Lecture 15: Device Drivers

CS343 – Operating Systems Branden Ghena – Fall 2020

Some slides borrowed from: Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162

Northwestern

Today's Goals

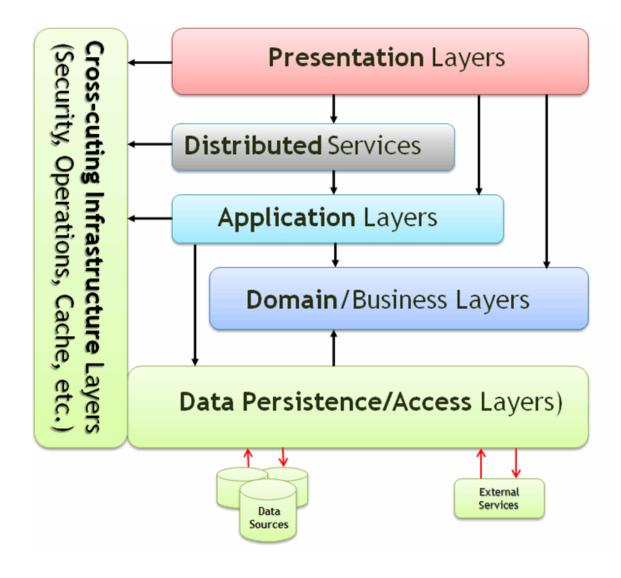
• Explore how software for device I/O is architected.

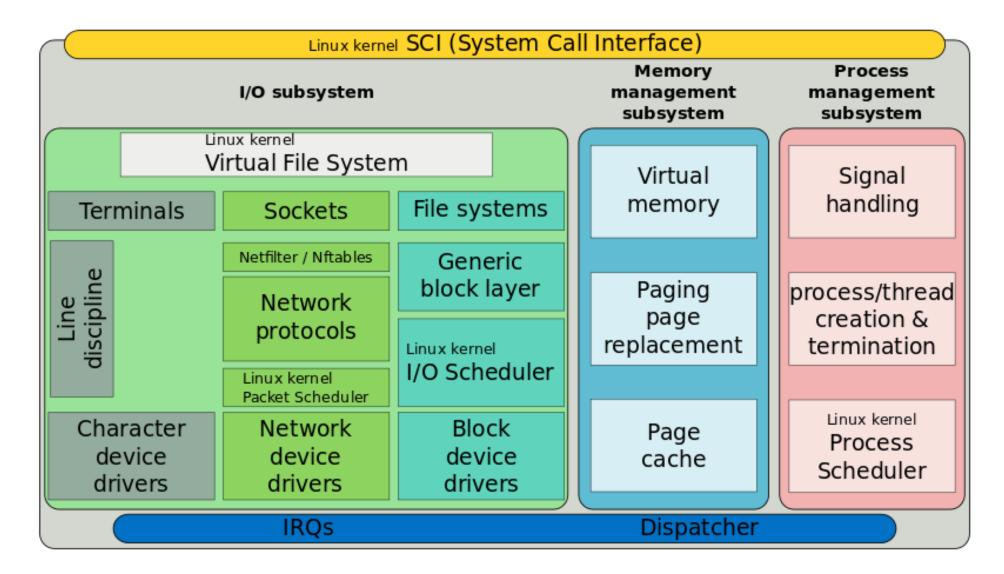
• Discuss OS considerations at multiple software layers.

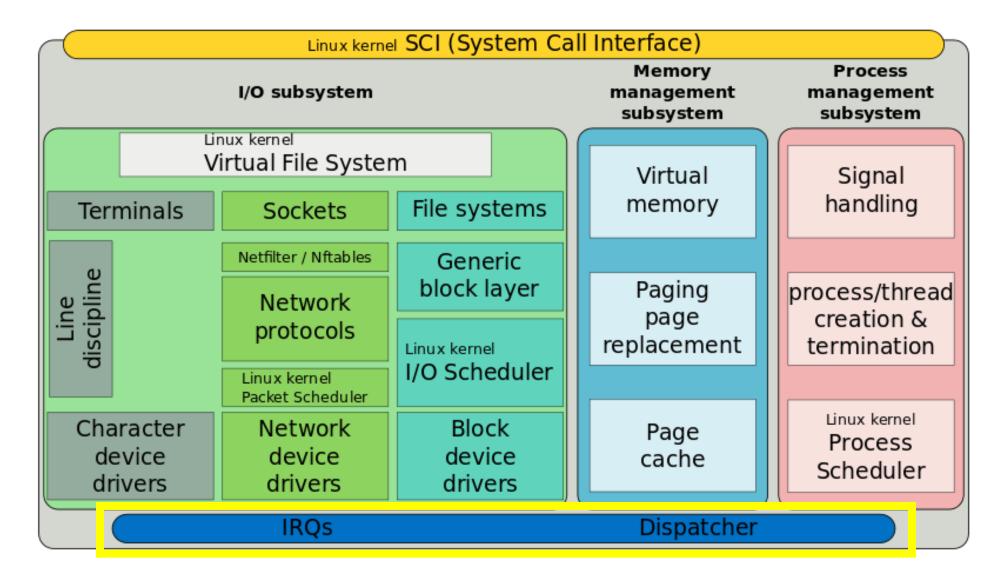
• Investigate an example device driver.

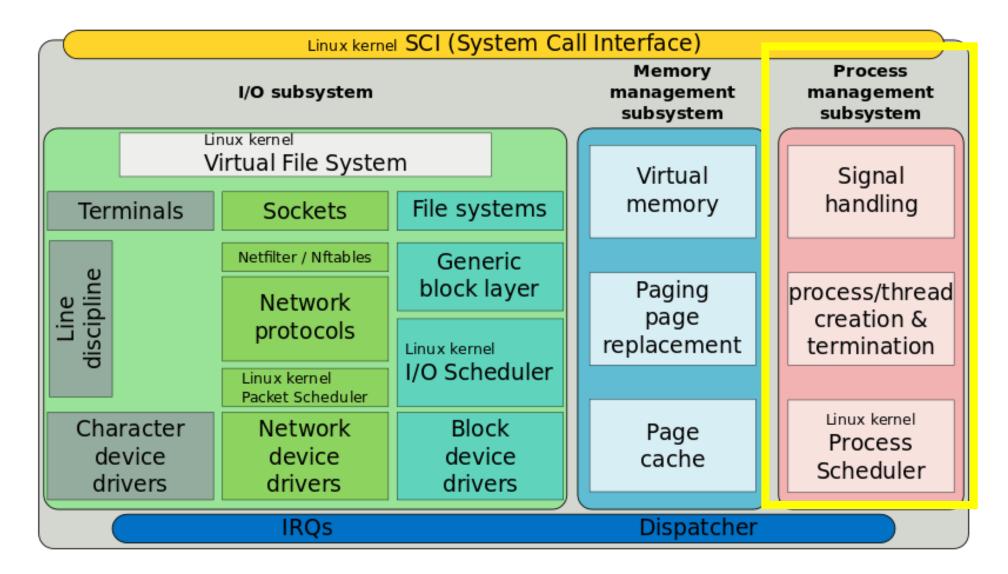
Outline

Abstractions

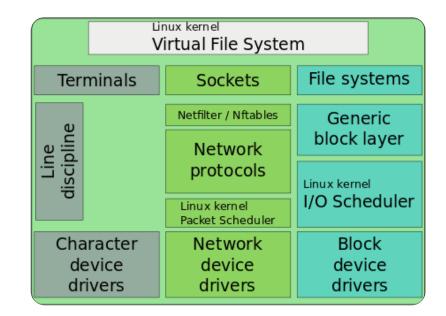

- Device I/O layers
 - Application Layer
 - Kernel I/O Subsystem
 - Device Driver
 - Interrupt Handler
- Example Driver: Temperature Sensor


Writing software to manage devices


- Kernel software for managing a device is a *device driver*
 - 70% of Linux code is device drivers
 - 15.3 Million lines of source code
- Big challenge for device drivers
 - How do we enable interactions with so many varied devices?
 - Need abstractions to allow software to interact with them easily
 - Need mechanisms to reuse a lot of code for commonalities


General software abstractions

- When building large software projects, we like to define layers of code
 - Makes it clear what is handled where
 - Enables swapping out implementations when desired



Linux kernel SCI (System Call Interface)							
I/O subsystem				Memory management subsystem	Process management subsystem		
Virtual File System				Virtual	Signal		
Terminals	Sockets	File systems		memory	handling		
	Netfilter / Nftables	Generic					
Line discipline	Network protocols	block l	ayer	Paging page	process/thread creation &		
Linux kernel Packet Scheduler		Linux kernel I/O Scheduler		replacement	termination		
Character device drivers	Network device drivers	Block device drivers		Page cache	Linux kernel Process Scheduler		
	IRQs		Dispatcher				

Linux kernel SCI (System Call Interface)						
	I/O subsystem	Memory management subsystem	Process management subsystem			
Linux kernel Virtual File System			Virtual	Signal		
Terminals	Sockets	File systems	memory	handling		
	Netfilter / Nftables					
Line discipline	Network protocols	block layer	Paging page replacement	process/thread creation & termination		
Ğ	Linux kernel Packet Scheduler	I/O Scheduler	replacement			
Character device drivers	Network device drivers	Block device drivers	Page cache	Linux kernel Process Scheduler		
	IKQS	Dispatcher				

Abstraction: everything is a file!

- Hardware: treat devices like memory
 - They can be read and written at addresses
- Software: treat devices like files
 - They can be read and written
 - They may be created or destroyed (plugged/unplugged)
 - They can be created in hierarchies. Example:
 - SATA devices
 - SSD
 - USB devices
 - Webcam
 - Microphone

Linux device classes

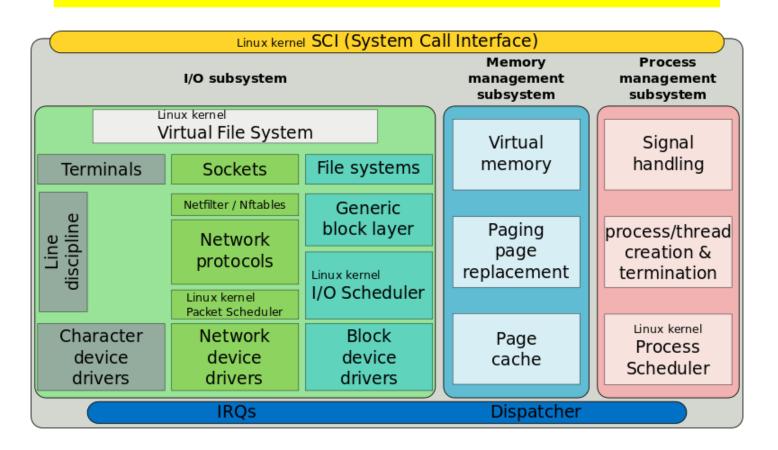
- Character devices
 - Accessed as a stream of bytes (like a file)
 - Example: Webcam, Keyboard, Headphones
 - We will focus on these
- Block devices
 - Accessed in blocks of data (like a disk)
 - Can hold entire filesystems
 - Example: Disks, Flash drives
- Network interfaces
 - See CS340 (Computer Networking)
 - Accessed through transfer of data packets

	Linux kernel Virtual File System							
Terr	minals	Sockets	File systems					
U D		Netfilter / Nftables	Generic block layer					
pline		Network						
Line disciplin		protocols	Linux kernel					
		Linux kernel Packet Scheduler	I/O Scheduler					
de	racter evice ivers	Network device drivers	Block device drivers					

System layers when interacting with devices

- User applications
 Do useful things
- I/O subsystem
 - Receive syscalls, route to device drivers
- Device drivers
 - Translate application requests into device interactions
- Interrupt Handler
 - Receive events from hardware
- Hardware
 - Do useful things

User Applications I/O Subsystem **Device Drivers** Interrupt Handler Hardware


Outline

Abstractions

- Device I/O layers
 - Application Layer
 - Kernel I/O Subsystem
 - Device Driver
 - Interrupt Handler
- Example Driver: Temperature Sensor

Where we are at in the system

Processes

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Communication with devices

- Interactions occur through system calls
 - Open/Close
 - Read/Write
 - Seek, Flush
 - Ioctl
 - And various others

Accessing devices

- Open/Close
 - Inform device that something is using it (or not)
 - Argument is path to device (like path to file)
 - Get a file descriptor that the other operations act on

• "/dev" directory is populated with devices

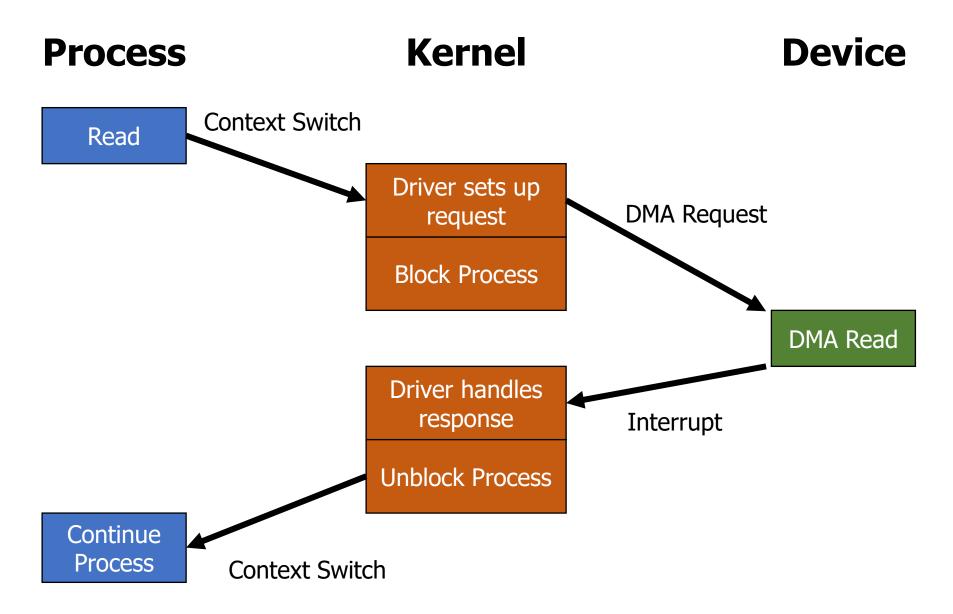
[brghena@ubuntu	code_exampl	es] \$ ls /dev/											
agpgart	dri	lightnvm	mcelog	rtc0	tty0	tty22	tty36	tty5	tty63	ttyS18	ttyS31	vcs3	vcsu4
autofs	dvd	log	mem	sda	tty1_	tty23	tty37	tty50	tty7	ttyS19	ttyS4	vcs4	vcsu5
block	ecryptfs	loop0	midi	sda1	tty10	tty24	tty38	tty51	tty8	ttyS2_	ttyS5	vcs5	vcsuó
bsg	fb0	loop1	mqueue	sda2	tty11	tty25	tty39	tty52	tty9	ttyS20	ttyS6	vcsó	vfio
btrfs-control	fd	loop10	net	sda <mark>5</mark>	tty12	tty26	tty4_	tty53	ttyprintk	ttyS21	ttyS7	vcsa	vga_arbiter
bus	full	loop2	null	sg0	tty13	tty27	tty40	tty54	ttyS0	ttyS22	ttyS8	vcsa1	vhci
cdrom	fuse	loop3	nvram	sg1	tty14	tty28	tty41	tty55	ttyS1_	ttyS23	ttyS9	vcsa2	vhost-net
cdrw	hidraw0	loop4	port	<mark>shm</mark>	tty15	tty29	tty42	tty56	ttyS10	ttyS24	udmabuf	vcsa3	vhost-vsock
char	hpet	loop5	PPP	snapshot	tty16	tty3	tty43	tty57	ttyS11	ttyS25	uhid	vcsa4	vmci_
console	<u>hugep</u> ages	loop6	psaux	snd	tty17	tty30	tty44	tty58	ttyS12	ttyS26	uinput	vcsa5	<mark>vsoc</mark> k
соге	hwrng	loop7	ptmx	sr0	tty18	tty31	tty45	tty59	ttyS13	ttyS27	urandom	vcsa6	zero
cpu_dma_latency	initctl	loop8	pts	stderr	tty19	tty32	tty46	tty6_	ttyS14	ttyS28	userio	vcsu	zfs
cuse	input	loop9	random	stdin	tty2	tty33	tty47	tty60	ttyS15	ttyS29	vcs	vcsu1	
disk	kmsg	loop-control	rfkill	stdout	tty20	tty34	tty48	tty61	ttyS16	ttyS3	vcs1	vcsu2	
dmmidi	kvm	mappe <u>r</u>	rtc	tty	tty21	tty35	tty49	tty62	ttyS17	ttyS30	vcs2	vcsu3	

Interacting with devices

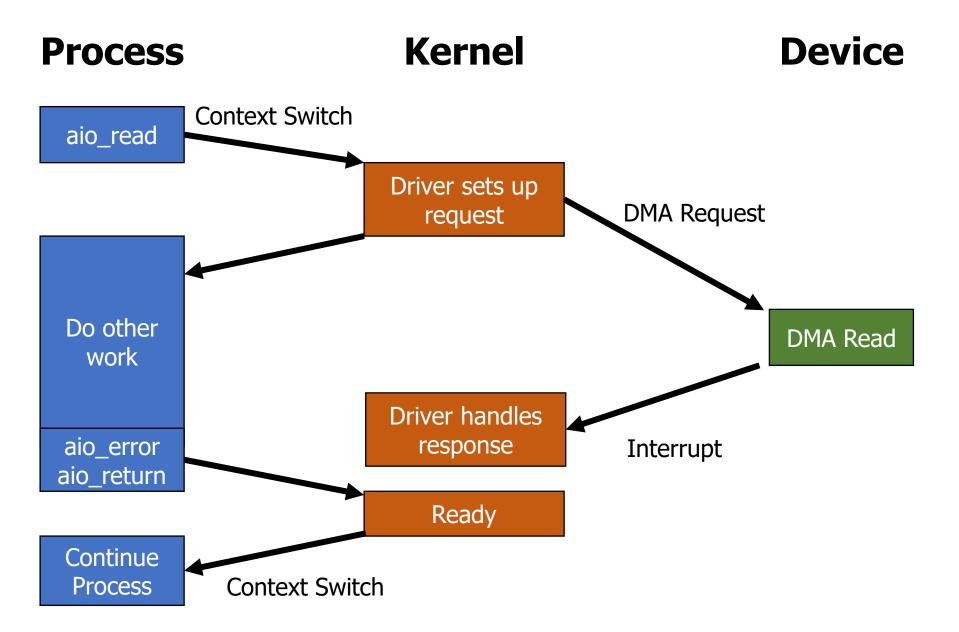
- Read
 - ssize_t read(int fd, void *buf, size_t count);

- Write
 - ssize_t write(int fd, const void *buf, size_t count);

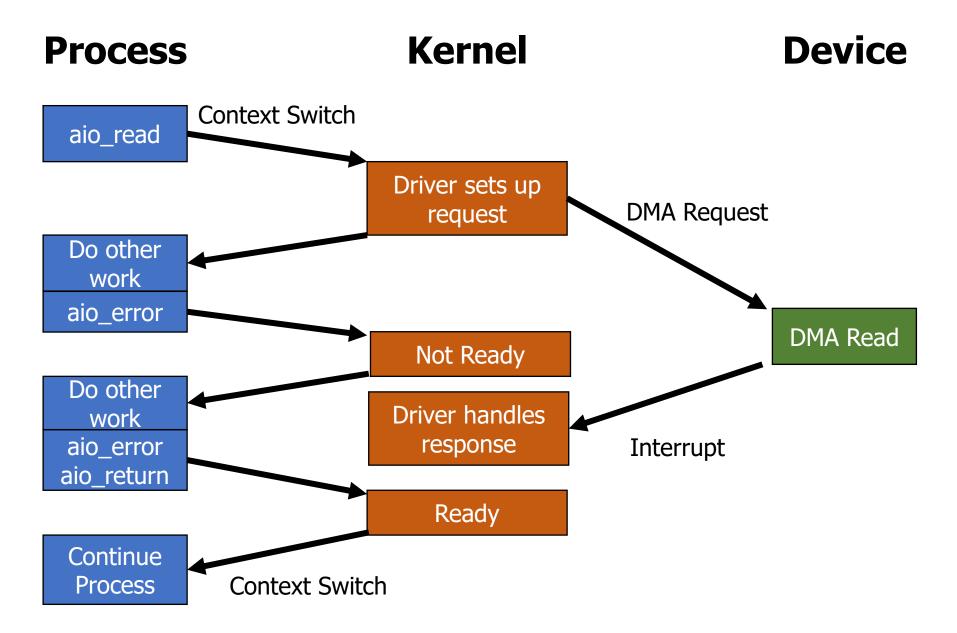
Arbitrary device interactions


- ioctl I/O Control
 - int ioctl(int fd, unsigned long request, ...);
- Request number followed by an arbitrary list of arguments
 - "request" may be broken in fields: command, size, direction, etc.
- Catch-all for device operations that don't fit into file I/O model
 - Combine magic numbers to form some special action
 - Reset device, Start action, Change setting, etc.

Asynchronous I/O operations


- Previous examples were all synchronous I/O calls
 - Read/Write will block process until complete
 - Easy to use, but not always most efficient method

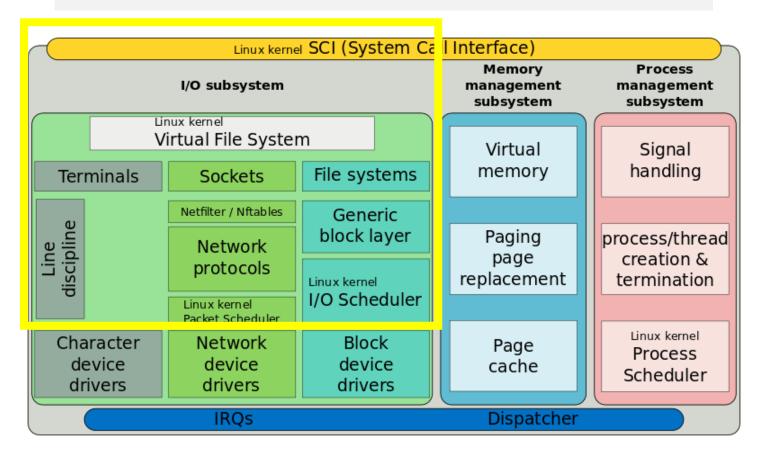
- Asynchronous I/O calls also exist
 - POSIX AIO library
 - aio_read/aio_write enqueue read/write request
 - aio_error check status of an I/O request
 - aio_return get result of a completed I/O request


Synchronous blocking read example

Asynchronous read example

Asynchronous read example with early request

Outline


Abstractions

Device I/O layers

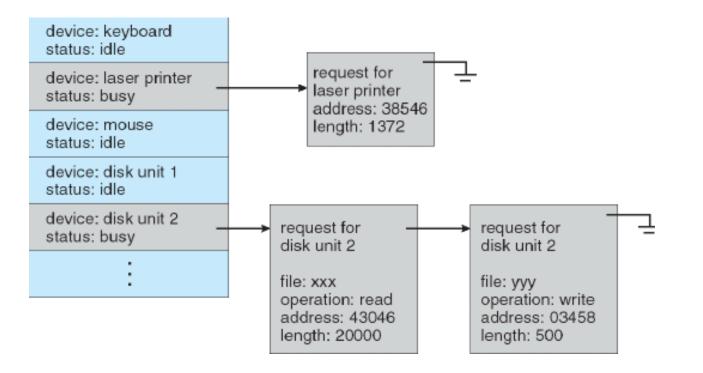
- Application Layer
- Kernel I/O Subsystem
- Device Driver
- Interrupt Handler
- Example Driver: Temperature Sensor

Where we are at in the system

Processes

User Applications

I/O Subsystem


Device Drivers

Interrupt Handler

Hardware

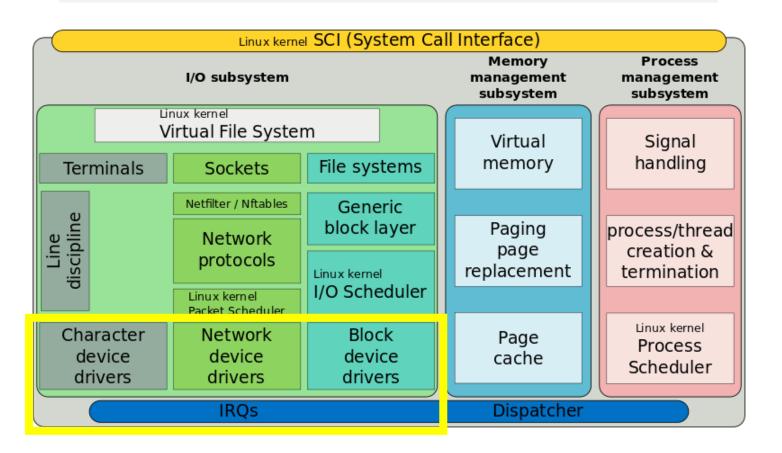
Kernel I/O subsystem

- The OS kernel does various things for devices that are not specific to the individual device
 - Manages permissions
 - Routes call to appropriate driver
 - Schedules requests to drivers

Kernel needs to handle process memory

- Buffering
 - Kernel may need to hold on to a copy of data
 - Especially in asynchronous case
 - When copies are done and how many times is a big kernel efficiency question
- Address translation
 - All the data user processes give to the kernel comes with virtual addresses
 - Pointers are either going to have to be translated
 - Or memory is going to need to be copied

Outline


Abstractions

Device I/O layers

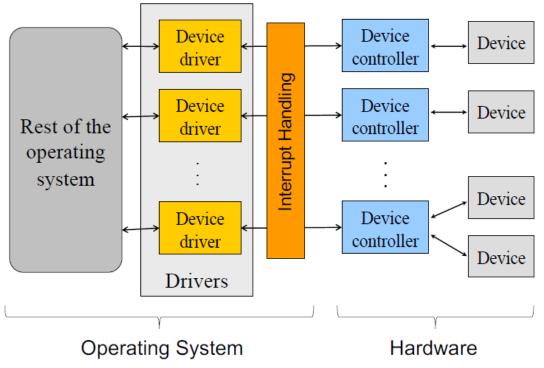
- Application Layer
- Kernel I/O Subsystem
- Device Driver
- Interrupt Handler
- Example Driver: Temperature Sensor

Where we are at in the system

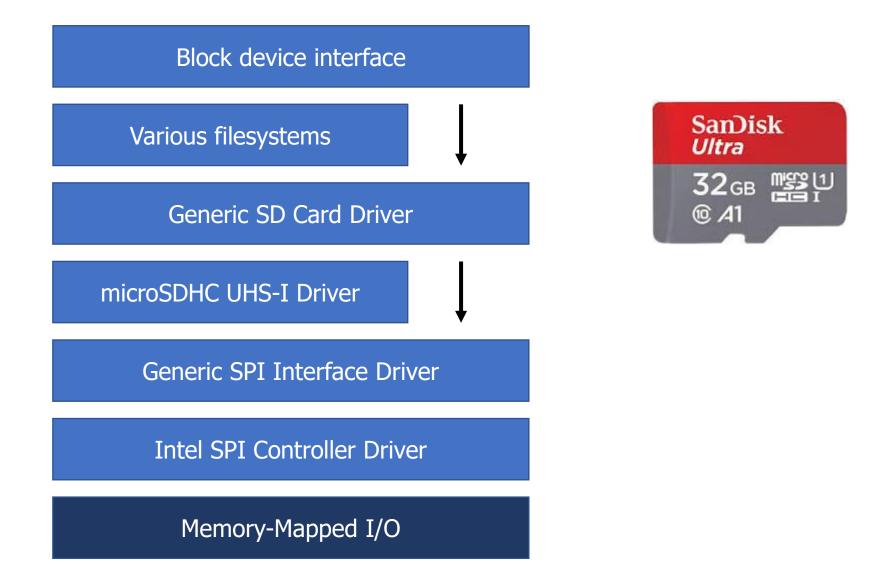
Processes

User Applications

I/O Subsystem


Device Drivers

Interrupt Handler


Hardware

Device drivers

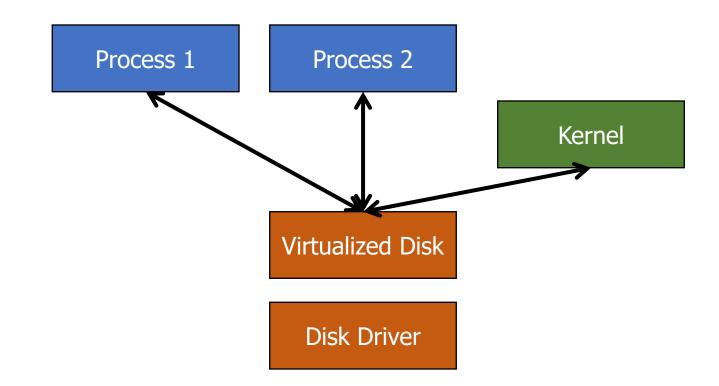
- Device-specific code for communicating with device
 - Supports some interfaces above and below
 - Possibly file syscalls above and memory-mapped I/O below
 - Possibly internal API above and below..
- Examples
 - Specific disk drivers are layered on top of SATA driver
 - Keyboard driver is layered on top of USB driver
 - Ethernet driver has various network interfaces layered above it

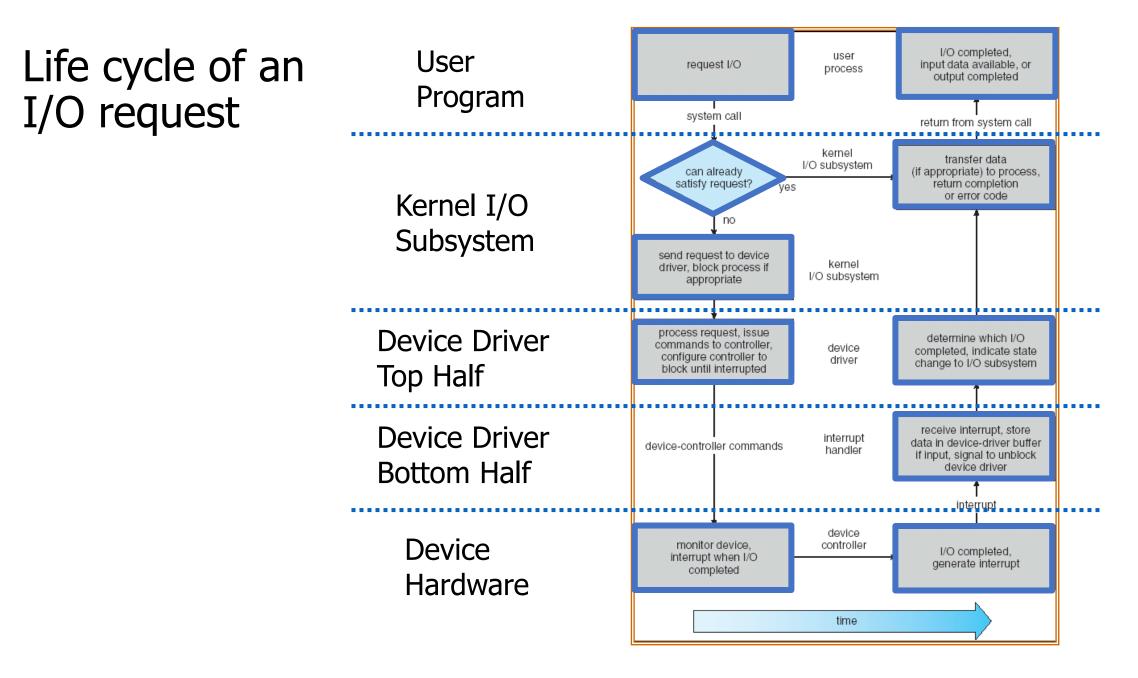
Example: possible driver layers for an SD card

Device I/O is handled by device drivers

- Communication is up to the hardware
 - Port-mapped I/O or memory-mapped I/O
 - Or function calls to a lower-level driver

- Interaction design is up to the driver (and OS)
 - Programed I/O
 - Synchronous or with interrupts
 - Direct Memory Access
 - Needs hardware support
 - With interrupts


Device drivers are often designed with two "halves"


- Top half
 - Implements interface that higher layers require
 - Performs logic to start device requests
 - Wait for I/O to be completed
 - Synchronously (blocking) or asynchronously (return to kernel)
 - Handle responses from the device when complete

- Bottom half
 - Interrupt handler
 - Continues next transaction
 - Or signals for top half to continue (often with shared variable)

Virtualizing one device for many users

- Some devices need to be *virtualized*
 - Software that emulates unique devices for each higher level user even though only a single hardware resource actually exists

Outline

Abstractions

- Device I/O layers
 - Application Layer
 - Kernel I/O Subsystem
 - Device Driver
 - Interrupt Handler
- Example Driver: Temperature Sensor

Si7021 temperature and humidity sensor

- Popular on embedded devices
 - Also has a Linux driver!
- $\mbox{ }$ Connects to computer over I^2C bus
 - Two-wire, 100 Kbps low-power bus
 - Like any other bus
 - Takes an address
 - Whether it's a read or write transaction
 - And an amount of data

<u>https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf</u>

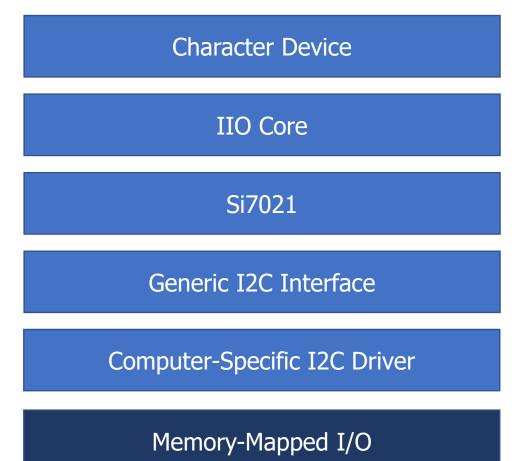
How do we make it do anything?

- Typically with I²C devices, you write a 1-2 byte command
 - Then you read the data in the next transaction
 - Commands are found in the datasheet

Command Description	Command Code
Measure Relative Humidity, Hold Master Mode	0xE5
Measure Relative Humidity. No Hold Master Mode	0xE5
Measure Temperature, Hold Master Mode	0xE3
Measure Temperature, No Hold Master Mode	0xF3
Read Temperature Value from Previous RH Measurement	0xE0
Reset	0xFE
Write RH/T User Register 1	0xE6
Read RH/T User Register 1	0xE7
Write Heater Control Register	0x51
Read Heater Control Register	0x11
Read Electronic ID 1st Byte	0xFA 0x0F
Read Electronic ID 2nd Byte	0xFC 0xC9
Read Firmware Revision	0x84 0xB8

Table 11. I²C Command Table

What will the driver look like?


• Layer below it will be I²C controller (function calls)

- In the driver we need to
 - See what the request from the layer above is
 - Perform an I²C write transaction with a command byte (0xE3)
 - Wait until data is ready
 - Perform an I²C read transaction to get the data
 - Translate the data into meaningful units

Temperature (°C) =
$$\frac{175.72*Temp_Code}{65536} - 46.85$$

What are the driver layers going to be?

- In Linux, some sensors are connected through the Industrial I/O subsystem (IIO)
 - Handles sensor data specifically
 - Get raw sample
 - Get scaling value
 - Get offset value
- Lower layers could change and everything would still work
 - USB->I2C converter for example

Demo: Linux device driver code for Si7021

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si 7020.c

If you want to explore Linux code, a better link is: <u>https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si70</u> 20.c

- Creates linked databases for function calls and variable types
 - Lists where it is defined
 - Lists where it is used
- Makes it easy to hop up and down layers

OSes can make design choices about drivers

- Interface does not have to be like a file
 - For example: could have a set of unique syscalls for each device

- Asynchronous model could be enforced
 - Must register callback handlers with lower layer to get response

- Tock embedded operating system does both of these
 - https://www.tockos.org/

Demo: Tock device driver code for Si7021

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs

Outline

Abstractions

- Device I/O layers
 - Application Layer
 - Kernel I/O Subsystem
 - Device Driver
 - Interrupt Handler
- Example Driver: Temperature Sensor