Tdisk

• (~) Cost per byte is higher:
$RAID1 = N/(N-2) * $disk

• Makes sense for larger N (>8)

40

• OS Design Principles

• Kernel Designs

• RAID

Outline

