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Today’s Goals

• Explore how software for device I/O is architected.

• Discuss OS considerations at multiple software layers.

• Investigate an example device driver.
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• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline



Writing software to manage devices

• Kernel software for managing a device is a device driver
• 70% of Linux code is device drivers

• 15.3 Million lines of source code

• Big challenge for device drivers
• How do we enable interactions with so many varied devices?

• Need abstractions to allow software to interact with them easily

• Need mechanisms to reuse a lot of code for commonalities
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General software abstractions

• When building large 
software projects, we like 
to define layers of code
• Makes it clear what is 

handled where

• Enables swapping out 
implementations when 
desired
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Linux Kernel Layering
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Linux Kernel Layering
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Linux Kernel Layering
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Linux Kernel Layering
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Linux Kernel Layering
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Abstraction: everything is a file!

• Hardware: treat devices like memory
• They can be read and written at addresses

• Software: treat devices like files
• They can be read and written

• They may be created or destroyed (plugged/unplugged)

• They can be created in hierarchies. Example:

• SATA devices
• SSD

• USB devices
• Webcam

• Microphone
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Linux device classes

• Character devices
• Accessed as a stream of bytes (like a file)
• Example: Webcam, Keyboard, Headphones
• We will focus on these

• Block devices
• Accessed in blocks of data (like a disk)
• Can hold entire filesystems
• Example: Disks, Flash drives

• Network interfaces
• See CS340 (Computer Networking)
• Accessed through transfer of data packets
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System layers when interacting with devices

• User applications
• Do useful things

• I/O subsystem
• Receive syscalls, route to device drivers

• Device drivers
• Translate application requests into device interactions

• Interrupt Handler
• Receive events from hardware

• Hardware
• Do useful things
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Where we are at in the system
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Communication with devices

• Interactions occur through system calls
• Open/Close

• Read/Write

• Seek, Flush

• Ioctl

• And various others
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Accessing devices

• Open/Close
• Inform device that something is using it (or not)

• Argument is path to device (like path to file)

• Get a file descriptor that the other operations act on

• “/dev” directory is populated with devices
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Interacting with devices

• Read
• ssize_t read(int fd, void *buf, size_t count);

• Write
• ssize_t write(int fd, const void *buf, size_t count);
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Arbitrary device interactions

• ioctl – I/O Control
• int ioctl(int fd, unsigned long request, ...);

• Request number followed by an arbitrary list of arguments
• “request” may be broken in fields: command, size, direction, etc.

• Catch-all for device operations that don’t fit into file I/O model
• Combine magic numbers to form some special action

• Reset device, Start action, Change setting, etc.
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Asynchronous I/O operations

• Previous examples were all synchronous I/O calls
• Read/Write will block process until complete

• Easy to use, but not always most efficient method

• Asynchronous I/O calls also exist
• POSIX AIO library

• aio_read/aio_write – enqueue read/write request

• aio_error – check status of an I/O request

• aio_return – get result of a completed I/O request
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Synchronous blocking read example
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Asynchronous read example
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Asynchronous read example with early request
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Where we are at in the system
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Kernel I/O subsystem

• The OS kernel does various things for devices that are not specific 
to the individual device
• Manages permissions

• Routes call to appropriate driver

• Schedules requests to drivers
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Kernel needs to handle process memory

• Buffering
• Kernel may need to hold on to a copy of data

• Especially in asynchronous case

• When copies are done and how many times is a big kernel efficiency 
question

• Address translation
• All the data user processes give to the kernel comes with virtual addresses

• Pointers are either going to have to be translated

• Or memory is going to need to be copied
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Where we are at in the system
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Device drivers

• Device-specific code for communicating with device
• Supports some interfaces above and below

• Possibly file syscalls above and memory-mapped I/O below
• Possibly internal API above and below..

• Examples
• Specific disk drivers are

layered on top of SATA driver
• Keyboard driver is layered

on top of USB driver
• Ethernet driver has various

network interfaces layered
above it
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Example: possible driver layers for an SD card
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Device I/O is handled by device drivers 

• Communication is up to the hardware
• Port-mapped I/O or memory-mapped I/O

• Or function calls to a lower-level driver

• Interaction design is up to the driver (and OS)
• Programed I/O

• Synchronous or with interrupts

• Direct Memory Access

• Needs hardware support

• With interrupts
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Device drivers are often designed with two “halves”

• Top half
• Implements interface that higher layers require

• Performs logic to start device requests

• Wait for I/O to be completed

• Synchronously (blocking) or asynchronously (return to kernel)

• Handle responses from the device when complete

• Bottom half
• Interrupt handler

• Continues next transaction

• Or signals for top half to continue (often with shared variable)
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Virtualizing one device for many users

• Some devices need to be virtualized
• Software that emulates unique devices for each higher level user even 

though only a single hardware resource actually exists
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Life cycle of an 
I/O request
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Si7021 temperature and humidity sensor

• Popular on embedded devices
• Also has a Linux driver!

• Connects to computer over I2C bus
• Two-wire, 100 Kbps low-power bus

• Like any other bus

• Takes an address

• Whether it’s a read or write transaction

• And an amount of data

• https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf
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How do we make it do anything?

• Typically with I2C devices, you write a 1-2 byte command
• Then you read the data in the next transaction

• Commands are found in the datasheet
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What will the driver look like?

• Layer below it will be I2C controller (function calls)

• In the driver we need to
• See what the request from the layer above is

• Perform an I2C write transaction with a command byte (0xE3)

• Wait until data is ready

• Perform an I2C read transaction to get the data

• Translate the data into meaningful units
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What are the driver layers going to be?

• In Linux, some sensors are connected through the Industrial I/O 
subsystem (IIO)
• Handles sensor data specifically

• Get raw sample

• Get scaling value

• Get offset value

• Lower layers could change and
everything would still work
• USB->I2C converter for example
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Demo: Linux device driver code for Si7021

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si
7020.c

If you want to explore Linux code, a better link is:
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si70
20.c

• Creates linked databases for function calls and variable types

• Lists where it is defined

• Lists where it is used

• Makes it easy to hop up and down layers
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OSes can make design choices about drivers

• Interface does not have to be like a file
• For example: could have a set of unique syscalls for each device

• Asynchronous model could be enforced
• Must register callback handlers with lower layer to get response

• Tock embedded operating system does both of these
• https://www.tockos.org/
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Demo: Tock device driver code for Si7021

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs
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