
Lecture 06:
Concurrency Wrapup

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), Harsha Madhyastha (Michigan), Shivaram Venkataraman (Wisconsin), and UC Berkeley CS162

Today’s Goals

• Common synchronization bugs
• Deadlock

• Livelock

• Methods to avoid, prevent, and recover in the presence of
deadlock

• Touch on what concurrency looks like in other languages

2

3

• Synchronization bugs

• Deadlock

• Livelock

• Other languages

Outline

Common synchronization bugs

• Atomicity violation
• Critical section is violated (due to missing lock)

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry

4

Atomicity violation

• It’s relatively easy to find and protect critical sections,

• But often we forget to add locks around other uses of the shared
data.

• Obvious critical section is here:
• Two threads should not enter this at once

• But, we also have to make sure that file
is not modified elsewhere.

• Even if this one-line close is atomic we
have to make sure it doesn’t run during
the above critical section.

Main Thread

lock(lck);

if (file == NULL) {

file = open("~/myfile.txt");

}

write(file, "hello file");

unlock(lck);

…

Some Other Thread

close(file); // whoops!!

Order violation

• Code often requires a certain ordering of operations, especially:
• Objects must be initialized before they’re used

• Objects cannot be freed while they are still in use

Parent

file = open("file.dat");

thread_create(child_fcn);

// do some work

…

close(file);

Child Thread

child_fcn() {

write(file, "hello");

}

Close must happen after
write, but code does not
enforce this ordering.

Why is this difficult?

• It seems like we can just add lots of locks and CVs to be safe,
right?
• Wrong! Too many locks can cause deadlock – indefinite waiting.

• How about just one big lock?
• (+) Cannot deadlock with one lock.

• (–) However, this would limit concurrency

• If every task requires the same lock, then unrelated tasks cannot
proceed in parallel.

• Concurrent code is always difficult to write 
• although somewhat easier with some higher-level languages

Locking granularity

• Coarse grained lock:
• Use one (or a few) locks to protect all (or large chunks of) shared state

• Linux kernel < version 2.6.39 used one “Big Kernel Lock”

• Essentially only one thread (CPU core) could run kernel code

• It’s simple but there is much contention for this lock, and concurrency is
limited

• Fine grained locks:
• Use many locks, each protecting small chunks of related shared state

• Leads to more concurrency and better performance

• However, there is greater risk of deadlock

9

• Synchronization bugs

• Deadlock

• Livelock

• Other languages

Outline

10

Deadlock

• A concurrency bug arising when:
• Two threads are each waiting for the other to release a resource.

• While waiting, the threads cannot possibly release the resource already
held.

• So the two threads wait forever.

• Can arise when multiple shared resources are used.
• For example, acquiring two or more locks.

Deadlock versus starvation

• Each segment of road can be viewed as a resource
• Car must own the segment under them
• Must acquire segment that they are moving into

• Deadlock: Two cars in opposite directions meet in middle

• Starvation (not deadlock): Eastbound traffic doesn’t stop for
westbound traffic

12

Simple example: four-way stop

• Traffic rules state that you must yield to the car on your right if you
reach the intersection simultaneously.

• This rule usually works well.

• But there’s a problem if
four cars arrive simultaneously.

Circular
waiting!

Dining philosophers

• A theoretical example of deadlock

• There are N philosophers sitting in a circle and N chopsticks
• left and right of each philosopher

• Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat
5. Replace chopsticks

• If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

• A solution: one philosopher must grab right before left

Deadlock with locks

• This is a Nondeterministic Deadlock
• Whether it occurs depends on scheduling

15

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

No deadlock in the lucky case

16

Thread A
x.Acquire();
y.Acquire();

…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Thread B waits until
Thread A is finished

But deadlock can still occur

17

Thread A
x.Acquire();

y.Acquire();

…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();

…
x.Release();
y.Release();

Thread A waits until
y is available

Thread B waits until
x is available

--Unreachable--

Deadlocks involve circular dependencies

18

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock can occur on any shared resource

• Example deadlock if the system only has 2 MB of memory

• Could deadlock on access to hardware as well

19

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Interrupts can cause deadlocks too

• Thread cannot continue until the interrupt is finished

• Interrupt cannot finish until the thread continues

20

Thread A
acquire()

…

release()

Interrupt Handler
acquire() Deadlock

Check your understanding

void List_Insert(list_t *L, int key) {
pthread_mutex_lock(&L->lock);
node_t *new = malloc(sizeof(node_t));
if (new == NULL) {
perror("malloc");
pthread_mutex_unlock(&L->lock);
return; // fail

}
new->key = key;
new->next = L->head;
L->head = new;
pthread_mutex_unlock(&L->lock);
return; // success

}

21

Is it safe to call
List_Insert from an
interrupt? If the List is
also shared with threads?

Check your understanding

void List_Insert(list_t *L, int key) {
pthread_mutex_lock(&L->lock);
node_t *new = malloc(sizeof(node_t));
if (new == NULL) {
perror("malloc");
pthread_mutex_unlock(&L->lock);
return; // fail

}
new->key = key;
new->next = L->head;
L->head = new;
pthread_mutex_unlock(&L->lock);
return; // success

}

22

Not safe!

If another thread has
acquired the mutex,
there will be a deadlock

Reentrant library functions

• Functions that can safely and successfully be called again while
currently in the middle of its execution are called “reentrant”
• Reentrant functions must only modify local variables and input

• Malloc is thread-safe because it uses locks around shared memory
• Malloc is not reentrant and furthermore it will deadlock

• Same goes for printf…

• Must not be called in an interrupt or signal handler

23

How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

24

Deadlock avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in an unsafe state that could lead to deadlock
• If not, grant the resource

• If so, wait until other threads release resources

25

Thread A
x.Acquire();

y.Acquire();
…
y.Release();
x.Release();

Thread B

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Must stop acquire
here to prevent
unsafe state

Banker’s Algorithm for avoiding deadlock

• Each thread states maximum resource needs in advance

• OS allows a particular thread to claim a resource if
• (available resources - requested)  maximum remaining that might be

needed by any thread

• For Dining Philosophers, a request for a chopstick is allowed if:
1. Not the last chopstick

2. Or is the last chopstick but a philosopher will have two afterwards

• See the textbook for more details

26

How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t
prone to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out how
to recover from it

27

Preventing Deadlocks: deadlock requires four conditions

1. Mutual exclusion
• Threads cannot access a critical section simultaneously.
• In other words, we’re using locks so there is the potential for waiting.

2. Hold-and-wait
• Threads do not release locks while waiting for additional locks.

3. No preemption
• Locks are always held until released by the thread.

• E.g., if there is no method to cancel a lock.

4. Circular wait
• Thread is waiting on a thread that is waiting on the original thread.
• This can involve just two threads or a chain of many threads.

Can eliminate deadlock by eliminating one of these conditions

28

1. Do not have mutual exclusion

• Lockfree/waitfree data structures

29

void* mythread(void* arg) {

for (int i=0; i<LOOPS; i++) {

pthread_mutex_lock(&lock);

counter++;

pthread_mutex_unlock(&lock);

}

return NULL;

}

void* mythread(void* arg) {

for (int i=0; i<LOOPS; i++) {

atomic_fetch_and_add(

&counter, 1);

}

return NULL;

}

Lockfree data structures

30

void insert(int val) {

node_t* n =

malloc(sizeof(node_t));

n->val = val;

acquire(&m);

n->next = head;

head = n;

release(&m);

}

void insert(int val) {

node_t* n =

malloc(sizeof(node_t));

n->val = val;

do {

n->next = head;

} while (!cas(&head, n->next, n));

}

atomic_compare_and_swap(destptr, oldval, newval)
• If *destptr == oldval { *destptr = newval, return True }
• Else { return false }

2. Avoid hold and wait with trylock()

• We can avoid deadlock if we release the first lock after noticing
that the second lock is unavailable.

• Trylock() tries to acquire a lock, but returns a failure code instead
of waiting if the lock is taken:

• This code cannot deadlock,
even if another thread does
the same with L2 first, then L1.

• However it can livelock… we’ll come back to this

31

3. No preemption

• The OS could take away the lock from a blocked thread and give it
back before the thread resumes
• This sounds pretty complicated to get right

• Non-lock resources are easier here
• Temporarily take away memory from a thread by swapping it to disk

32

4. Avoiding Circular Wait

• This is the most practical way to avoid deadlock.

• The simplest solution is to always acquire locks in the same order.
• If you hold lock X and are waiting for lock Y,

• Then holder of Y cannot be waiting on you,

• Because they would have already acquired X before acquiring Y.

• However, in practice it can be difficult to know when locks will be
acquired because they can be buried in subroutines.

33

Ordered locking for dining philosophers

• The chopsticks are shared resources, like
locks

• If we require the lower-numbered
chopstick to be grabbed first, this
eliminates circular waiting.
• Philosophers A, B, C grab left then right.

• However philosopher D will grab
right then left.

• If everyone tries to start at once, A & D race to
grab chopstick 0 first, and the winner eats first.

• While one is waiting to grab its first chopstick a
neighbor will be able to grab two chopsticks.

0 1

23

A

B

C

D

Check your understanding

• In what order must Thread B acquire the three locks to avoid
deadlock?

Thread A
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

Thread B
???

Check your understanding

• In what order must Thread B acquire the three locks to avoid
deadlock?
• The same order!! (at least y first, for the two-thread case)

Thread A
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

Thread B
y.Acquire();
x.Acquire();
z.Acquire();
…
z.Release();
x.Release();
y.Release();

How Should a System Deal With Deadlock?

• Three different approaches:

1. Deadlock avoidance: dynamically delay resource requests so
deadlock doesn’t happen

2. Deadlock prevention: write your code in a way that it isn’t prone
to deadlock

3. Deadlock recovery: let deadlock happen, and then figure out
how to recover from it

37

Deadlock Recovery: how to deal with a deadlock?

• Terminate thread, force it to give up resources
• Dining Philosophers Example: Remove a dining philosopher

• In AllocateOrWait example, OS kills a process to free up some memory

• Not always possible—killing a thread holding a lock leaves world
inconsistent

• Roll back actions of deadlocked threads
• Common techniques in databases (transactions)

• Of course, if you restart in exactly the same way, may enter deadlock
again

• Preempt resources without killing off thread
• Temporarily take resources away from a thread

• Doesn’t always fit with semantics of computation

38

Modern OS approach to deadlocks

• Make sure the system isn’t involved in any deadlock
• Hopefully by prevention

• Ignore deadlock in applications (“Ostrich Algorithm”)
• User can just restart them anyways

39

Check your understanding

• Is there a possibility of deadlock?
• If so, how could we fix it?

Thread A
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();
…
usb.Release();
printer.Release();

Thread C
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();

Check your understanding

• Is there a possibility of deadlock? Yes
• If so, how could we fix it? One solution: Global ordering of resources

• Example: usb, then webcams, then printers always in that order

Thread A
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();

Thread B
printer.Acquire();
usb.Acquire();
usb.Acquire();
printer.Acquire();
…
usb.Release();
printer.Release();
printer.Release();
usb.Release();

Thread C
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();

Check your understanding

• Is there a possibility of deadlock? Yes
• If so, how could we fix it? One big lock still works too!

Thread A
lock.acquire();
usb.Acquire();
webcam.Acquire();
…
webcam.Release();
usb.Release();
lock.release();

Thread B
lock.acquire();
printer.Acquire();
usb.Acquire();
…
usb.Release();
printer.Release();
lock.release();

Thread C
lock.acquire();
webcam.Acquire();
printer.Acquire();
…
printer.Release();
webcam.Release();
lock.release();

43

• Synchronization bugs

• Deadlock

• Livelock

• Other languages

Outline

Common synchronization bugs

• Atomicity violation
• Critical section is violated (due to missing lock)

• Order violation
• Something happens sooner (or later) than expected

• Deadlock
• Two threads wait indefinitely on each other

• Livelock (not that common in practice)

• Two threads repeatedly block each other from proceeding and retry

44

Livelock while avoiding deadlock

// thread 1
getLocks12(lock1, lock2) {
lock1.acquire();
while (lock2.locked()) {
// attempt to step aside
// for the other thread
lock1.release();
wait();
lock1.acquire();

}
lock2.acquire();

}

45

// thread 2
getLocks21(lock1, lock2) {
lock2.acquire();
while (lock1.locked()) {
// attempt to step aside
// for the other thread
lock2.release();
wait();
lock2.acquire();

}
lock1.acquire();

}

Avoiding hold and wait could lead to livelock

• Avoiding hold and wait can livelock
• Two threads could get stuck in this loop forever

• Unlikely to occur for any length in personal computing setting

46

Livelock in agents

• Livelock is more common in agent-based programs
• All of agent’s options lead to a lack of forward progress

• One example: video games
• The character can still move and take actions

• But cannot complete the level

47

Livelock versus Deadlock

• Livelock is a condition where
two threads repeatedly take action,
but still don’t make progress.

• Differs from deadlock because deadlock is always permanent.

• Livelock involves retries that may lead to progress,
but there is no guarantee of progress.
• A malicious scheduler can always keep the livelock stuck

• Any randomness in the timing of retries will fix livelock.

• In practice, livelock is a much less serious concern than deadlock.

Helgrind tool

• Helgrind (part of the Valgrind tool) detects many common errors
when using the POSIX pthreads library in C & C++, such as:
• Race conditions (missing locks)

• Lock ordering problems (leading to deadlock)

• Double-unlocking

• Freeing a locked lock

• … and much, much more

• http://valgrind.org/docs/manual/hg-manual.html

http://valgrind.org/docs/manual/hg-manual.html

50

• Synchronization bugs

• Deadlock

• Livelock

• Other languages

Outline

Javascript

• Javascript (in browsers) is strictly single-threaded

• A Javascript function will never be interrupted unless it makes an
asynchronous call

console.log("1");

setTimeout(function(){console.log("2");},0);

console.log("3");

setTimeout(function(){console.log("4");},1000);

• Will always output: 1 3 2 4 in that order

• Even timers only trigger whenever the current code is finished

• Therefore, no data races!

51

Python

• All the same primitives we discussed!
https://docs.python.org/3/library/concurrency.html

52

And some nicer things

with some_lock:
do something…

Is equivalent to

some_lock.acquire()
try:

do something…
finally:

some_lock.release()

https://docs.python.org/3/library/concurrency.html

Python threads are concurrent but not parallel

• Python uses one big lock technique for thread safety
• Global Interpreter Lock (GIL)
• Threads that are I/O bound still

get a performance boost
• Threads that are CPU bound do

not increase performance

• Multiprocessing library does
employ parallelism by spawning
entirely new processes
• Each with their own python interpreter

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a

53

https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a

Java

• Java has synchronized
keyword for surrounding
critical sections

• Automatically releases the lock
when exiting early:

• Similar to

• Python: “with self.lock:”

• Objective-C: “@synchronized”

54

Rust

• Rust’s opinion on sharing memory is amusingly to refer to Go’s opinion

• Rust has a strong concept of ownership
• A writeable (mutable) reference to an object can only be held in one place
• Once an object is passed to another thread, the passer no longer has access

• Rust locks have lifetimes enforced by the compiler
• Lock goes out-of-scope at the end of the function, relocking automatically

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

55

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

Advice for the future

• Be aware of issues when writing multithreaded code

• Use threadsafe data structures when possible
• In languages that provide them…

• Map your problem onto a classical concurrency problem
• Producer/Consumer
• Readers/Writers

• One big lock for correctness isn’t the worst idea ever
• But with some care (possibly a lot of care) we can do better

56

57

• Synchronization bugs

• Deadlock

• Livelock

• Other languages

Outline

