Lecture 15:
Device Drivers

CS343 — Operating Systems
Branden Ghena — Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162

Northwestern

Today’s Goals

 Explore how software for device I/0O is architected.
» Discuss OS considerations at multiple software layers.

» Investigate an example device driver.

Outline

 Abstractions

 Device I/0 layers
 Application Layer
« Kernel I/O Subsystem
 Device Driver
 Interrupt Handler

« Example Driver: Temperature Sensor

Writing software to manage devices

 Kernel software for managing a device is a device driver
« 70% of Linux code is device drivers
 15.3 Million lines of source code

» Big challenge for device drivers
« How do we enable interactions with so many varied devices?
« Need abstractions to allow software to interact with them easily
« Need mechanisms to reuse a lot of code for commonalities

General software abstractions

« When building large

_ _ Presentation Layers
software projects, we like

l

+— Distributed Services

!
Application Layers

!

Domain/Business Layers

l

Data Persistence/Access Layers)

P (I

Data
Sources

to define layers of code

* Makes it clear what is
handled where

« Enables swapping out
implementations when
desired

|

(*2319 ‘ayoe) ‘suonjesadp A1LNd3%)
s19/Ae ainjonajselju] Buland>-ssoad)

Linux Kernel Layering

al

Linux kernel SCI (System Call Interface)

1/O subsystem

Linux kernel

Virtual File System

oy

L

Memory
management
subsystem

Virtual
memaory

Paging
page

replacement

_ P

management
subsystem

Signal
handling

process/thread
creation &
termination

Linux kernel

Process
Scheduler

Linux Kernel Layering

al

Linux kernel SCI (System Call Interface)

1/O subsystem

Linux kernel

Virtual File System

Memory
management
subsystem

Virtual
memaory

Paging

page
replacement

_ P

management
subsystem

Signal
handling

process/thread
creation &
termination

Linux kernel

Process
Scheduler

Linux Kernel Layering

L

— Linux kernel SCI (System Call Interface) b
HEII'Iﬂl'j" Process
1/O subsystem management management
subsystem subsystem
Linux kernel N K
Virtual File System Virtual Signal
_ memory handling
Paging process/thread
page creation &
replacement termination
Linux kernel
Process
Scheduler

Linux Kernel Layering

al

Linux kernel SCI (System Call Interface)

1/O subsystem

Linux kernel

Virtual File System

¥

L

Memory
management
subsystem

Virtual
memaory

Paging
page

replacement

_ P

management
subsystem

Signal
handling

process/thread
creation &
termination

Linux kernel

Process
Scheduler

Linux Kernel Layering

—

Linux kernel SCI (System Call Interface)

Memory

1/O subsystem management
subsystem

Linux kernel

Virtual File System Virtual

- page
- s

memory

Paging

N

_ P

management
subsystem

Signal
handling

process/thread
creation &
termination

Linux kernel

Process
Scheduler

10

Abstraction: everything is a file!

» Hardware: treat devices like memory
» They can be read and written at addresses

 Software: treat devices like files
ney can be read and written
ney may be created or destroyed (plugged/unplugged)

ney can be created in hierarchies. Example:
« SATA devices

. T
. T
. T

« SSD

« USB devices

« Webcam

 Microphone

" Linux kernel

.\

Virtual File System ‘
‘ Terminals ‘ Sockets File systems
| Netfilter f Nftables | Generic
)
c block layer
E = Network Y
30 rotocols
% P Linux kernel
Linux kernel |,|"0 SChEdUIE’r
Packet Scheduler
Character Network Block
device device device
drivers drivers drivers

11

Linux device classes

 Character devices
« Accessed as a stream of bytes (like a file)
« Example: Webcam, Keyboard, Headphones
« We will focus on these

* Block devices
» Accessed in blocks of data (like a disk)
« Can hold entire filesystems
« Example: Disks, Flash drives

« Network interfaces
« See CS340 (Computer Networking)
« Accessed through transfer of data packets

Linux
Virtual File System

kernel

.\

Terminals ‘ Sockets File systems
| Netfilter f Nftables Generic
)
c block layer
E = Network Y
50 rotocols
% P Linux kernel
Linux kernel |,|"0 SChEdUIE’r
Packet Scheduler
Character Network Block
device device device
drivers drivers drivers

12

System layers when interacting with devices

« User applications
* Do useful things

 I/O subsystem
» Receive syscalls, route to device drivers

 Device drivers
 Translate application requests into device interactions

» Interrupt Handler
« Receive events from hardware

« Hardware
« Do useful things

User Applications
I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

13

Outline

» Abstractions

- Device I/0 layers
- Application Layer
« Kernel I/O Subsystem
 Device Driver
 Interrupt Handler

« Example Driver: Temperature Sensor

Where we are at in the system

Processes User Applications
Linux kernel SC| (Syst Call Interfa
& e ey o I/O Subsystem
1/0 subsystem management management
subsystem subsystem
4 Linux kernel) é b
YirtualFile system Virtual signal Device Drivers

memory handling

Interrupt Handler

- Paging process/thread
page creation &
replacement termination
Hardware
Linux kernel
Page Process
cache Scheduler
LS -~

L

15

Communication with devices

» Interactions occur through system calls
* Open/Close
« Read/Write
« Seek, Flush
« Toctl
* And various others

16

Accessing devices

* Open/Close
« Inform device that something is using it (or not)
« Argument is path to device (like path to file)
 Get a file descriptor that the other operations act on

» " /dev” directory is populated with devices

[brghena@ubuntu code examples] $ 1ls /fdev/
mcelog rtce tty63 ttys18 ttys31 wvcs3 vcsu4
mem tty7 ttyS19 ttys4 vecsd vesus
ecryptfs midi tty8 ttys2 ttyss vCsh vCsub
fbo tty9 ttysS20 ttysé vCso
btrfs-control ttyprintk ttys21 ttys7 vcsa vga arbiter
full null sg@ ttyse ttys22 ttysSs vcsal vhci
fuse nvram sgl ttys1 ttyS23 ttyso vcsa2z vhost-net
hidrawe port ttysie ttys24 udmabuf wvcsa3 vhost-vsock

hpet PPP snapshot ttysi1 ttys2s uhid vcsad wmci
console psaux ttysiz ttyS26 uinput vcsas wvsock
hwrng ptmx ttysi3 ttys27 urandom vcsaé zero
cpu_dma_latency ttysi4 ttyS28 userio vCsu zfs
random tty515 tty529 wvcs vcsul
kmsg loop-control rfkill ttysSi16 ttys3 wvcsi vcsuz2
kvm ttysi7 ttysS30 wvcs2 vcsu3

Interacting with devices
» Read

* ssize t read(int fd, void *buf, size t count);

 Write

* ssize t write(int fd, const void *buf, size t count);

18

Arbitrary device interactions

e joctl — I/O Control

 int ioctl(int fd, unsigned long request, ...);

« Request number followed by an arbitrary list of arguments
* “request” may be broken in fields: command, size, direction, etc.

« Catch-all for device operations that don't fit into file I/O model
« Combine magic numbers to form some special action
 Reset device, Start action, Change setting, etc.

19

Asynchronous I/O operations

* Previous examples were all synchronous I/0O calls
« Read/Write will block process until complete
« Easy to use, but not always most efficient method

« Asynchronous I/O calls also exist
« POSIX AIO library
* ai0_read/aio_write — enqueue read/write request
« ai0_error — check status of an I/O request
* aio_return — get result of a completed I/O request

20

Synchronous blocking read example

Process Kernel

Context Switch

Driver sets up
request

Block Process

Driver handles
response

Unblock Process

Continue
Process Context Switch

DMA Request

Interrupt

Device

DMA Read

21

Asynchronous read example

Process Kernel

Context Switch

aio_read

Driver sets up
request

Do other
work

Driver handles
aio_error response
aio_return

Continue
Process Context Switch

DMA Request

Interrupt

Device

DMA Read

22

Asynchronous read example with early request

Process Kernel Device

Context Switch

aio_read

Driver sets up
request DMA Request

Do other
work

aio_error

DMA Read

Not Ready
Do other

work Driver handles

aio_error response Interrupt
aio_return

Continue
Process Context Switch

Outline

» Abstractions

- Device I/0 layers
 Application Layer
- Kernel I/0 Subsystem
 Device Driver
 Interrupt Handler

« Example Driver: Temperature Sensor

Where we are at in the system

Processes
=l Linux kemel SCI (System Cz | Interface) e
Memory Process
1/0 subsystem management management
subsystem subsystem
é Linux kernel ¢)
Virtual File System Virtual Signal
memory handling
Paging process/thread
page creation &
replacement termination
P Linux kernel
ag:}e Process
cache Scheduler
b A
k_ Y,

User Applications
I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

25

Kernel I/O subsystem

* The OS kernel does various things for devices that are not specific
to the individual device
« Manages permissions
« Routes call to appropriate driver
« Schedules requests to drivers

device: keyboard

status: idle

device: laser printer request for _‘l‘

status: busy T "|laser printer

address: 38546

device: mouse length: 1372

status: idle

device: disk unit 1

status: idle

::;i::::glﬁk A —— request for —t— request for __—I-_

- Dusy disk unit 2 disk unit 2

file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

26

Kernel needs to handle process memory

» Buffering
« Kernel may need to hold on to a copy of data
 Especially in asynchronous case

« When copies are done and how many times is a big kernel efficiency
question

 Address translation
« All the data user processes give to the kernel comes with virtual addresses
* Pointers are either going to have to be translated
« Or memory is going to need to be copied

27

Outline

» Abstractions

- Device I/0 layers
 Application Layer
« Kernel I/O Subsystem
- Device Driver
« Interrupt Handler

« Example Driver: Temperature Sensor

Where we are at in the system

Processes
~— Linux kemel SCI (System Call Interface) e
Memory Process
1/0 subsystem management management
subsystem subsystem
é Linux kernel) ¢)
Virtual File System Virtual Signal
_ memory handling
Paging process/thread
page creation &
replacement termination
P Linux kernel
aghe Process
cache Scheduler
A
_ J

User Applications

I/O Subsystem
Device Drivers
Interrupt Handler

Hardware

29

Device drivers

» Device-specific code for communicating with device
« Supports some interfaces above and below

* Possibly file syscalls above and memory-mapped 1I/O below

* Possibly internal API above and below..

« Examples
» Specific disk drivers are
layered on top of SATA driver
« Keyboard driver is layered
on top of USB driver

* Ethernet driver has various
network interfaces layered
above it

Rest of the

operating
system

A Y

| Device

driver

Device
driver

Device
driver

Drivers

Interrupt Handling

Device
controller

Device
controller

Device
controller

"r'
Operating System

Device

Device

Device

/\

Device

Hardware

Example: possible driver layers for an SD card

Various filesystems

Block device interface

Generic SD Card Driver

microSDHC UHS-I Driver

Generic SPI Interface Driver

Intel SPI Controller Driver

Memory-Mapped I/O

31

Device I/O is handled by device drivers

« Communication is up to the hardware
 Port-mapped I/O or memory-mapped I/O
 Or function calls to a lower-level driver

» Interaction design is up to the driver (and OS)
* Programed I/O
 Synchronous or with interrupts
 Direct Memory Access
« Needs hardware support
« With interrupts

32

Device drivers are often designed with two “halves”

 Top half
« Implements interface that higher layers require
 Performs logic to start device requests
« Wait for I/O to be completed
« Synchronously (blocking) or asynchronously (return to kernel)
« Handle responses from the device when complete

 Bottom half
* Interrupt handler
 Continues next transaction
 Or signals for top half to continue (often with shared variable)

33

Virtualizing one device for many users

 Some devices need to be virtualized

 Software that emulates unique devices for each higher level user even
though only a single hardware resource actually exists

Process 1 Process 2

Kernel

Virtualized Disk

34

Life cycle of an
I/O request

User
Program

Kernel I/O
Subsystem

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

user [/C completed,
request /O process input data available, or
output completed
system call

return from system call

kernel

/O subsystem transfer data

{if appropriate) to process,
yes return completion
or error code

can already
satisfy request?

send request to device
driver, block process if
appropriate

kernel
I/Q subsystem

process request, issue

commands to controller, davice
configure controller to driver
block until interrupted

determine which /O
completed, indicate state

change to /O subsystem

receive interrupt, store

interrupt data in device-driver buffer

device-controller commands handler

if input, signal to unblock
device driver

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllinten’umlllllll

davice
monitor device, controller
interrupt when 1/Q e CC;"‘PTIEU, t
completed generate interrp
time

35

Outline

» Abstractions

 Device I/0 layers
 Application Layer
« Kernel I/O Subsystem
 Device Driver
 Interrupt Handler

- Example Driver: Temperature Sensor

Si7021 temperature and humidity sensor

 Popular on embedded devices
» Also has a Linux driver!

\dd

» Connects to computer over I2C bus Si7021 5
- Two-wire, 100 Kbps low-power bus r125v} || 1 cabraton |
. Humidity | | | [I mory
- Like any other bus sensor [7| ~TT7" [**] o
« Takes an address - ADC
. . . emp .
. Whether it's a read or write transaction Sensor [f .
« And an amount of data Fe Intertace :gsa
o

« https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf

37

https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf

How do we make it do anything?

« Typically with I°C devices, you write a 1-2 byte command
» Then you read the data in the next transaction
- Commands are found in the datasheet

Table 11. I?C Command Table

Command Description Command Code

Measure Relative Humidity, Hold Master Mode OxE5

Measure Temperature, No Hold Master Mode 0xF3
Read Temperature Value from Previous RH Measurement OxED
Reset 0xFE
Write RH/T User Register 1 OxE6
Read RHIT User Register 1 OxET
Write Heater Control Register 0x51
Read Heater Confrol Register 0x11
Read Electronic ID 1st Byte OxFA 0x0F
Read Electronic ID 2nd Byte OxFC 0xC9

Read Firmware Revision O0xB84 0xB8

What will the driver look like?

« Layer below it will be I2C controller (function calls)

* In the driver we need to
« See what the request from the layer above is
 Perform an I2C write transaction with a command byte (OxE3)
« Wait until data is ready
 Perform an I2C read transaction to get the data
 Translate the data into meaningful units

175.72*Temp_Code = ae

T ture (°C)
emperature | GEEAE

39

What are the driver layers going to be?

 In Linux, some sensors are connected through the Industrial I/O
subsystem (IIO)
« Handles sensor data specifically
» Get raw sample
 Get scaling value
 Get offset value

Character Device
ITO Core

Si7021
 Lower layers could change and
everything would still work Generic 12C Interface

« USB->I2C converter for example
Computer-Specific I2C Driver

Memory-Mapped I/O

Demo: Linux device driver code for Si7021

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si
7020.C

If you want to explore Linux code, a better link is:
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si70
20.c
 Creates linked databases for function calls and variable types
» Lists where it is defined
« Lists where it is used
« Makes it easy to hop up and down layers

41

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si7020.c
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si7020.c

OSes can make design choices about drivers

 Interface does not have to be like a file
« For example: could have a set of unique syscalls for each device

« Asynchronous model could be enforced
« Must register callback handlers with lower layer to get response

« Tock embedded operating system does both of these
» https://www.tockos.org/

42

https://www.tockos.org/

Demo: Tock device driver code for Si7021

https://qithub.com/tock/tock/blob/master/capsules/src/si7021.rs

43

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs

Outline

» Abstractions

 Device I/0 layers
 Application Layer
« Kernel I/O Subsystem
 Device Driver
 Interrupt Handler

« Example Driver: Temperature Sensor

