
Lecture 15:
Device Drivers

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162



Today’s Goals

• Explore how software for device I/O is architected.

• Discuss OS considerations at multiple software layers.

• Investigate an example device driver.

2



3

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline



Writing software to manage devices

• Kernel software for managing a device is a device driver
• 70% of Linux code is device drivers

• 15.3 Million lines of source code

• Big challenge for device drivers
• How do we enable interactions with so many varied devices?

• Need abstractions to allow software to interact with them easily

• Need mechanisms to reuse a lot of code for commonalities

4



General software abstractions

• When building large 
software projects, we like 
to define layers of code
• Makes it clear what is 

handled where

• Enables swapping out 
implementations when 
desired

5



Linux Kernel Layering

6



Linux Kernel Layering

7



Linux Kernel Layering

8



Linux Kernel Layering

9



Linux Kernel Layering

10



Abstraction: everything is a file!

• Hardware: treat devices like memory
• They can be read and written at addresses

• Software: treat devices like files
• They can be read and written

• They may be created or destroyed (plugged/unplugged)

• They can be created in hierarchies. Example:

• SATA devices
• SSD

• USB devices
• Webcam

• Microphone

11



Linux device classes

• Character devices
• Accessed as a stream of bytes (like a file)
• Example: Webcam, Keyboard, Headphones
• We will focus on these

• Block devices
• Accessed in blocks of data (like a disk)
• Can hold entire filesystems
• Example: Disks, Flash drives

• Network interfaces
• See CS340 (Computer Networking)
• Accessed through transfer of data packets

12



System layers when interacting with devices

• User applications
• Do useful things

• I/O subsystem
• Receive syscalls, route to device drivers

• Device drivers
• Translate application requests into device interactions

• Interrupt Handler
• Receive events from hardware

• Hardware
• Do useful things

13

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware



14

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline



Where we are at in the system

15

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Processes



Communication with devices

• Interactions occur through system calls
• Open/Close

• Read/Write

• Seek, Flush

• Ioctl

• And various others

16



Accessing devices

• Open/Close
• Inform device that something is using it (or not)

• Argument is path to device (like path to file)

• Get a file descriptor that the other operations act on

• “/dev” directory is populated with devices

17



Interacting with devices

• Read
• ssize_t read(int fd, void *buf, size_t count);

• Write
• ssize_t write(int fd, const void *buf, size_t count);

18



Arbitrary device interactions

• ioctl – I/O Control
• int ioctl(int fd, unsigned long request, ...);

• Request number followed by an arbitrary list of arguments
• “request” may be broken in fields: command, size, direction, etc.

• Catch-all for device operations that don’t fit into file I/O model
• Combine magic numbers to form some special action

• Reset device, Start action, Change setting, etc.

19



Asynchronous I/O operations

• Previous examples were all synchronous I/O calls
• Read/Write will block process until complete

• Easy to use, but not always most efficient method

• Asynchronous I/O calls also exist
• POSIX AIO library

• aio_read/aio_write – enqueue read/write request

• aio_error – check status of an I/O request

• aio_return – get result of a completed I/O request

20



Synchronous blocking read example

21

Read

Continue 
Process

Driver sets up 
request

Block Process

Driver handles 
response

Unblock Process

DMA Read

Process Kernel Device

Context Switch

Context Switch

DMA Request

Interrupt



Asynchronous read example

22

aio_read

Driver sets up 
request

Do other 
work

Driver handles 
response

DMA Read

Process Kernel Device

Context Switch

DMA Request

Interruptaio_error
aio_return

Continue 
Process

Ready

Context Switch



Asynchronous read example with early request

23

aio_read

aio_error

Driver sets up 
request

Do other 
work

Driver handles 
response

DMA Read

Process Kernel Device

Context Switch

DMA Request

Interruptaio_error
aio_return

Do other 
work

Continue 
Process

Not Ready

Ready

Context Switch



24

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline



Where we are at in the system

25

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Processes



Kernel I/O subsystem

• The OS kernel does various things for devices that are not specific 
to the individual device
• Manages permissions

• Routes call to appropriate driver

• Schedules requests to drivers

26



Kernel needs to handle process memory

• Buffering
• Kernel may need to hold on to a copy of data

• Especially in asynchronous case

• When copies are done and how many times is a big kernel efficiency 
question

• Address translation
• All the data user processes give to the kernel comes with virtual addresses

• Pointers are either going to have to be translated

• Or memory is going to need to be copied

27



28

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline



Where we are at in the system

29

User Applications

I/O Subsystem

Device Drivers

Interrupt Handler

Hardware

Processes



Device drivers

• Device-specific code for communicating with device
• Supports some interfaces above and below

• Possibly file syscalls above and memory-mapped I/O below
• Possibly internal API above and below..

• Examples
• Specific disk drivers are

layered on top of SATA driver
• Keyboard driver is layered

on top of USB driver
• Ethernet driver has various

network interfaces layered
above it

30



Example: possible driver layers for an SD card

31

Block device interface

Various filesystems

Generic SD Card Driver

microSDHC UHS-I Driver

Generic SPI Interface Driver

Intel SPI Controller Driver

Memory-Mapped I/O



Device I/O is handled by device drivers 

• Communication is up to the hardware
• Port-mapped I/O or memory-mapped I/O

• Or function calls to a lower-level driver

• Interaction design is up to the driver (and OS)
• Programed I/O

• Synchronous or with interrupts

• Direct Memory Access

• Needs hardware support

• With interrupts

32



Device drivers are often designed with two “halves”

• Top half
• Implements interface that higher layers require

• Performs logic to start device requests

• Wait for I/O to be completed

• Synchronously (blocking) or asynchronously (return to kernel)

• Handle responses from the device when complete

• Bottom half
• Interrupt handler

• Continues next transaction

• Or signals for top half to continue (often with shared variable)

33



Virtualizing one device for many users

• Some devices need to be virtualized
• Software that emulates unique devices for each higher level user even 

though only a single hardware resource actually exists

34

Process 1 Process 2

Kernel

Disk Driver

Virtualized Disk



Life cycle of an 
I/O request

35

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program



36

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline



Si7021 temperature and humidity sensor

• Popular on embedded devices
• Also has a Linux driver!

• Connects to computer over I2C bus
• Two-wire, 100 Kbps low-power bus

• Like any other bus

• Takes an address

• Whether it’s a read or write transaction

• And an amount of data

• https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf

37

https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf


How do we make it do anything?

• Typically with I2C devices, you write a 1-2 byte command
• Then you read the data in the next transaction

• Commands are found in the datasheet

38



What will the driver look like?

• Layer below it will be I2C controller (function calls)

• In the driver we need to
• See what the request from the layer above is

• Perform an I2C write transaction with a command byte (0xE3)

• Wait until data is ready

• Perform an I2C read transaction to get the data

• Translate the data into meaningful units

39



What are the driver layers going to be?

• In Linux, some sensors are connected through the Industrial I/O 
subsystem (IIO)
• Handles sensor data specifically

• Get raw sample

• Get scaling value

• Get offset value

• Lower layers could change and
everything would still work
• USB->I2C converter for example

40

Character Device

IIO Core

Si7021

Generic I2C Interface

Computer-Specific I2C Driver

Memory-Mapped I/O



Demo: Linux device driver code for Si7021

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si
7020.c

If you want to explore Linux code, a better link is:
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si70
20.c

• Creates linked databases for function calls and variable types

• Lists where it is defined

• Lists where it is used

• Makes it easy to hop up and down layers

41

https://github.com/torvalds/linux/blob/master/drivers/iio/humidity/si7020.c
https://elixir.bootlin.com/linux/latest/source/drivers/iio/humidity/si7020.c


OSes can make design choices about drivers

• Interface does not have to be like a file
• For example: could have a set of unique syscalls for each device

• Asynchronous model could be enforced
• Must register callback handlers with lower layer to get response

• Tock embedded operating system does both of these
• https://www.tockos.org/

42

https://www.tockos.org/


Demo: Tock device driver code for Si7021

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs

43

https://github.com/tock/tock/blob/master/capsules/src/si7021.rs


44

• Abstractions

• Device I/O layers
• Application Layer

• Kernel I/O Subsystem

• Device Driver

• Interrupt Handler

• Example Driver: Temperature Sensor

Outline


