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Today’s Goals

• Insight into how virtual memory is used and what it looks like in 
today’s systems.

• Review of the memory hierarchy and how the OS interacts with 
each level.

• Introduce swapping as a mechanism for enabling more virtual 
memory than physical memory.

• Explore several page replacement policies that control swapping.
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OS management of processes with paging

• When loading a process
• OS places actual memory into physical pages in RAM

• OS creates page table for the process

• OS decides access permissions to different pages

• OS connects to shared libraries already in RAM

• When a context switch occurs
• OS changes which page table is in use (%CR3 register in x86)

• When a fault occurs
• OS decides how to handle it. (Invalid access or missing page?)
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Page faults enable lazy allocation and lazy loading

• Paging is not just translation and overflow
• Paging provides an opportunity to be lazy about loading requested data
• This is an important performance optimization, reducing program start 

time

• If a process requests a huge chunk of memory, maybe it will not 
use all that memory immediately (or ever!).
• Programmers and compilers are sometimes greedy in their requests
• We can virtually allocate memory, but mark most of the pages “not 

present”
• Let the CPU raise an exception when the memory is really used
• Then really allocate the demanded page

• Lazy allocation minimizes latency of fulfilling the request and it 
prevents OS from allocating memory that will not be used.
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Lazy loading in practice

• Lazy loading also works for large code binaries
• Delay loading a page of instructions until it’s needed

• OS must also write zeros to newly assigned physical frames
• Program does not necessarily expect the new memory to contain zeros,

• But we clear the memory for security, so that other process’ data is not 
leaked.

• OS can keep one read-only physical page filled with zeros and just give a 
reference to this at first.

• After the first page fault (due to writing a read-only page), allocate a 
real page.
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Lazy allocation via copy-on-write with Fork

• Recall that fork + exec is the only way to create a child process 
in unix

• Fork clones the entire process, including all virtual memory
• This can be very slow and inefficient, especially if the memory will just be 

overwritten by a call to exec.

• Copy on write is a performance optimization:
• Don’t copy the parent’s pages, share them

• Make the child process’ page table point to the parent’s physical pages
• Mark all the pages as “read only” in the PTEs (temporarily)

• If parent or child writes to a shared page, a page fault exception will occur
• OS handles the page fault by:

• Copying parent’s page to the child & marking both copies as writeable
• When the faulting process is resumed, it retries the memory write.
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Virtual memory in practice

• On Linux, the pmap command shows a process’ VM mapping.

• We see:
• OS tracks which file code is loaded from, so it can be lazily loaded

• The main process binary and libraries are lazy loaded, not fully in 
memory

• Libraries have read-only sections that can be shared with other processes

• cat /proc/<pid>/smaps shows even more detail

References:

• https://unix.stackexchange.com/a/116332

• https://www.akkadia.org/drepper/dsohowto.pdf
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pmap on emacs

• “Mapping” shows source of the 
section, more code can be loaded from 
here later.
• “anon” are regular program data,

requested by sbrk or mmap.
(In other words, heap data.)

• Each library has several sections:
• “r-x--” for code can be shared
• “r----” for constants
• “rw---” for global data
• “-----” for guard pages:

(not mapped to anything, just reserved 
to generate page faults)

• RSS means resident in physical mem.

• Dirty pages have been written and 
therefore cannot be shared with others

… … …
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top has a column showing shared memory

• The duplicate processes are 
using a lot of shared 
memory:
• ~50% of resident memory for 

httpd is shared
~75% of resident memory for 
sshd is shared

• Even if there is just one 
instance of emacs running, it 
may share many libraries 
with other running programs.

• Total virtual memory is ~10x 
larger than resident memory
• Processes only use a small 

fraction of their VM!
• Due to sharing and lazy 

loading.
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To see VM info on Linux

• cat /proc/meminfo

• vmstat

• top
• (resident)



Requesting memory from the OS – brk()

• System call to change data segment size (the program “break”)
• Either set a new virtual address pointer for top of data segment

• Or increment the size of the data segment by N bytes

• These are the old system calls to dynamically change program 
memory
• How malloc creates space

• “sbrk() and brk() are considered legacy even by 1997 standards”
• Removed from POSIX in 2001

• Still exists in some form in lots of OSes (including Nautilus)
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Modern requesting memory from the OS – mmap()

• Map (or unmap) files or devices into memory

• Given a file, places the file in the process’s virtual address space
• Process can request an address to place it at, which OS might follow

• Given flag MAP_ANONYMOUS, creates empty memory
• Initialized to zero and accessible from process
• Malloc implementation uses this

• Many other options
• Create huge page, create memory for a stack, shared memory
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Memory Hierarchy
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The OS view on registers

• Illusion: separate set for each process

• Reality: separate set for each core (or each thread in a core)

• OS needs to save and update registers whenever the currently 
running process changes

• Process and hardware handle moving memory into registers
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The OS view on caches

• Mostly ignore them, handled by the hardware automatically
• Occasionally might need to clear them for security purposes

• Addresses in the caches are either entirely physical addresses

• Or are virtually indexed, physically tagged
• Cache lookup and TLB lookup happen in parallel

• TLB result is used as Tag for cache to determine if there was a hit
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The OS view on memory

• Managed through virtual memory translation
• Paging (or Segmentation) that we talked about last time

• OS chooses which portions of processes go in RAM
• Other portions of memory get “swapped” to disk

• Writeable memory regions (stack, heap, global data) must be preserved

• Read-only memory regions (code) can be reloaded from original location
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The OS view on disk

• Non-volatile memory store
• Everything else on the system disappears when power is removed

(and cannot be trusted across reboots)

• Backing store for lots of information
• Boot information: via “Master Boot Record” on disk
• Filesystem, which the OS manages access to through system calls
• Swap space, which the OS moves extra pages in and out of

• Disk is significantly bigger than RAM, so this will work

• Disk is a device that the OS manages and reads in “blocks”
• Compare to memory, which is directly addressed by processes
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Traditional hard disk drives (HDDs) use magnetic regions
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Solid state drives (SSDs) use flash memory

• Still non-volatile

• Significantly faster
• 0.1 ms to access

(10 ms for disk)

• More limited lifetime 
than disk
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between gate and source/drain which “traps” 
electrons. The presence/absence is a 1 or 0



22

• Paging in modern OS

• Memory Hierarchy

• Swapping
• Page Replacement Policies

Outline



Motivation for swapping

• Processes should be independent of the amount of physical 
memory
• Should be correct, even if not performant

• OS goal: support processes when not enough physical memory
• Multiple processes combining to more than physical memory

• Single process with very large address space

• Video games: Red Dead Redemption 2 – 150 GB

• Large-scale data processing: Compiling Android – 16 GB

• OS provides illusion of more physical memory by using disk
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Locality of reference

• If disk is involved with memory, won’t this be ridiculously slow?

• Leverage locality of reference within process
• Spatial: memory addresses near referenced address likely to be next
• Temporal: referenced addresses likely to be referenced again
• Processes spend majority of time in a small portion of code

• Estimate: 90% of time spent in 10% of code (loops)

• Implication
• Process only uses small amount of address space at any moment
• Only small amount of address space needs to be in physical memory
• RAM acts as a sort of cache for program memory
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How swapping works

• OS moves unreferenced pages to disk

• Processes can still run when not all pages are in physical memory

• OS and hardware cooperate to make memory available when 
needed
• Same behavior as if all of address space always was in memory
• Except in terms of time, but processes don’t know about time…

• Requirements
• OS needs mechanism to identify location of address space pages on disk

and move them into RAM when necessary
• OS needs policy to determine which pages go in RAM or disk
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Combination of swapping and paging

• Processes have memory pages, which are distributed among RAM
and Disk

• Example:
• Processes 0, 1, and 2 are partially in RAM

• Process 3 is entirely in “swap space” on disk
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Paging on Windows

• Windows lets you see and even set 
the size of swap space on disk
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Mechanisms to support swapping

• Each page in virtual address space lives in a location
1. Physical memory
2. Disk
3. Nowhere

• Extend page tables with an extra bit – present
• Physical Page Number, Permissions, Valid, Present

• Page in memory, valid and present
• Page on disk, valid but not present

• Page Table Entry points to block on disk instead!
• Trap to OS on reference

• Invalid page, not valid not present and bad permissions
• Trap to OS on reference
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Extraneous bits in page table entry

• Page Base Address 
can be reused to hold 
disk block

• Dirty bit
• Whether page has 

been modified

• If page needs to be 
swapped out, only 
preserve if modified

29



Steps to a memory access with swapping

1. Hardware checks TLB for virtual address
• If Hit, address translation complete AND page in physical memory

2. Hardware (or OS) walks page tables
• If valid and present, then page in physical memory

3. Trap into OS
• If invalid or bad permissions, fault process (segmentation fault)
• If valid but not present

• If memory is full, select a victim page in memory to replace
• If modified (dirty), write to disk

• Invalidate TLB entry for that page

• OS reads referenced page from disk into memory
• Page table is updated, present bit is set
• Resume process execution (could be really complicated on CISC machines)
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Types of page faults

• Minor/soft: Page is loaded in memory, but PTE is not configured:
• Memory could be a shared library already in memory from another process.
• OS could be tracking accesses to this page. (hardware without a dirty bit)
Response: update the PTE.

• Major/hard: A disk access will be needed:
• Anonymous page (process data) may have been swapped out.
• Lazy-loading program executable.
Response: load the page from disk

• Invalid: User program misbehaved:
• Dereference null or invalid pointer.
• Write to page that is read-only.
• Execute code on a page that is not executable (for security).
Response: terminate the process.
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Policies to determine swapping evictions

• Goal: minimize the number of page faults
• Page faults need to read/write from disk and are very slow

• So the OS can take plenty of time to make a good decision

• OS has two decisions
1. Page Selection

• When should a page be brought into memory?

2. Page Replacement

• When should a page be swapped into disk?

• Which page should be swapped out of physical memory?
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When do we load in pages? (page selection)

• Demand paging: Load page only when page fault occurs
• Intuition: Wait until page must absolutely be in memory 
• When process starts: No pages are loaded in memory 
• Problems: Pay cost of page fault for every newly accessed page

• Pre-paging (prefetching): Load page before referenced
• OS predicts future accesses and brings pages into memory early
• Works well for some access patterns (e.g., sequential)

• Hints: Combine above with user-supplied hints about page references
• User specifies: may need page in future, don’t need this page anymore, or 

sequential access pattern, ...
• Example: madvise() in POSIX – “give advice about use of memory”
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When do we swap out pages? (page replacement)

• Demand swapping: whenever the page fault actually occurs
• Simplest method

• Swap actually occurs asynchronously

• Start the disk I/O and block the process that faulted

• Background swapping: preemptively when RAM is getting full
• Background service in kernel periodically runs (kswapd)

• If number of free physical pages < “low water mark”, evict a bunch

• Writing many pages to disk in one operation is way more efficient
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Thrashing

• Thrashing: when swapping happens frequently
• Policy could be bad (working set keeps getting swapped to disk)

• More likely RAM is too small

• Frequent swapping slows down the whole computer to a crawl
• Constantly waiting on disk I/O

• Solution for thrashing
• Kill processes until it stops (relieves memory pressure)

• Install more RAM in the computer
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Which page should be evicted?

• Page replacement policy determines page to evict

• Very similar process as cache eviction or TLB eviction
• Misses are expensive, so make sure you evict the right page

• Page faults are extremely long, so a sophisticated policy is possible
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Optimal page replacement policy

• Optimal page replacement
• Evict page that will be accessed furthest in the future

• Advantages
• Guaranteed to minimize the number of page faults

• Disadvantages
• Requires the OS to predict the future and therefore cannot exist

• Performance upper bound
• This is the best anything can do, so it is useful to compare against
• Still has misses due to cold-start and capacity
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First-In-First-Out replacement policy

• FIFO replacement
• Evict page that has been in memory the longest

• Advantages
• Fair as all pages have equal residency

• Easy to implement

• Disadvantages
• Some pages of memory are always needed (stack)

• Memory doesn’t really need “fairness” like processes did
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Least Recently Used replacement policy

• LRU replacement
• Replace page not accessed for longest time

• Using the past to predict the future (temporal locality)

• Advantages
• With locality, LRU approximates Optimal

• Disadvantages
• Harder to implement as we need to track when pages are accessed

• Cyclical patterns can make LRU fail (bigger concern for cache than RAM)
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Check your understanding – simple replacement policies
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Check your understanding – simple replacement policies
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Check your understanding – simple replacement policies

43

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

D D Miss

D D Hit

B D B Miss

B D B Hit

A D B A Miss

C

B

D

B

D

time

Optimal FIFO LRU
Page 
Requested



Check your understanding – simple replacement policies
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Check your understanding – simple replacement policies
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Check your understanding – simple replacement policies
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Check your understanding – simple replacement policies
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Implementing LRU

• Implementing perfect LRU is difficult in practice

• Software perfect LRU
• OS maintains an ordered list of physical pages by reference time

• When page is referenced: move to end of list
• When swap is needed: evict front of list

• Tradeoff: slow on memory reference, fast on replacement (unacceptable)

• Hardware perfect LRU
• Associate a timestamp with each physical page

• When page is referenced: hardware updates timestamp for page
• When swap is needed: OS searches through all pages for oldest

• Tradeoff: fast on memory reference, extremely slow on replacement and needs 
special hardware
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Clock algorithm

• LRU approximates Optimal anyways, so approximate a little more
• Goal: find an old page, not necessarily the oldest page

• Clock algorithm
• One “accessed” bit added to each page

• When page is referenced: accessed bit is set to one (hardware)

• When swap is needed:
• Cycle through pages looking for one with accessed bit zero

• Update accessed bit to zero after checking a page

• Continue from where you left off when next swap is needed

• Essentially looks for page that hasn’t been referenced this “cycle”
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Clock algorithm example

A, 0

B, 0

C, 0

D, 0

E, 0

F, 0
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• Initial setup
• 6 pages total fit in memory

• Accessed starts as zero

• “clock hand” points at first page

(Page Name, Accessed Bit)



Clock algorithm example

A, 1

B, 1

C, 0

D, 0

E, 1

F, 0
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• After running a little while
• Pages A, B, E are accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 1

B, 1

C, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 1

C, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

C, 0

D, 0

E, 1

F, 0

54

• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

• C has not been recently
accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 0

D, 0

E, 1

F, 0
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• OS needs to swap pages
• Algorithm starts

• A is recently accessed

• B is recently accessed

• C has not been recently 
accessed
• So swap it

• And advance hand once more

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 1

E, 1

F, 1
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• Programs continue running for 
a while
• Pages G, D, F are accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 1

E, 1

F, 1
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 1

F, 1
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 1
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

• A gets swapped!

(Page Name, Accessed Bit)



Clock algorithm example

A, 0

B, 0

G, 1

D, 0

E, 0

F, 0
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• OS needs to swap again
• Algorithm begins again

• But with hand starting 
somewhere new

• D recently accessed

• E recently accessed

• F recently accessed

• A gets swapped
• Was A or B the actual LRU?

• Probably doesn’t matter

(Page Name, Accessed Bit)



Clock algorithm is actually used in real computers

• Modern OSes use some variation on Clock Algorithm

• x86 hardware supports an accessed bit in page table entries

• Clock algorithm can be built without hardware support
• Mark all pages as valid but not present initially (soft page fault)

• On OS fault, update accessed bit for page, mark as present

• Only fault on first access per clock-hand-cycle

• Reset page to not present whenever accessed is reset to zero
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Improving clock algorithm access notion

• Add multiple “accessed” bits to create accessed counter
• Increment or decrement bits on use or clock-hand-pass respectively

• Only remove pages with 0 accessed (or less than some minimum)

• Combine with timestamp notion to ensure page is “old” (WSClock)
• Keep a timestamp in addition to accessed bit

• Only remove pages with 0 accessed and older than some amount

• Still not necessarily oldest, but definitely old
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Improving clock algorithm evictions

• Keep track of number of times a page re-enters memory (Clock-PRO)
• Give eviction preference to pages that haven’t been brought back a bunch

• Bringing it back implies it was important, even if it was old

• Keep track of which pages are dirty
• Give eviction preference to clean pages (also to read-only pages)

• Means no write to disk is necessary!

• Evict several pages at once each time it is required
• Find first N with accessed bit of zero

• Takes advantage of disk I/O properties
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